
Rolling Horizon Co-evolution in Two-player General
Video Game Playing

Charles Ringer*1, Cristiana Pacheco‡1, Georgiana Cristina Dobre†, Diego Perez-Liebana‡
*University of York

‡Queen Mary University of London
†Goldsmiths, University of London

cr1116@york.ac.uk, c.pacheco@qmul.ac.uk, gdobr001@gold.ac.uk, diego.perez@qmul.ac.uk

Abstract. Artificial Intelligence for General Video Game Playing
(GVGP) is challenging not only because agents must adapt to a range
of different games, but they must also make decisions within the time
constraints of real-time video games. The General Video Game Ar-
tificial Intelligence framework (GVGAI) is a popular framework for
GVGP. It features a two-player track where two agents play a game
together, either competitively or cooperatively, which poses the ad-
ditional challenge of considering another player. Commonly, agents
only consider their own moves in these two-player games. In this
paper we discuss and assess Rolling Horizon Co-evolutionary Plan-
ning (a modification to Rolling Horizon Evolutionary Algorithms)
for two player GVGAI. We present experimental results on its effec-
tiveness against other agents playing GVGAI games and show that
co-evolution can improve results compared to a RHEA agent.

Introduction
Two-player General Video Game Playing (GVGP) is an interesting
challenge for AI. This is because agents must be able to form effec-
tive plans for a wide range of games, be capable of developing plans
expediently (given the real-time nature of these games) and consider
the opposing agent in the environment. The second agent’s unknown
actions add stochasticity to the environment and may impact the
player’s plans. Thus two-player games can pose a higher challenge
for state-of-the-art GVGP agents compared to single-player games.

One competition for developing AI for general video game playing
is the General Video Game AI (GVGAI) competition [20]. GVGAI
has a large library of single-player and multi-player games that can
be used to test agents. Many of these games are re-implementations
of classic games, such as Frogger, Pac-Man and Sokoban, along with
novel designs. It holds yearly competitions for GVGP across many
tracks, including the two-player games track from which we used the
games and framework for this study.

The current state-of-the-art in AI agents for two-player GVGAI
often uses a random model to simulate the opponent’s moves. How-
ever, modelling the opponent could be useful when planning actions
as the utility of certain action sequences may be highly dependent
on the opponent’s moves [9]. The main contribution of this paper is
an evaluation of Rolling Horizon Co-evolutionary Planning (RHCP)
for GVGAI. RHCP is a modification of Rolling Horizon Evolution-
ary Algorithms (RHEA) where the agent evolves a plan for itself,

1 These authors contributed equally.

which represents the moves it may take in the game, alongside a
“best guess” plan for the opponent. This method assumes that the
opponent is playing rationally, not randomly, and is seeking to max-
imise its score.

In this paper, the GVGAI framework and its two-player track are
briefly discussed along with two existing GVGP approaches: Monte
Carlo Tree-Search (MCTS) and RHEA. Next, we detail the RHCP
algorithm before presenting a comparison between the algorithm and
the previous mentioned approaches, followed by an analysis of the
prediction accuracy over them. Finally, we discuss these result and
conclude that RHCP is a promising approach to two-player GVGP.

GVGAI

Competitions have been widely used to test game playing AI algo-
rithms. These range from board games (Go [23]), platformers (Su-
per Mario Bros [24]) and real-time strategy games (StarCraft [15]).
However, for these, the AI developed will be tailored to one game
only and rarely applicable to other games. Thus, the General Game
Playing competition was developed [8] where submitted agents are
evaluated on unknown (to both the agents and the competitors) turn-
based discrete games. Subsequently, GVGAI was developed to test
the adaptability of a single AI to many real-time games. Similar en-
vironments exist, such as the Arcade Learning Environment [1] and
Open AI Gym [2], although these are typically used in iterative learn-
ing tasks, not using a forward model.

Framework and Competition

The GVGAI [19] framework uses the Video Game Description Lan-
guage (VGDL) [22] to describe games and levels, and provides a
Forward Model (FM) to the agents. This provides the ability to roll
the state forward, simulating possible upcoming states. Sprites can
be created and parameterized for a 2D game environment using text
files. Currently, it has more than a hundred publicly available sin-
gle player games and 80 two-player games. In these games, agents
receive data about their status in a game state. This includes: score,
time step, current winner/loser (if any), sprite positions, orientations,
resources and collisions with other sprites. Given this data, it is up to
the agent(s) to decipher the games’ mechanics and rules. A complete
description of implementation and rules can be found at [20]; and
examples can be seen in Figure 1. At present there are several tracks



Figure 1. 2D arcade style games from GVGAI: Samaritan (top),
Steeplechase (middle), Sokoban (bottom left) and Gotcha (bottom right).

for this competition: single-player learning [25], single-player plan-
ning [20], level generation [11], rule generation [10] and the two-
player planning [4]. The two-player planning track is the focus on
this work.

Two-Player Track
The two-player track extends GVGAI to multiplayer games [4] - by
giving the number of players and all game state data to both. Agents
can both win, both lose, or only one of them win.

As previously stated, the avatars have access to a Forward Model
(FM), allowing them to simulate potential future states in their think-
ing time. The FM allows agents to make copies of the states and
to roll them forward by providing an action for every player in the
game. Moves in two-player GVGAI are simultaneous in all games.
The agents have no previous information about the game rules or me-
chanics, hence these can only be estimated given the interactions with
the environment and the other player. Games for this track feature
both cooperative and competitive scenarios, a detail not revealed to
the playing agents. Since these new mechanics are introduced, there
are many differences in the games: more interactions are available,
score systems and end conditions - such as defence of objects or both
players finishing in a given location.

A recent survey in GVGAI can be found in [18], which highlights
the different approaches that have been tried in this domain. The two
most popular are variants of Monte-Carlo Tree Search (MCTS) [3]
and Rolling Horizon Evolutionary Algorithms (RHEA) [16].

Monte Carlo Tree Search
MCTS based techniques are widely used in the GVGAI framework
for both single and two-players games. It combines Tree Search -
by building said search incrementally - with Monte Carlo simula-
tions - through the evaluation of leaf nodes using the simulation. A
multi-armed bandit algorithm is used to balance exploring tree nodes
that have little information with exploiting nodes that are known to

be good. At each iteration, MCTS performs 4 steps: selection of a
node using Upper Confidence Bounds [13] (UCB), expansion of its
children, simulation using a random sequence of moves (rollout) and
back-propagation of the reward, through the tree, and updating the
parent nodes. This process repeats until a predefined computational
budget is reached. For a comprehensive overview of MCTS see [3].

Of particular interest to this study, the effects of using an oppo-
nent model for MCTS in two-player GVGAI is investigated in [9].
Some of the models implemented are variations of the sample MCTS
algorithm, while others follow a probabilistic approach. The latter
involves offline learning to have a probability distribution over the
possible player’s actions on a game state. The results show that the
probabilistic models perform the highest win rates. It is interesting to
observe that this work is, to the knowledge of the authors, the only
one in which an attempt to modelling the opponent is made - all the
other approaches for two-player GVGAI assume a random move for
the opponent or a similarly simple approach.

Rolling Horizon Evolutionary Algorithms
RHEA are statistical planning algorithms which aim to evolve a se-
quence of actions (a plan), which maximises a reward function. It was
first proposed for real-time games in [16], where the authors applied
it to the Physical Travelling Salesman Problem, showing better per-
formance than MCTS in this scenario. Their applications in GVGP
has recently been subject to attention, by first studying the vanilla
algorithm and its parameters [4], seeding techniques [5] and overall
improvements regarding shift buffer, statistical trees and added roll-
outs [7]. Initially, a population of uniformly random action sequences
is generated. Each action is represented by an integer [0, N − 1],
where N is the number of actions available to the agent. Once this
initial population is generated, individuals are evaluated by stepping
through the forward model and applying each action in the sequence
when the AI is required to act. After this, an heuristic function is
used to calculate the value of the game state, which then becomes
the fitness for this individual. Once the initial population has been
evaluated, genetic operators are applied to evolve a new population
of action plans which are, in turn, evaluated and evolved until a set
computational budget is exhausted. At this point, the first move in
the best individual is returned as the action to take.

Rolling Horizon Co-evolutionary Planning
RHCP is a modification of RHEA where the agents’ plans are co-
evolved with a population of opponent plans. It was first proposed
in [14] although, in this work, experimentation was carried out on
only one game. As such, RHCP’s viability for GVGP was untested.
Whilst the player’s plan represents the moves the player will make,
the opponent’s plans represent “best guess” plans about what actions
they may take. This is intended to give the agent some information
about strong actions the opponent might take when evolving its own
plan. This population of opponent plans is then used when calculat-
ing the fitness of individuals in the player’s plan population and, like-
wise, the player plan population is used when assessing the fitness of
the opponent’s plan. Compared to [9], this approach does not require
offline learning of move probability distributions because plans are
evolved online, alongside the agent’s plan. However, it does assume
that the opponent is playing rationally and its moves are similar to
those that are discoverable by a RHEA agent.

In the work presented in this paper, two different evolutionary
strategies are used depending on whether the agent’s plan or the op-



ponent’s plan is being evolved. This is because part of the computa-
tional budget is dedicated to investigate which moves the opponent
may take, but there needs to be a balance with the time spent on plan-
ning the own agent’s move. It is possible that, for some games, the
opponent’s moves are not relevant - a racing game where blocking is
not possible. Ideally, little computational time should be employed
in that case.

Agent move planning: µ + λ Evolutionary Strategy
The population of a player’s plan is evolved using a µ + λ evolu-
tionary strategy. First, the population is sorted based on fitness, and
elitism is applied, selecting the µ most fit individuals. Then λ in-
dividuals are generated by first selecting some individuals from the
previous population, using tournament selection of size t size, and
then applying uniform crossover and random mutation to these in-
dividuals. Uniform crossover is carried out by, for each gene in the
new individual, selecting with equal probability either the gene from
one of the parents. Random mutation is carried out by selecting a
gene uniformly at random and then setting it to a new valid value,
which in this case is an integer [0, N − 1]. The fitness for this new
population is then calculated and this process is repeated until a com-
putational budget is exhausted at which point, the individual with the
highest fitness is then returned as the best solution.

Opponent move planning: (1+1) Random Mutation
Hill Climber
A (1+1) Random Mutation Hill Climber (RMHC) is an evolutionary
algorithm whereby a population of N = 1 is evolved by first assess-
ing the fitness of the single individual; followed by mutating its chro-
mosomes using genetic operators and assessing the mutated fitness.
If the mutated individual has the same or better fitness, it replaces the
original individual as the single member of the population. This pro-
cess is repeated until a computational budget is exhausted, at which
point, the first move in the individual is returned. For this algorithm,
the mutation operator used is the same as in the µ + λ ES described
above, although it is applied M times to maximize exploration.

State Evaluation
Both the µ+λ ES and (1+1) RMHC use the same scoring heuristic
when determining the fitness of an individual. The fitness is defined
as the game score for the player in the state reached at the end of the
sequence, plus a large negative value if the player lost (−1000) or a
large positive if the player won (1000). This scoring heuristic is also
used in our experiment for the other agents which require a scoring
function (RHEA and MCTS).

Co-Evolution
Co-Evolution refers to evolving chromosomes for two (or more) dif-
ferent populations in parallel by using one to influence the fitness of
the other [21]. This study presents a methodology for co-evolution
of the agent’s plan with a “best guess” plan for the opponent. When
evaluating the fitness of the agent’s plan, we use the best guess op-
ponent plan to simulate what actions the opponent may take. Like-
wise, when evaluating the opponent’s plan, we simulate the actions
the agent takes using its best known plan.

In this paper, we use a µ + λ evolutionary strategy to evolve the
agent’s plan and a (1+1) RMHC to evolve our “best-guess” oppo-
nent’s plan. In each iteration of the algorithm, the population of plans

Algorithm 1 Rolling Horizon Co-evolutionary Planning
1: Requires state: current game state.
2: procedure ACT(state)
3: init()
4: while budgetremains do
5: evaluate(population, opponent, state)
6: evolve(population, opponent, state)
7: return population.best().first move()
8: procedure INIT

9: population← randompopulation
10: opponent← randomindividual

11: procedure EVALUATE(population, opp, state)
12: for indv in population do
13: indv.fit← simulate game(indv, opp, state)

14: population← sort(population)

15: procedure SIMULATE GAME(indv, opponent, state)
16: for i in indv.length do
17: movea ← indv[i]
18: moveb ← opponent[i]
19: state.advance(movea,moveb)

20: return score heuristic(indv, state)

Algorithm 2 Rolling Horizon Coevolutionary Planning Genetic Op-
erators

1: Requires elitism (µ)
2: procedure EVOLVE(population, opponent, state)
3: newPop← emptypopulation
4: while newPop.size < elitism do
5: newPop← add(next fittest individual)

6: while newPop.size < population.size do
7: newPop← selectandmutate(population)

8: mutOp← mutate(opponent)
9: opF it← simulate game(opponent, bestindv, state)

10: opMFit← simulate game(mutOp, bestindv, state)
11: if opMFit <= opF it then
12: opponent← mutationOpponent

13: Requires t size: tournament size
14: procedure SELECTANDMUTATE(population)
15: while tournament.size <t size do
16: tournament← population.rand indv()

17: parentA← tournament.fittest()
18: parentB ← tournament.secondFittest()
19: new indv ← uniformCrossover(parentA, parentB)
20: return mutate(new indv,mutation)

21: Requires M : mutation repetitions
22: procedure MUTATE(individual)
23: for M do
24: geneidx← individual.new random gene()
25: individual[geneidx]← new random gene()

26: return individual

is evaluated, the elite selected and the rest mutated. Then the oppo-
nent plan is mutated and both the original and mutated plans are eval-
uated against the best known player plan. The opponent plan with the
highest fitness is then preserved and survives into the next iteration of
the algorithm. This process is repeated until the budget is exhausted.
Algorithm 1 details the core RHCP loop, initialisation and evaluation
policies; algorithm 2 details the genetic operators for RHCP.



Experiment
For this experiment, 10 games from the GVGAI Two-Player track
were used, those found in the GVGAI Two-Player Training Set 1.
This training set contains a mixture of Competitive games (8), where
there is at most one winner, and Cooperative games (2), where play-
ers are working towards a shared goal and win or lose together. Ad-
ditionally, there is a mixture of Symmetric games(7), where each
player has the same goal, and Asymmetric games (3), where each
player has a different goal. Finally there is a mixture of Stochastic
games (4), those with a random element, and Deterministic games
(6), those that have no randomness from the environment. A list of
games can be found in Table 1.

Four algorithms were tested: our RHCP agent and 3 control
agents. All control agents, RHEA, MCTS, and Random, were mod-
ifications of sample agents provided with the GVGAI framework.
RHEA and RHCP use both the same length for their individuals
(l = 15), tournament selection (t size = 2), uniform crossover
and mutation. The only difference between the two algorithms is
that RHEA used a population of n = 10 whereas RHCP used a
population of n = 8. This was to allow computational budget for
the secondary population for the opponent’s plan, such that it also
evaluates 10 individuals per generation. In RHCP, the player’s plan
population has a µ of 1, selected through elitism, and λ = n − µ.
The population of λ individuals is generated by selecting past indi-
viduals through tournament selection, crossover and random muta-
tion, where 1 gene is mutated, selected uniformly at random. When
mutating the opponents plan in RHCP, M is set to 5. The default
MCTS agent, included in the GVGAI framework, is used for the ex-
periments. This is a closed loop version [17] of the algorithm, using
a standard UCB1 [13] function for its tree policy. Uniform random
roll-outs, limited to a depth of 15, are used for the default policy.
Finally, the random agent is also taken verbatim from the provided
agents and it simply chooses one of the available moves in the current
state uniformly at random.

RHEA, MCTS and RHCP substituted the time-based budget from
the competition (40ms of real-time per decision) for a number of us-
ages of the forward model’s function that rolls the state forward. This
ensures that all experiments are consistent independently from the
machine used. As in [6], 900 FM calls were provided as the decision-
making budget for each game tick. For each game, all 5 levels were
evaluated with 2 different orders, each agent playing both sides, pro-
viding 10 different scenarios. Each scenario is then played 10 times,
resulting in 100 trials per agent pairing on each game, and a total of
1000 matches per pair of controllers.2

Results
This experiment compares our proposed RHCP algorithm against
a suite of control algorithm as well as investigating if co-evolution
helps predict the opponent’s next move. The overall win/loss results
for all ten games are shown in Table 2 and the prediction accuracy
against each opposing algorithm is in Table 3.

Comparison of Agent vs Agent performance
RHCP vs RHEA

Comparing RHCP to RHEA is perhaps most interesting as RHCP
operates similarly to RHEA, with the addition of co-evolving an op-
ponent’s plan at the expense of some computational time. Of the
2 Tests were run in the Apocrita High Performance Compute cluster[12]

1000 games played, RHCP won 360 compared to 309 games won by
RHEA. These 51 games, or 5.1% increase is a significant (p < 0.05)
improvement. A 2-sample Z test was carried out for significance test-
ing with a Z-Score of 2.417 and a p-value of 0.015.

RHCP/RHEA vs MCTS

MCTS is the most dominant two-player GVGAI approach and it
is clear that whilst RHCP performs better than RHEA, the perfor-
mance of both is considerably worse than MCTS. Neither RHCP nor
RHEA is significantly better than one another when playing against
MCTS. It does seem that RHCP is more competitive than RHEA
against MCTS (winning more and losing less), although further test-
ing would be required to confirm this, especially due to the stochastic
nature of evolutionary algorithms.

RHCP/RHEA/MCTS vs Random

Understandably RHCP, RHEA, and MCTS all performed very well
against a random agent. It is interesting to note that even against a
random agent, no other agent was able to achieve a better than 50/50
win ratio in game 4 - Gotcha. We believe this because not only is
Gotcha asymmetric but also unbalanced - different ‘roles’ provide
different levels of challenge.

Prediction Accuracy
The opponent’s predicted next move based on the first move of the
RHCP evolved opponent’s plan and the opponent’s actual move were
recorded for each tick in games involving RHCP. Table 3 shows the
average accuracy of these predictions for each game played against
each opponent.

Discussion
RHCP outperforms RHEA using a random opponent model and also
closes the gap between RHEA and MCTS - only slightly. RHCP per-
formed as well as or better than RHEA in every game, in terms of
win % indicating that spending time planning for the opponent’s is
worthwhile, even in environments such as GVGAI where there is
a very limited computational budget. It is interesting to note that the
two games where RHCP really performed well - game 2, Capture the
Flag and game 9, Tron - are particularly adversarial; the actions the
opponent takes have a big impact on the performance of the agent.
Additionally, RHCP and RHEA performed similarly, within 4 wins
of each other, for all games except game 5, Klax. Whilst this win ratio
improvement is not significant, p = 0.061, this is another example
of RHCP performing better in games which are highly interactive
and are reliant on your opponent’s moves, exactly the sorts of games
RHCP can give a competitive advantage.

However, MCTS is still the best performing agent. Rolling Hori-
zon agents can be sensitive to both hyper-parameter choices and fea-
tures of the game. For this reason, options such as games with higher
branching factors or that need longer plans may well favour RHEA.
Further testing on a wider range of games and hyper-parameter op-
tions would be needed to check this hypothesis.

The prediction accuracy was not significantly different amongst
the various opponents. Given that one agent is a Random agent, this
essentially means that across all games predicting the next move
based on co-evolution is no better than random. That said game 4,
Gotcha is a game where RHCP was able to predict the next move



Table 1. Games set from the GVGAI Two-Player Training Set 1. The key game attributes are Cooperative (Co) or Competitive (Cp), Symmetric (Sym) or
Asymmetric (Asym), and Stochastic (S) or Deterministic (D). The descriptions are summaries of the descriptions found at www.gvgai.net.

ID Game Key
Attributes

Description

0 Akka Arrh Co, Sym, S Two players defend a locked spaceship from aliens, while trying to open and enter in it. Both
players win when they enter the spaceship but lose if one is hit by the aliens.

1 Asteroids Cp, Sym, S Players shoot asteroids, which break into smaller asteroids, for points. The players can also
shoot each other. Last player standing wins, or the one with more points at the end.

2 Capture the
Flag

Cp, Sym, D The level is divided into two areas, each with a flag. Players must capture the opponent’s flag
and bring it to their area. Capturing gives points, the player with most points wins.

3 Cops N
Robbers

Cp, Asym, D One player is the robber and the other is a cop. The robber wins if all gems are collected and
the cop wins if he catches the robber.

4 Gotcha Cp, Asym, S One player has to chase the other. There are safe places where the chased one can hide. If the
chaser catches the other player, they win but loses if time is over before that.

5 Klax Cp, Sym, S Coloured objects fall from the sky. Players catch them for points (own colour is worth more
points). Higher score at the end decides the winner.

6 Samaritan Cp, Asym, D One player tries to cross a portal to another world, while the other tries to avoid so. The first
player wins the game by reaching it on time.

7 Sokoban Co, Sym, D Both players must push all boxes into determined locations. The game ends when all boxes are
correctly placed.

8 Steeplechase Cp, Sym, D Racing game. Players win by reaching the end. There are many obstacles and a hidden gem is
worth many score points.

9 Tron Cp, Sym, D A version of the classic game with the same name. Players race in a wall-encircled arena creat-
ing walls as they move. The first player that collides with a wall loses.

Table 2. Results from all games played across the 6 pairings of agents. For each pair, first (second) column shows number of victories for the first (second,
respectively) agent. The maximum possible wins for each pairing and game is 100 (ties possible).

Game ID RHCP vs RHEA RHCP vs MCTS RHEA vs MCTS RHCP vs Rand. RHEA vs Rand. MCTS vs Rand.

0 0 - 0 1 - 1 3 - 3 0 - 0 0 - 0 1 - 1
1 49 - 45 9 - 85 7 - 87 85 - 9 92 - 6 100 - 0
2 56 - 45 6 - 97 3 - 98 88 - 12 90 - 11 100 - 0
3 39 - 31 3 - 66 4 - 70 59 - 8 57 - 13 69 - 1
4 50 - 50 50 - 50 50 - 50 50 - 50 50 - 50 50 - 50
5 54 - 48 35 - 70 23 - 79 100 - 0 97 - 4 100 - 0
6 50 - 50 46 - 54 50 - 50 56 - 38 53 - 44 64 - 34
7 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0
8 1 - 1 1 - 3 4 - 3 2 - 1 3 - 4 12 - 2
9 61 - 39 6 - 94 10 - 90 98 - 2 98 - 2 100 - 0

Total 360 - 309 157 - 520 154 - 530 538 - 120 540 - 134 596 - 88

with a high average accuracy against the RHEA agent. The predic-
tion accuracy was 0.418, compared to 0.199 against random, a sig-
nificant improvement (Z Score = 3.36, p < 0.05). Even though the
average move prediction accuracy against RHEA/MCTS is not high,
co-evolution is clearly making a positive difference to decision mak-
ing, evidenced by RHCP agent performing better than RHEA. One
possible reason for the poor prediction accuracy is the stochastic na-
ture of the evolutionary algorithm coupled with the small number of
evolution iterations, given such limited forward model calls: RHCP
performs approximately 6 generations per tick. It is possible that the
prediction plan may find a strong move sequence which is still valu-
able, but not the exact move sequence found by the opponent.

Conclusion

In this paper, we discuss Rolling Horizon Co-evolutionary Planning
(RHCP) for General Video Game Playing, which evolves plans of
actions for itself and the opponent. We have experimented and com-
pared this algorithm to three others, RHEA, MCTS and Random in
a set of 10 two-player GVGAI games. We have found that spending
computation time considering the potential opponent’s moves shows
improvement compared to the same algorithm without this feature
(RHEA). However, this still performed worse than MCTS. Surpris-
ingly, despite RHCP outperforming RHEA, it was not able to predict
the next move of ‘rational’ agents (RHEA/MCTS) with a greater ac-
curacy than against Random. Perhaps the opponent plan evolution



Table 3. Prediction accuracy (Acc ∈ [0, 1]) for the first move in the RHCP
opponent plan compared to the actual move taken, together with the

Standard Deviation, in parenthesis, across all trials per game against all
opposing agents. Highest accuracy per game is show in bold.

Game RHEA MCTS Random

0 0.185 (0.016) 0.165 (0.016) 0.166 (0.02)
1 0.169 (0.107) 0.160 (0.167) 0.173 (0.15)
2 0.223 (0.01) 0.201 (0.010) 0.2 (0.01)
3 0.2 (0.032) 0.176 (0.031) 0.18 (0.033)
4 0.418 (0.013) 0.202 (0.041) 0.199 (0.025)
5 0.375 (0.013) 0.332 (0.013) 0.418 (0.013)
6 0.201 (0.034) 0.180 (0.044) 0.181 (0.026)
7 0.223 (0.009) 0.199 (0.009) 0.199 (0.009)
8 0.186 (0.008) 0.166 (0.009) 0.168 (0.009)
9 0.245 (0.06) 0.227 (0.045) 0.197 (0.102)

Avg 0.223 (0.032) 0.201 (0.038) 0.208 (0.04)

is finding strong sequences over 15 moves but, due to the stochas-
tic nature of RHCP, it often disagrees on one move in particular.
This work should be seen as a first step towards applying RHCP ef-
fectively. Thus, further investigation is required to fully understand
the positive effects of co-evolution, though it’s reasonable to think
that predicting the opponent’s move more accurately would improve
the performance of RHCP. Future work should investigate how ex-
isting RHEA modifications impact RHCP - including probabilistic
approaches to further improve predictions of actions - what are the
best hyper-parameters and how differently it would perform in more
games. Also, submitting RHCP to the GVGAI competition would
allow assessing its performance against other approaches.

Acknowledgments

This work was supported by grant EP/L015846/1 for the Centre for
Doctoral Training in Intelligent Games and Game Intelligence (IGGI
- http://www.iggi.org.uk/) from the UK Engineering and Physical
Sciences Research Council (EPSRC). This research utilised Queen
Mary’s Apocrita HPC facility, supported by QMUL Research-IT.

REFERENCES

[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling,
‘The arcade learning environment: An evaluation platform for general
agents.’, J. Artif. Intell. Res.(JAIR), 47, 253–279, (2013).

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba, ‘Openai gym’, arXiv
preprint arXiv:1606.01540, (2016).

[3] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M
Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego
Perez, Spyridon Samothrakis, and Simon Colton, ‘A survey of monte
carlo tree search methods’, IEEE Transactions on Computational Intel-
ligence and AI in games, 4(1), 1–43, (2012).

[4] Raluca D Gaina, Adrien Couëtoux, Dennis JNJ Soemers, Mark HM
Winands, Tom Vodopivec, Florian Kirchgeßner, Jialin Liu, Simon M
Lucas, and Diego Perez-Liebana, ‘The 2016 two-player gvgai com-
petition’, IEEE Transactions on Computational Intelligence and AI in
Games, (2017).

[5] Raluca D. Gaina, Simon M. Lucas, and Diego Perez-Liebana, ‘Pop-
ulation seeding techniques for Rolling Horizon Evolution in General
Video Game Playing’, 2017 IEEE Congress on Evolutionary Computa-
tion, CEC 2017 - Proceedings, 1956–1963, (2017).

[6] Raluca D Gaina, Simon M Lucas, and Diego Pérez-Liébana, ‘Pop-
ulation seeding techniques for rolling horizon evolution in general
video game playing’, in Evolutionary Computation (CEC), 2017 IEEE
Congress on, pp. 1956–1963. IEEE, (2017).

[7] Raluca D. Gaina, Simon M. Lucas, and Diego Perez-Liebana, ‘Rolling
horizon evolution enhancements in general video game playing’, 2017
IEEE Conference on Computational Intelligence and Games, CIG
2017, 88–95, (2017).

[8] Michael Genesereth, Nathaniel Love, and Barney Pell, ‘General game
playing: Overview of the aaai competition’, AI magazine, 26(2), 62,
(2005).

[9] Jose Manuel Gonzalez-Castro and Diego Perez-Liebana, ‘Opponent
models comparison for 2 players in gvgai competitions’, in Computer
Science and Electronic Engineering Conference (CEEC), (2017).

[10] Ahmed Khalifa, Michael C Green, Diego Pérez-Liébana, and Julian To-
gelius, ‘General Video Game Rule Generation’, in 2017 IEEE Confer-
ence on Computational Intelligence and Games (CIG). IEEE, (2017).

[11] Ahmed Khalifa, Diego Perez-Liebana, Simon M Lucas, and Julian To-
gelius, ‘General video game level generation’, in Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation.
ACM, (2016).

[12] Thomas King, Simon Butcher, and Lukasz Zalewski, ‘Apocrita - high
performance computing cluster for queen mary university of london’,
(Mar 2017).

[13] Levente Kocsis and Csaba Szepesvári, ‘Bandit based monte-carlo plan-
ning’, in European conference on machine learning, pp. 282–293.
Springer, (2006).

[14] Jialin Liu, Diego Pérez-Liébana, and Simon M. Lucas, ‘Rolling horizon
coevolutionary planning for two-player video games’, 2016 8th Com-
puter Science and Electronic Engineering Conference, CEEC 2016 -
Conference Proceedings, 174–179, (2017).

[15] Santiago Ontanón, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux,
David Churchill, and Mike Preuss, ‘A survey of real-time strategy game
ai research and competition in starcraft’, IEEE Transactions on Com-
putational Intelligence and AI in games, 5(4), 293–311, (2013).

[16] Diego Perez, Spyridon Samothrakis, Simon Lucas, and Philipp Rohlf-
shagen, ‘Rolling horizon evolution versus tree search for navigation in
single-player real-time games’, Proceeding of the fifteenth annual con-
ference on Genetic and evolutionary computation conference - GECCO
’13, 351, (2013).

[17] Diego Perez Liebana, Jens Dieskau, Martin Hunermund, Sanaz
Mostaghim, and Simon Lucas, ‘Open loop search for general video
game playing’, in Proceedings of the 2015 Annual Conference on Ge-
netic and Evolutionary Computation, pp. 337–344. ACM, (2015).

[18] Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D. Gaina, Ju-
lian Togelius, and Simon M. Lucas, ‘General Video Game AI: a Multi-
Track Framework for Evaluating Agents, Games and Content Genera-
tion Algorithms’, (2018).

[19] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Simon M
Lucas, and Tom Schaul, ‘General video game ai: Competition, chal-
lenges and opportunities’, in Thirtieth AAAI Conference on Artificial
Intelligence, pp. 4335–4337, (2016).

[20] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom
Schaul, Simon M Lucas, Adrien Couëtoux, Jerry Lee, Chong-U Lim,
and Tommy Thompson, ‘The 2014 general video game playing com-
petition’, IEEE Transactions on Computational Intelligence and AI in
Games, 8(3), 229–243, (2016).

[21] Christopher D. Rosin and Richard K. Belew, ‘New methods for com-
petitive coevolution’, Evol. Comput., 5(1), 1–29, (March 1997).

[22] Tom Schaul, ‘A video game description language for model-based or
interactive learning’, in Computational Intelligence in Games (CIG),
2013 IEEE Conference on, pp. 1–8. IEEE, (2013).

[23] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al., ‘Mastering
the game of go with deep neural networks and tree search’, nature,
529(7587), 484–489, (2016).

[24] Julian Togelius, Noor Shaker, Sergey Karakovskiy, and Georgios N
Yannakakis, ‘The mario ai championship 2009-2012’, AI Magazine,
34(3), 89–92, (2013).

[25] Ruben Rodriguez Torrado, Philip Bontrager, Julian Togelius, Jialin Liu,
and Diego Perez-Liebana, ‘Deep reinforcement learning for general
video game ai’, in IEEE Conference on Computational Intelligence and
Games (CIG). IEEE, (2018).


