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Abstract—This paper describes the N-Tuple Bandit Evolution-
ary Algorithm (NTBEA), an optimisation algorithm developed
for noisy and expensive discrete (combinatorial) optimisation
problems. The algorithm is applied to two game-based hyper-
parameter optimisation problems. The N-Tuple system directly
models the statistics, approximating the fitness and number of
evaluations of each modelled combination of parameters. The
model is simple, efficient and informative. Results show that the
NTBEA significantly outperforms grid search and an estimation
of distribution algorithm.

Index Terms—Estimation of Distribution Algorithm, Evolu-
tionary Algorithm, Hyper-Parameter Optimisation, Rolling Hori-
zon Evolution, Game Playing Agent, Noisy Optimisation.

I. INTRODUCTION

This paper describes the N-Tuple Bandit Evolutionary Al-
gorithm (NTBEA) and its application to optimising the pa-
rameters of a rolling horizon evolution game-playing agent.
The NTBEA combines evolutionary search with Multi-Armed
Bandit algorithms (MABs) in order to provide an algorithm
which is robust to noise, has an explicit way to balance the
trade-off between exploration and exploitation, and provides
a statistical model of the fitness landscape as an additional
output.

The applications of this type of algorithm are numerous. In
our research we have already applied it successfully to hyper-
parameter optimisation [1] and automated game tuning [2].
Furthermore, if the inherent fitness landscape is flat, then the
exploration term provides a means for performing novelty
search [3].

A. Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) [4], [5], [6],
[7], [8] are a powerful class of Evolutionary Algorithms (EAs).
Instead of using the mutation and crossover operators to
generate offspring from the fittest parents, the population is
sampled from an estimated probability distribution of selected
individuals, which is updated iteratively using the fitness
evaluations of individuals. In addition to potentially making
the search more efficient and robust to noise, EDAs also have
the benefit of learning a model which offers greater insight into
the nature of the problem. The model may provide information
regarding key parameter combinations that tend to lead to good
or bad solutions.

The NTBEA models not only the fitness of points in the
search space, but also estimates how much each point has been
visited. This enables explicit modelling of exploration, which
has two distinct benefits. First, it enables a principled way to
avoid becoming trapped in local optima, since the search can
be diverted to less well explored areas. Second, it provides
a natural way to perform a type of novelty search. This is
especially important when dealing with problems that involve
a flat reward landscape [9].

B. Combinatorial Multi-Armed Bandits

Rolet and Teytaud [10] modeled the sub-domains of the
search space as arms of a bandit and allocated the computa-
tional resource dynamically during the evaluation step of an
evolution strategy for continuous noisy optimization. When
searching in a discrete space, the NTBEA has significant sim-
ilarity to the Combinatorial Multi-Armed Bandits (CMABs),
formalised by Gai et al. [11] and Chen et al. [12]. Gai et
al. applied CMABs to a channel allocation problem in mo-
bile communications, and showed how considering pair-wise
interactions led to better performance than a naive univariate
model, but their model was particular to resource allocation
problems. The recent work of Ontañón [13] on CMABs is
the closest to this paper. Ontañón used CMABs for multi-
agent control in the microRTS game, a relatively simple but
highly challenging real-time strategy (RTS) game. Ontañón’s
CMABs model each dimension of the search space as an
individual local MAB, in which each arm is a legal value
of the corresponding dimension, together with a global MAB
with all the legal value combinations as arms. These value
combinations are sometimes called macro-arms.

C. N-Tuple Systems

In this paper we use an N-Tuple system to model the
fitness landscape, and combine it with an evolutionary search
algorithm. N-Tuple systems were first developed and applied
to pattern recognition in the late 1950s [14], and among many
other applications have also been applied to model value
functions in games [15], [16]. The standard way of using an
N-Tuple system is to model a high-dimensional feature space
by considering a set of lower-dimensional projections of that
space, defined by the set of N-Tuples. Each N-Tuple forms a
weak model of the space, but combining them provides a good



model. There are some novel aspects of the N-Tuple systems
used in this paper that will be described later in Section II.

The notion of successively improving an individual or
a population via variation operators and fitness evaluations
makes the NTBEA distinct from the standard CMAB methods.
A CMAB operates via a pure bandit-based sampling proce-
dure, whereas the approach described in this paper uses an
evolutionary algorithm (EA) to perform the population gener-
ation and variation, and a bandit landscape fitness model (for
brevity called just the model or the model space) to perform
the selection. In this paper an N-Tuple system is used as the
model, but other choices of model would also be possible. N-
Tuple systems are a good choice due to their speed, simplicity,
interpretability and reasonable accuracy. Essentially, the EA
searches the model space to improve the sample efficiency in
the problem domain.

In this paper, a variation of the (1, λ)-EA is used, in which
the current best individual is selected as the parent only to
generate the next population of size λ and is not included in
the new population.

The instance of the algorithm described in this paper is sim-
ilar to the N-Tuple Bandit Evolutionary Algorithm introduced
by Kunanusont et al. [2], extended from the Bandit-based
Random Mutation Hill Climber [17]. Kunanusont et al. [2]
applied the NTBEA to automatic game parameter tuning of a
two-player adversarial video game, a very noisy problem, as
some stochastic AI agents were used to evaluate the evolved
stochastic games. The NTBEA significantly outperformed
two evolutionary algorithms, a simple Random Mutation Hill
Climber and a univariate Bandit EA [2]. The NTBEA was
also applied within the General Video Game AI (GVGAI [18])
framework for evolving game rules and parameters, and has
successfully evolved variations of the game Aliens to favour
either a short-term or a long-term planning agent [19].

In this paper, we formalise the NTBEA, and present its
applications for hyper-parameter optimisation. The NTBEA
makes use of the statistics of the previously evaluated solutions
and balances the trade-off between exploring a new (or less
evaluated) solution and exploiting the best one found so
far. The NTBEA is particularly useful when the evaluation
function is expensive or noisy. For example, in the context
of automatic game design, a game needs to be played several
times to approximate an accurate win rate if the game or the
agents are stochastic, while the execution time of a single
game may take a significant amount of time or it is difficult to
perform an evaluation. The notion of expensive in this context
is clearly subjective, but really means any problem where the
evaluation time is a significant issue in the opinion of the
algorithm user.

Using N-Tuples to approximate fitness statistics and visit
counts can be related to locally sensitive hashing (LSH), and
it is worth noting how the N-Tuple system described in this
paper could also be used for enhancing exploration in video
games, similar to the way LSH in the form of Context Tree
Switching (CTS) was applied to boost performance on the
challenging game of Montezuma’s Revenge [20].

D. Hyper-Parameter Optimisation

The task of tuning the parameters of a game-playing agent
can be viewed as a Hyper-Parameter Optimisation problem.
Bergstra and Bengio [21] state how the most popular methods
are Grid Search and manual search, but show how competitive
the performance of random search is for these problems.
More recently the Hyperband paper [22] shows how recent
approaches such as Sequential Model-based Algorithm Con-
figuration (SMAC) [23] and Tree-structured Parzen Estimator
(TPE; [24]) in some cases only perform similarly to random
search. They outperformed random search in a direct rank-
based comparison, but only by a small margin. When the
random search was repeated twice and the best solution was
picked, random search performed best [22] (albeit not quite a
fair comparison, but one that illustrates the small margin of
improvement).

The NTBEA approach has a similar overall algorithmic
framework to SMAC [23], in the way a model is iteratively
updated and used to decide which point in the search space to
sample next. Where SMAC uses random forests for the model,
the NTBEA uses N-Tuple systems. There are also significant
differences in the approaches; SMAC only estimates the value
of the objective function for each parameter configuration,
whereas NTBEA also estimates the visit count, which is
essential for the bandit-based exploration pressure. There are
also some conceptual differences, with SMAC running T trials
of each sample configuration (via its INTENSIFY procedure)
while by default NTBEA runs a single evaluation each time,
in order to make maximum use of the bandit model.

Other aspects of hyper-parameter optimisation in general
involve early stopping of unpromising solutions, and also
sharing of the system parameters between competing solu-
tions: both of these are used to great effect by Jadeberg et
al [25]. Here we only consider when each solution is fully
evaluated at least once, as in a complete game is played,
though actually games could be abandoned very early when
one player is obviously weak. For now we note that there
are many approaches to hyper-parameter optimisation, but that
manual and grid search are in strong use, and that random
search performs surprisingly well.

The rest of this paper is structured as follows. Section II
introduces the overall structure of the NTBEA. The test
problem is described in Section III, then results are illustrated
and discussed in Section IV. Section V concludes and lists
some future work.

II. THE N-TUPLE BANDIT EVOLUTIONARY ALGORITHM

In this section, we describe the system architecture of the
algorithm and then explain each part in more detail. Figure 1
illustrates the three key components of the NTBEA, a bandit
landscape model, an evolutionary algorithm and a noisy evalu-
ator, i.e., a fitness function corrupted by noise. We assume that
the execution time of querying the bandit landscape model is
negligible compared to evaluating a candidate solution on the
target problem.



Fig. 1: Key components of the N-Tuple Bandit Evolutionary
Algorithm (NTBEA). A model of the fitness landscape is built
and updates iteratively using the evaluations of solutions. The
search for candidate solutions is performed in the model space,
i.e., the N-Tuple Bandit Fitness Landscape model, where
candidate solutions can be evaluated quickly (N-Tuple systems
are well known for their speed [26], and our experimental
tests support this). This is then sampled in the real (relatively
expensive) problem search space, where the fitness value is
expected to be noisy. The model is then updated with the
fitness value of this solution point. The process repeats until
some termination condition is met.

The algorithm works as follows. The search begins by
sampling a single solution point uniformly at random in the
search space. This search point is referred to as the current
point. The fitness of the current point is evaluated once, in
the problem domain, using the noisy evaluator. In theory, no
resampling is needed, even for noisy problems, since the UCB
module in the algorithm aims to take care of re-evaluating an
identical point if needed. Note that the algorithm also works
for noise-free problems, though we focus on noisy problems
in this paper.

The current point is then stored in the bandit fitness land-
scape model (referred to as the model from now on), together
with its fitness value. The model is then searched within
the neighborhood of the current point. The neighborhood is
defined using the number of neighbors and the proximity
distribution to the current point, which is controlled by a
mutation operator. The solution point in the neighborhood
with the highest estimated Upper Confidence Bounds value
(UCB; defined later in Section II-A) is then selected as the
new current point. The process iterates until the evaluation
budget is used up, or some other termination condition is met.
The algorithm is described in Algorithm 1.

Note that this description outlines the simplest approach
where only a single solution is held as the current focus of
the search, similar to using only one parent. Population-based
versions are also possible, and would be more appropriate for
parallel hardware.

A. Estimating UCB Values: an N -Tuple Approach

A key part of the algorithm is the value function used to
sample in a large search space. In this context, large means that
the size of the search space is larger than the number of fitness
evaluations allowed, thus it is impossible to properly evaluate
(proper evaluation may involve resampling due to noise) each
of the possible solutions points. Instead, we need to model the
relationship between points in the search space and sample
accordingly.

The algorithm UCB1, a simple multi-armed bandit algo-
rithm, is introduced by Auer et al. [27]. The UCB value of
any arm i is defined as:

UCBi = X̂i + k

√
lnn

ni + ε
. (1)

The empirical mean reward for playing arm i is X̂i: this is the
exploitation term. The right hand term controls the exploration,
where n is the total number of times this bandit has been
played, and ni is the number of times the arm i has been
played. The term k is called the exploration factor: higher
values of k lead to explorative search, low values lead to more
greedy or exploitative search. Each dimension of the search
space is modelled as an independent MAB, with an arm for
each possible value. The ε value is used to control whether
each arm should be pulled at least once. In the standard UCB
formula, ε is set to zero ensuring that each arm is pulled once
in turn, but for our purposes this would be impractical, as the
macro-arm consisting of the entire N -Tuple would force an
exhaustive exploration of the search space.

Additionally, we also model combinations of arms as super-
bandits. For example, in a d-dimensional search space where
each dimension has n possible values, the 10-wide super-
bandit would have nd arms.

We modify this to be an aggregate over all the N -Tuples in
the N -Tuple System model. Let N be the N -Tuple indexing
function such that Nj(x) indexes the jth bandit for search
space point x. Initially we compute the aggregate UCB value
for solution point x as an unweighted arithmetic average, as
defined in (2):

vUCB(x) =
1

m

m∑
j=1

UCBNj(x), (2)

where m denotes the total number of bandits in the system.
More sophisticated algorithms are possible, for example by

combining the individual outputs using a Bayesian method,
but for simplicity and proof of concept we begin by using the
arithmetic average.

The N-Tuple systems have ideal properties for use as fitness
landscape models, in that they offer an extremely fast one-shot
training and good accuracy. They are ideally suited to mod-
elling discrete spaces, but can also be applied to continuous
spaces with some degree of compromise. In this paper we are
dealing with discrete search spaces, so they are already a good
fit.

The concept is as follows. Given a d-dimensional search
space, we sub-sample its dimensions with a number of N -
tuples. The value of N ranges from 1 up to d, though may
miss out values in between. If all the tuples were considered,
then the total number of bandits is 2d.

In the standard N-Tuple systems each entry in the look-up-
table stores a single value for each class, normally related to
the probability of that index occurring given that class, or for
game position value function approximation, the value of that
index occurring.



Algorithm 1 The N-Tuple Bandit Evolutionary Algorithm.

Require: S: search space
Require: fitness: noisy solution evaluator
Require: n ∈ N+: number of neighbors
Require: p ∈ (0, 1): mutation probability
Require: flipOnce ∈ {true, false}: flip at least once or not
Require: nbEvals: total number of evaluations allowed

1: t = 0 . Counter for fitness evaluations
2: Model← ∅ . Initialise the fitness landscape model
3: current← a random point ∈ S
4: while t < nbEvals do
5: value← fitness(current)
6: add < current, value > to LModel
7: Population← NEIGHBORS(Model, current, n, p, flipOnce)

8: current← argmaxx∈Population vUCB(x)
9: t← t+ 1

10: return LModel

11: function NEIGHBORS(model, x, n, p, flipOnce)
12: Population← ∅ . Initialise empty set
13: d← |x| . Get the dimension
14: for k ∈ {1, . . . , n} do
15: neighbor ← x
16: i← 0
17: if flipOnce then
18: i← randomly selected from {1, 2, . . . , d}
19: for j ∈ {1, . . . , d} do
20: if i == j then
21: Randomly mutate value of neighborj
22: else
23: if RAND < p then
24: Randomly mutate value of neighborj
25: Add neighbor to Population
26: return Population

In our model, however, each N-Tuple has a look-up table
(LUT) that stores statistical summaries of the values it encoun-
ters; the basic numbers stored are the number of samples, the
sum of the fitness of samples, and the sum of the square of
the fitness of the samples. This enables the mean, the standard
deviation and the standard error to be calculated for each entry
in the table. This provides all we need for (1) and (2), and
beyond: calculating the mean, standard deviation or standard
error for each parameter combination being modelled provides
useful insight into the nature of the system under optimisation.

B. Algorithm

The NTBEA algorithm is outlined in Algorithm 1 and
operates as follows. It begins by choosing a random solution
point in the search space, which is called the current point.
Since we are dealing with discrete search spaces, each point
is represented as a vector of integers, where each element
of the vector is an index to the currently selected value in

that dimension. The actual value chosen may be of any type,
common types are integer, double and boolean.

The following steps are then repeated until the fitness
evaluation budget has been exhausted:
• It makes a (noisy) fitness evaluation of the current point

and stores it in the N-Tuple Fitness Landscape Model
as the value for that solution point (lines 5 and 6 in
Algorithm 1).

• Using a mutation operator to generate a set of unique
neighbors of the current solution, as the population of
current iteration (line 7).

• Using the fitness landscape model, the algorithm calcu-
lates the estimated UCB value of each solution by (1)
and (2). Then, it sets the current solution as the one in
the population (neighbors from the previous step) with
the highest estimated UCB value (line 8).

When the fitness evaluation budget has been exhausted, the
method searches and recommends a neighbor of all of the
evaluated solutions, in which each dimension is set to the value
with maximal approximate value defined in (2).

C. Illustrative Example

Consider a 5-dimensional space, modeled using five 1-tuples
and one 5-tuple. Suppose we now enter the four vectors (three
unique) in the search space together with their associated
fitness values as given in Table Ia.

The first 1-tuple will have a LUT that has 2 entries, with
LUT [0 ∗ ∗ ∗ ∗] having a mean of 1, and LUT [1 ∗ ∗ ∗ ∗]
having a mean of 2

3 . The single 5-tuple will have three non-
empty entries, with LUT [12340] having a mean of 0.5, and
LUT [11111] and LUT [00110] both having means of 1. Note
that the object at each index is a statistical summary object as
described above that does not directly store the mean but can
calculate it; we describe the mean value to best illustrate the
operation, and because it feeds directly into (1) and (2). An
example of some of the statistics that are stored in the system
or can be calculated directly is shown in Table Ib.

In this example only the empirical average and the number
of evaluations is output for each index of each N -tuple, though
as mentioned previously the standard deviation and standard
error are also available. For each N -tuple, only the non-null
table entries are shown, i.e., ones in which the index (can also
be thought of as a pattern) occurs at least once.

III. NOISY OPTIMISATION OF GAME AGENT PARAMETERS

This section describes an application to optimising the
parameters of a rolling horizon evolutionary game-playing
agent. The agent is optimised to get as high average score on
the game as possible. This is a noisy optimisation problem
with two distinct sources of noise: (i) the game itself is
stochastic; (ii) the optimised agent follows a stochastic policy,
such that given the same game state, it may play differently
if simulating more than once.

The behavior of the agent is controlled by a number of
parameters, some of which may have a critical effect on



TABLE I: Illustrative example, in which only 1-tuples and
d-tuple are considered (d = 5).

(a) Evaluated solutions (entries) and corresponding fitness values.

Solution fitness
[1, 2, 3, 4, 0] 1
[1, 1, 1, 1, 1] 1
[0, 0, 1, 1, 0] 1
[1, 2, 3, 4, 0] 0

(b) Some of the statistics that are stored in the system or can be
calculated directly.

N -tuple Pattern Mean Nb. of eval.

1-tuple

[0, ∗, ∗, ∗, ∗] 1 1
[1, ∗, ∗, ∗, ∗] 2

3
3

[∗, 0, ∗, ∗, ∗] 1 1
[∗, 1, ∗, ∗, ∗] 1 1
[∗, 2, ∗, ∗, ∗] 1

2
2

[∗, ∗, 1, ∗, ∗] 1 2
[∗, ∗, 3, ∗, ∗] 1

2
2

[∗, ∗, ∗, 1, ∗] 1 2
[∗, ∗, ∗, 4, ∗] 1

2
2

[∗, ∗, ∗, ∗, 0] 2
3

3
[∗, ∗, ∗, ∗, 1] 1 1

5-tuple
[0, 0, 1, 1, 0] 1 1
[1, 1, 1, 1, 1] 1 1
[1, 2, 3, 4, 0] 1

2
2

the performance of the agent, and where the combination of
parameter values is important.

The problem addressed is similar to the hyper-parameter
optimisation problem that is topical in machine learning; it has
been shown many times that optimising a known architecture
can produce state of the art results (e.g., [24], [21]).

A. Rolling Horizon Evolutionary Agent

We aim to optimise the parameters of a rolling horizon
evolutionary agent. Rolling Horizon Evolutionary Algorithms
(RHEAs) are called rolling horizon as each of the individuals
in the population is an action sequence of a fixed planning
(time) horizon, hp, thus RHEAs plan ahead hp actions. On
each subsequent game step, the horizon rolls one step further
within the hp window. Every individual is evaluated by evalu-
ating the state after simulating hp actions in its corresponding
sequence or earlier, if a termination state is reached before
performing all the hp actions. Then, only the first action of
the best individual is applied. This procedure repeats with the
updated state.

The rolling horizon technique can be integrated to differ-
ent evolutionary algorithms such as Genetic Algorithms and
Coevolutionary Algorithms [28]. In this work, we combined
a simple (1 + 1)-EA with rolling horizon. This agent will be
referred to as RHEA in the rest of the paper.

The performance of RHEAs can be boosted in many ways.
For instance, recently, RHEAs have been applied to General
Video Game Playing, and proved that the population size and
sequence length (i.e., planning horizon) had significant effect
on the performance of the algorithms [29], [30], [31]. Some
of the key parameters are
• sequence length: planning horizon;

• shift buffer enabled or not: if disabled, at any timestep
t+1, the initial population is reset to random, otherwise,
each of the individuals from the population at timestep
t (previous optimisation procedure) shifts its action se-
quence forward and fills the last position by a random
action;

• resampling number: in the stochastic case, how many
time an individual is re-evaluated (equals to 1 if no re-
evaluation is allowed).

• mutation probability: how likely a mutation occurs at
every dimension;

• flip at least one bit: indicates if at least one mutation
should occur at each time.

B. Test Problems

We optimise the rolling horizon evolutionary agent to play
two games: simplified Java implementations of Asteroids and
Planet Wars. In these test cases, the RHEA agent model
sequences of actions in next game ticks as its individuals, and
evolve the individuals over time aiming at maximising some
fitness value.

1) Asteroids: Asteroids, released to great acclaim in 1979
is one of the classic video games of all time, and Atari’s
most profitable1. The original game was implemented in
special vector graphics hardware, featured memorable sound
effects and smooth physics-based movements. The challenge
for players is to avoid being hit by asteroids, while aiming at
them accurately and to also hit the flying saucers before they
hit the player’s spaceship. There are three sizes of asteroids:
large, medium and small. Each screen starts with a number
of large rocks: as each one is hit either by the player, or by
a missile fired by an enemy flying saucer, it splits in to a
smaller one: large rocks split into two medium ones, medium
into two small ones, small ones disappear. There is also a
score progression, with the score per rock increasing as the
size decreases.

Strong play requires good perceptual and motor skills for
avoiding collisions and shooting accurately at the targets.
There are also some interesting strategies which may easily
elude novice players. One of them is to control the number of
asteroids on the screen by shooting one large one at a time,
then picking off a single medium rock and each small one it
gives rise to, before breaking another large rock.

The largest score for any item is the 1, 000 points awarded
for shooting the small flying saucer. These fire at the player
with deadly accuracy, so it is important to shoot them quickly
as the missiles they fire are fast moving and tricky to avoid.
Many strong players will shoot all but one remaining asteroid
(a small one) and then lie in wait for flying saucers at the
edge of the screen, firing at them immediately as soon as they
appear. There is some devil in the detail here, regarding the
best place to wait and the best angle to fire at (the screen
wraps around both vertically and horizontally, so from a single
position it is possible to shoot at both sides).

1https://en.wikipedia.org/wiki/Asteroids_(video_game)



For our experiments we used a Java implementation of the
game where we can simulate the game 10, 000 times faster
than the real game. Although using the ALE or MAME version
of the game would have been possible, there are some distinct
advantages to having our own implementation:

• It runs much faster than the ALE or MAME versions.
• Having access to the source code makes it straightforward

to vary details of the game in order to test various
hypotheses. For example, we can test the effects of penal-
ising each missile fired, or giving the large and medium
rocks zero value to test the long-term planning ability of
the agents under test. An example is the use of the two-
player version of this implementation in automatic game
parameter tuning [32].

In this simplified version, there are at each time twelve legal
actions at each game tick, being a combination of the three
steer actions (LEFT, CENTER, RIGHT), and whether the ship
is thrusting ( THRUST) and / or firing (FIRE). Unlike the
original game there is no HYPERSPACE action. The player
starts with 0 as game score and 3 lives, and an additional
life every 10, 000 points. The player gets 200, 100 or 50
points every time it hit an large, medium or small asteroid,
respectively, and loses 10 points for every missile fired. Losing
a life has a penalty of −200 points. The game stops when all
lives are lost, or 1, 000 game ticks have elapsed. Currently
there are no flying saucers, but we plan to add this feature for
the next set of experiments.

Figure 2a gives a screenshot of the game screen. Pink lines
illustrate the simulations of the RHEA agent which controls
the spaceship; these are shown for illustrative purposes only,
and ignore the fact that each rollout involves other changes to
the game state such as firing missiles and the rocks moving
and splitting.

2) Planet Wars: Planet Wars is a simple but challenging
Real Time Strategy game that was run as a highly successful
Google Game AI Challenge in 2011 by the University of
Waterloo in Canada. For the work in this paper we imple-
mented a simpler version of the game to make it faster to allow
rapid running of experiments while retaining some challenging
aspects of the original game. The game runs at more than 10
million game ticks per second.

The aim game of Planet Wars is to occupy all the planets,
where each planet is occupied either by player 1, player 2, or
by a neutral. Each planet has a number of ships belonging to
the owner of the planet. To invade a planet a player sends a
number of ships to the planet to be invaded from the planet
it owns. For our experiments we used an implementation with
the following rules:

• No neutral planets: the ships on each planet are either
owned by player 1 or player 2.

• At each game tick, a player moves by shifting ships to
or from a player’s ship buffer, or by moving it’s current
planet of focus.

• When a player transfers ships it is always between it’s
buffer and the current planet of focus.

• At each game tick the score for each player is the sum
of all the ships on each planet it owns, plus the ships
stored in it’s buffer. We have two versions of the game:
the easiest for the planning agents, and the one used in
this paper also adds in the ships in a player’s buffer to
it’s score, a more deceptive version of the game does not
include this.

For research purposes, the advantage of the modified action
space is that it makes it compatible with the General Video
Game AI framework, giving direct access to a large number
of game-playing agents for comparison purposes.

IV. APPLICATIONS AND RESULTS

We aim to optimise the parameters of the RHEA agent
(described in Section III-A) with NTBEA and two baseline
algorithms, Grid Search and a multi-valued version of the
Sliding Window compact Genetic Algorithm (SWcGA), an
EDA proposed by Lucas et al. [33] recently.2 The NTBEA
used in the experiments takes into account all the d 1-tuples,
d(d−1)

2 2-tuples and the only d-tuple.

A. Experimental Setting

1) Fitness Function: In each case the fitness function is
based on the outcome of a single game, which leads to noisy
fitness functions.

a) Asteroids: The evaluation function is the game score
when the game terminates, the higher the better. The calcu-
lation of the game score is explained in Section III-B1. The
value of k should be set relative to the score distribution; for
Asteroids k was set to 5, 000.

b) Planet Wars: The evaluation function is based on
playing a single game, with a value of +1 if the agent wins
or −1 for a loss, and 0 for a draw (which is very unlikely to
occur). This gives an extremely noisy fitness function. Note
that an optimiser can choose to resample a particular point in
the search space, i.e., playing multiple games using the agent
with an identical parameter setting, in order to get an estimate
of win rate. However, with a fixed small evaluation budget,
the optimiser will run fewer iterations compared to sampling
exactly one.

The NTBEA optimises the parameters of a RHEA agent
controlled as player 1, versus a fixed-parameter version of the
RHEA with well-chosen parameters based on the authors’
experience playing as player 2. The game is symmetric and
the planning budget for both players was set to 2, 000 game
ticks. For Planet Wars, the value of k in the NTBEA was set
to 1.0.

2) Search Space: The RHEA agent is characterised by the
parameters shown in Table II, where each one is given a type
and legal values. The parameters have been detailed previously
in Section III-A. The mutation probability for a d-dimensional
problem is calculated by nbMutatedPoints/d.

2The original Compact Genetic Algorithm (cGA) and the sliding window
version described by Lucas et al. [33] only handled binary strings. The version
used in this paper handles integer strings and can use absolute or relative
fitness measures; the version used here used absolute fitness measures.



TABLE II: Search space of the parameter settings.

Variable Type Legal values

sequenceLength
Asteroids Integer 5, 10, 15, 20, 50, 100, 150

Planet Wars Integer 5, 10, 15, 20, 50
nbMutatedPoints Integer 0.0, 1.0, 2.0, 3.0
flipAtLeastOneBit boolean false, true
useShiftBuffer boolean false, true
nbResamples Integer 1, 2, 3

The RHEA agent is very flexible and allows any compat-
ible evolutionary algorithm to be plugged in to control the
evolutionary process. For these experiments we used a Ran-
dom Mutation Hill Climber / (1 + 1)-Evolutionary Algorithm
(the distinction between the two depends on the parameters
chosen by the hyper-parameter optimiser).

The search space of the parameter settings is actually the
search space of RHEA instances, while every RHEA given a
parameter setting is considered as a distinct instance. As shown
in Table II, the size of the search space, in other words, total
number of possible RHEA instances, when playing Asteroids
and Planet Wars, is 336 and 240, respectively.

3) Budget: We allowed an optimisation budget of the same
value as the size of search space, thus 336 game evaluations
in the case of Asteroids and 240 in the case of Planet Wars.
Note that a “game evaluation” refers to a whole game playing,
which lasts at most 1, 000 game ticks. At each game tick, the
playing agent RHEA has a budget of 2, 000 forward model
calls (simulations) to find an optimal action to play. Given that
there are 336 and 240 points in the search space of the two
games, this means an attempted uniform Grid Search cannot
even sample each point twice. The NTBEA works by building
up statistics for each value in each individual dimension, as
well as tuples of values, and the full-width n-tuple. Hence the
optimiser is able to make good use of the gathered information.

B. Results

Each of the three optimisation algorithms, Grid Search,
SWcGA and NTBEA, are given the same budget to optimise a
RHEA agent on each of the games. The recommended agent
instance at the end of an optimisation is validated by playing
100 games. NTBEA was run with a neighborhood-size of 50,
and SWcGA with a sliding window of size 50.

Table III analyses the average fitness value obtained by
the RHEA instances recommended by three tested algo-
rithms over 10 optimisation trials on Asteroids and Planet
War. RHEAGridSearch, RHEASWcGA and RHEANTBEA

denote the RHEA agent instance recommended at the end of
optimisation by Grid Search, SWcGA and NTBEA, respec-
tively. A random agent, which uniformly randomly selects
an action at every game tick, is also tested for comparison.
Unsurprisingly, the random agent performs poorly both in
games.

Given the same budget, the NTBEA significantly outper-
forms the baseline algorithms, Grid Search and SWcGA.
Of the three, Grid Search is by far the worst. The
Wilcoxon Signed-Rank Test was run for significance between

TABLE III: Average fitness value over 10 optimisation trials.
Standard error is given after ±. Note that in the case of Planet
War, an average of 0 refers to a win rate of 50%.

Agent Planet Wars Asteroids
Random -0.9400 ± 0.3400 1,091 ± 88
RHEAGridSearch -0.53 ± 0.12 7,716 ± 330
RHEASWcGA 0.39 ± 0.07 8,439 ± 110
RHEANTBEA 0.54 ± 0.02 8,756 ± 41

RHEASWcGA and RHEANTBEA, establishing a signifi-
cance difference between the measures with p = 0.01928
for Planet Wars. The results for Asteroids follow a normal
distribution under the Shapiro-Wilk Normality Test, and the
difference between RHEASWcGA and RHEANTBEA is
significant with a student t-test p-value of 0.040131.

In addition to the results presented in Table III the authors
have also made many other test runs with various evaluation
budgets, both higher and lower than the budgets used for
the table, and in all the tests made so far the NTBEA has
outperformed the SWcGA, and also outperformed grid search
where applicable (grid search was not applied to cases where
the budget was smaller than the number of points in the search
space). A more thorough set of experiments, including ones
with much larger search spaces is on-going work.

Figure 2b is an illustration of the plot of game score in
real-time by the program to show how score varies over the
planning horizon of the algorithm.

C. Solutions Found

The best solutions found showed common traits for both
games, but with some significant differences. The best solu-
tions always used the shift buffer, and set nResamples to
1. Flipping a bit was normally preferred, and a large value
of nbMutatedPoints of 2.0 or 3.0 gave best performance.
The best sequence length for Planet Wars was either 10 or 20,
and for Asteroids a sequence length of 100 worked best; the
big difference in performance for various parameter settings
demonstrates the importance and impact of undertaking ef-
fective parameter tuning. The output of the NTBEA provides
clear statistics on the parameter combinations that were tested,
but these run in to pages of output. We are currently developing
graphical tools to convey this information in a more convenient
form.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an N-Tuple Bandit Evolution-
ary Algorithm (NTBEA), combining the strength of N-Tuple
systems, multi-armed bandit algorithms and evolutionary al-
gorithms. The proposed approach is compared to two baseline
algorithm, Grid Search and Sliding Window compact Ge-
netic Algorithm, on a hyper-parameter optimisation problem:
evolving a rolling horizon evolutionary game-playing agent.
NTBEA significantly outperformed the baseline algorithms,
and provides an explicit control over exploitation versus ex-
ploration.



(a) Screenshot of the game screen of Asteroids. Polygons represent
asteroids. Solid rectangle represents the spaceship, and pink lines
illustrate the simulations of the rolling horizon evolutionary agent
which controls the spaceship. Red solid circulars represent bullets
fired by the spaceship.

(b) Real-time plots showing how the score varies over the planning
horizon of the algorithm. The figure shows 10 plots, each of length
100 with a different color. Each of the plots refers to a simulation
in Figure 2a.

Fig. 2: Screenshot of the game screen of Asteroids and real-time plot of game scores in the simulations.

The next step is the application of the NTBEA to more
expensive problems, such as optimising some game-playing
agents for playing the 2-player games in the General Video
Game AI framework [34]. To ensure the stable performance,
the 2-player agent should be evaluated by simulating multi-
ples games against multiple opponent models, which will be
computationally expensive. Additional, it will be challenging
to test the NTBEA on larger search space, not only in terms
of the dimension number but also the number of legal actions
on each of the dimensions.

One thing worth taking into account but not considered
in this paper explicitly is the prior knowledge on the de-
pendencies between dimensions. As mentioned previously in
Section II, if all the tuples were considered, the number of
bandits increases exponentially. Though the use of tuples takes
care of the potential dependencies and it is not necessary to
consider all the tuples, we still need to decide in advance which
are the ones to be included in the model (e.g., all the possible
1-tuples, 2-tuples and the single d-tuple were included in our
test case). Some prior knowledge on the problem can facilitate
this selection step and reduces the amount of memory required
by NTBEA.

The comparison between the NTBEA and other EDAs will
be interesting, and more generally a comparison between
NTBEA and a wide range of existing hyper-parameter optimi-
sation algorithms such as SMAC. It should be noted though
that many of the latter algorithms are not set up to handle
extremely noisy fitness functions such as the games used in
this paper.

In summary, the NTBEA is a significant new algorithm
that has been shown to work well both for automated game
tuning, and now for optimising a game playing agent on two
very different games. The algorithm is well suited to problems

where the fitness function is noisy and expensive, gives good
performance, and provides useful statistics on the contribution
of each combination of parameters as a consequence of the
underlying N-Tuple model.
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