
Building an Automatic Sprite Generator with Deep
Convolutional Generative Adversarial Networks

Lewis Horsley
School of Computer Science
and Electronic Engineering,

University of Essex, Colchester, UK
lhorsl@essex.ac.uk

Diego Perez-Liebana
School of Computer Science
and Electronic Engineering,

University of Essex, Colchester, UK
dperez@essex.ac.uk

Abstract—In recent years, image generation using Convolu-
tional Neural Networks (CNNs) has become increasingly popular
in the computer vision domain. However, there is less attention on
using CNNs for sprite generation for games. A possible reason
for this is that the amount of available sprite data in games
is significantly less than in other domains, which typically use
hundreds of thousands of images, or even more. In this work,
we provide some beginning evidence that CNNs can be utilized
for game-style sprite generation, even with small input datasets.
We utilize a class of Generative Adversarial Network (GAN)
known as a Deep Convolutional Generative Adversarial Network
(DCGAN) for unsupervised learning and generation of new
sprites. We have trained our network on various custom datasets,
which contains human-like characters, faces and creatures in
general. Results show evidence that CNNs can generate unique
sprites from the input data that was provided as input.

I. INTRODUCTION

Recent developments in Deep Neural Networks (DNN)
have crafted the foundations for unique image creation tools.
Several implementations utilizing related technologies have
proven that, among others, DNNs, Convolutional Neural Net-
works (CNN), Generative Adversarial Networks (GAN) are
capable of producing very eye pleasing synthesized images.

Fine artwork crafted by very skilled individuals have been
key identifiers of culture throughout the ages. Many artists
such as Pablo Picasso, Vincent van Gogh and Leonardo da
Vinci have placed their mark in time with exquisite mixes
of content and style within their artwork. The ability of an
artificial system being capable of creating such unique and
beautiful artwork is a captivating and exciting concept. An
example of a method that builds an artificial neural system
to generate fine art is that of Neural Style Transfer. This
method consists of separating the style of one image, and
the content from another arbitrary target image so that the
content and style representations can be combined to form
new images. Gradient descent is applied from random noise
in order to minimize deviation from the content representation
of the target image and the style representation of the style
image.

There have been several research articles and implementa-
tions created for Neural Style Transfer. Various implementa-
tions incorporate interesting and diverse methods to provide
a refreshing experience of style transfer. An example of this

diversity can be seen in a style transfer implementation by
Alex J. Champandard [1], where semantic segmentation works
with style transfer in order to take a basic two-bit image and
enhance the image into fine artwork.

Artwork is one of the most most important assets within
games: models, textures, graphical user interfaces and simply
2D art are core components of every endeavor in digital games.
The creation of these models are time consuming and typically
subject to the creativity of the artist or designer. A system that
automatically generates new graphical assets can be of a great
aid in the daily work of the creative team. The objective of this
work is to conduct research into these technologies in order
to produce a reliable and accurate synthetic 2D sprite style
generator. To the knowledge of the authors, this is the first
sprite generation tool that utilizes DNN technologies to create
unique sprite style images. There is another exciting piece
of research which generates sprites, however this research
by S. Reed [2] introduces a method of forming different
animations for provided sprite images. Concretely, this work
approaches this problem by adopting a Deep Convolutional
Generative Adversarial Network (DCGAN, [3]) framework,
which combines the properties of Generative Adversarial Net-
works (GAN) with the CNN architectural constraints in order
to stabilize the learning process.

This paper is structured as follows. First, Section II provides
an overview of usages of Deep Learning for automatic genera-
tion of art assets. Then, Section III describes the theory behind
Generative Adversarial Networks, to later explain the approach
followed in this work to generate 2D Sprites in Section IV.
The experimental process followed for sprite generation is
described in Section V. Results are shown and discussed in
Section VI, and conclusions presented in Section VII.

II. DEEP LEARNING FOR ART

Utilizing Convolutional Neural Networks for image synthe-
sis and style transfer has become a fascinating and exciting
line of work of Deep Learning within the recent years. Several
implementations of style transfer have been created so that new
ways of producing fine art using Artificial Intelligence (AI) can
be explored by thousands of people. For example, a twitter



bot known as DeepForger1 was created in order to provide
the general public with an accessible and effortless way of
interacting with this research and introducing the masses to
this surprisingly elegant method of creating interesting artwork
using AI.

Alex J. Champandard [1] introduced the concept of applying
semantic annotations to images in order to create a content-
aware algorithm that offers control over the outcome image.
Even though a Convolutional Network routinely extracts se-
mantic information for classification, this information is poorly
exploited within several gram-based and patch-based style
transfer implementations. Through introducing this concept,
the research aims to reduce the unpredictable behaviour that
is currently associated with relevant implementations of style
transfer as well as bridging the gap between generative algo-
rithms and pixel labelling neural networks. By achieving these
goals, an overall increase in the quality of the images produced
by the system would be recognised.

There are various research articles that have become the
inspiration and guidelines for this method of Neural Style
Transfer. Firstly, this contribution to style transfer has been
built upon a neural network approach to style transfer which
involves a patch-based method of understanding patterns in
images. This patch-based approach described in a report by
Chuan Li and Michael Wand [4] operates on the output
of convolutional layers of a ConvNet. Neural patches of
3 × 3 are matched between style and content using a nearest
neighbour calculation. These patches give the algorithm an
understanding of the patterns within the image. Secondly,
research on semantic segmentation was the foundation for the
semantic annotations feature of Champandard’s system. The
fundamental concept of semantic segmentation is to cluster
parts of images together that belong in the same class. A
more detailed report on the topic can be found within Martin
Thomas survey on semantic segmentation [5].

A CNN model [6] (named VGG after the authors’ team
name) is utilized within this system. More specifically the
pooling and convolutional layers of the network are used
alongside a 3×3 kernel in order to provide intermediate post-
activation results. These results consist of N channels, which
capture patterns from the images. Patterns captured include
features such as colours, textures, strokes etc. Additional
semantic channels are concatenated onto the VGG network;
these concatenated channels are of size M , where M is
computed by down-sampling a static semantic map provided
as input by the user. The result of this concatenation is an
output of N +M channels.

Another important line of work on generative art is the usage
of Generative Adversarial Networks (GAN). Several variations
of GANs have been researched and implemented throughout
the recent years. Most implementations have found major
success in face generation tasks. A report by Jon Gauthier [7]
details how he was able to produce realistic images of faces
by utilizing a GAN. Figure 1 shows some final outputs from

1https://twitter.com/deepforger

Fig. 1: Samples generated by GANs during training in the
CIFAR-10 dataset [8]

a GAN trained in the CIFAR-10 dataset, consists of 60000
32 × 32 colour images uniformly distributed in 10 different
classes (airplanes, birds, cats, trucks, etc).

Several attempts of up-scaling GANs by utilizing Convolu-
tional Networks (ConvNets) have been attempted in the past
and most often resulted in failure. One historical approach was
able to iteratively upscale low resolution generated images.
This lead to a conclusion that invoking this method would
provide more reliable generated output than what could be
expected from a general GAN. This alternative approach to up-
scaling GANs was labelled LAPGAN, and is detailed further
in a paper by E. Denton et al. [9].

DCGANs has become an important role in many GAN
based implementations. Many programs tend to use DCGANs
over GANs due to the up-scaling having next to no downsides.
For example, a recent program utilized DCGANs to generate
very accurate human faces with a variety of different character-
istics. This program is called Neural Faces and was developed
by Facebook AI Research [10]. This program was capable of
producing very accurate representations of human faces.

Figure 2 shows some of the representations generated. These
stability improvements introduced by DCGANs have paved a
way to a much more stable and reliable GAN for developers
to utilize. Faults within regular GANs have been identified and
resolved in order to improve upon the GANs introduced by I.
Goodfellow et al. [11].

There are several reasons why GANs have been chosen over
a Neural Style Transfer approach to automatically generate
sprites from a given set in this work. Firstly, due to the
competition of the generator and discrimination networks (see
Section III for a description of GANs), the quality of the
images are consistently improved until the images are deemed
just as good as the test data. Therefore, utilizing training
data that applies the sprite style would imply the generated
images would be good quality sprite style images. Neural
Style Transfer does not offer this method of checking and
enhancing the image. Thus, if the style transfer wasn’t as good



Fig. 2: Faces generated by Neural Face [10]. This program
implements DCGANs as a method of generating faces with a
variety of diverse characteristics, such as gender, smiling and
wearing glasses.

as expected there is no method of enhancing that image other
than to run the style transfer process again. Secondly, GANs
are trained and provide output from utilizing the training data.
This means that no input from the user is required. This
favours towards the objective of requiring as little user input as
possible and therefore more favourable than the Neural Style
Transfer approach.

III. GENERATIVE ADVERSARIAL NETWORKS

Within the past couple of years, researchers in computer
vision have become increasingly more interested in generative
models. These models are capable of constructing data sim-
ilar to the data provided by the user. The key idea behind
generative models is that each model should have a good
internal representation of the data it is learning from. For
example, if a generative model was learning from a dataset
consisting of images of cats, then the model should have a
good internal representation of a cat. Thus, this representation
can be utilized for other related tasks such as image creation
and classification. A relatively new and promising approach is
using Generative Adversarial Networks (GANs).

GANs were originally proposed and discussed by Ian J.
Goodfellow et al. [11]. Within their work, the authors pro-
posed an Adversarial Net Framework. This framework has a
generative model (G) that is pitted against an adversary: a
discriminative model (D) that learns to distinguish samples
from the model distribution against samples from the data
distribution. To visualize this framework, G can be seen as
a group of counterfeiters. These counterfeiters are trying to
produce fake currency and use it without detection. D can
be visualized as the police, trying to detect the counterfeit
currency. Competition between the two models strives each
model to enhance their methods until finally the model distri-
bution samples is indistinguishable from the data distribution
samples.

The adversarial networks are the generator network and the
discriminator network, they are both multilayer perceptrons
(MLP). In order for the generator network and discrimination
network to improve their methods, the generators distribution

pg over data x must be computed. Firstly, a prior on input
noise variables pz(z) is defined, then a mapping to data space
is defined as G(z; θg), where G is a differentiable function
with parameters θg . A second neural network model is then
introduced as D(z; θd), which outputs a single scalar. D(x)
is used to represent the probability that x came from the
data distribution rather than the generator distribution pg .
Therefore, D is trained to maximise the possibility of correctly
labelling the training samples and the generator samples from
G. During the training of D, G is simultaneously trained to
minimize log(1−D(G(z)). As indicated in [11], D and G play
a two-player minimax game with value function as described
in Equation 1.

min
G

max
D

V (G,D) = Ex−pdata(x) [logD(x)]

+ Ez−pz(x) [log 1−D(G(z))]
(1)

Figure 3 presents a visual explanation of this approach. The
Generative Adversarial Networks are trained simultaneously
by updating the discriminative distribution (D, blue dotted
line). The graphs show how D discriminates between the
samples from the data distribution px (black dotted line) and
the samples from the generator distribution pg (G, green
solid line). The lower line represents the domain in which
z is sampled. The upper line is the domain x. The upwards
arrows highlight the mapping x = G(z) which establishes
the non-uniform distribution pg on transformed samples. (a)
shows an adversarial pair close to convergence, meaning G
is becoming more accurate in its samples but D can still
distinguish between the two samples. (b) Within the inner loop
of the algorithm, D is being trained to discriminate samples
from data. (c) After updating G, the gradient of D has guided
the generator to regions that are more likely to be classified
as data. (d) G and D can no longer be improved as they have
reached a point where pg = pdata. Meaning the discriminator
model cannot differentiate between the two samples.

There are advantages and disadvantages to using GANs for
image creation. One disadvantage is that D networks training
must be synchronised with the G networks training. Thus, the
G network must not be trained too much without updating
the D network in order to avoid the Helvetica scenario. This
scenario occurs when G collapses too many values of z to the
same value of x, meaning there is a sufficient lack in diversity
to model pdata without just copying the data. This is a common
failure often observed in GANs. As an advantage, GANs do
not require Markov chains. These chains are not required
because only backpropagation is used to obtain a gradient,
therefore no interference during learning is required. This
makes the training of the adversarial networks slightly simpler.
That being said, there are several improvements that have
been suggested in regards to training GANs. Some of these
improvements include introducing minibatch discrimination,
assessment of image quality and semi-supervised learning.
These improvements amongst others are described in more
detail by Tim Salimans et al. in [8].



Fig. 3: Generative Adversarial Networks during training [11]

IV. A DEEP CONVOLUTIONAL GENERATIVE
ADVERSARIAL NETWORK

The proposed architecture consists of two neural models
which are trained simultaneously: a generative model Genera-
tor (G) and a discriminative model Discriminator (D). During
training, G tries to maximize the possibility of D making a
mistake when trying to discriminate the sample data from the
training data. This leads to a training procedure which follows
the pattern of D trying to detect G samples, whilst G is trying
to generate samples indistinguishable from the training data.
The constant competition between the two models drives both
models to improve their methods of detection and generation.

As mentioned in Section III, DCGANs approach to up-
scaling GANs uses ConvNets as the network architecture for
the generator model and the discriminator models. In this
work, several adjustments to the ConvNet architecture have
been adopted in order to stabilise the DCGAN approach.

A. Generator

1) Strided Convolutions: The first of these was to replace
deterministic spatial pooling functions (such as maxpooling),
with strided convolutions for the discriminator model, and
fractional-strided convolutions for the generator model. This
allows the discriminator network to learn its own spatial
downsampling, whilst allowing for the generator network to
learn its own spatial upsampling. This method of replacing
pooling functions is introduced and detailed further in J. T.
Springenberg et al.’s work on re-evaluating ConvNets [12].

2) Global Average Pooling: The second concept is to
eliminate any fully connected layers that are on top of convolu-
tional features. Removing fully connected layers in a ConvNet
architecture is by no means a new concept, this idea has
been implemented by various different image classification
and creation tool. One example of this would be the Network
in Network (NIN) which is alternative deep neural network
structure proposed by M. Lin et al [13]. Within the NIN archi-
tecture, fully connected layers are replaced with global average
pooling in order to improve stability and reduce overfitting.
Global average pooling was adopted by DCGAN but even
though it did improve stability, it also damaged convergence
speed. In order to correct this in-balance, DCGAN directly

Fig. 4: Structure of the DCGAN Generator [3]

connects the highest convolutional features to the input and
output of the respectively for the generator and discriminator
models.

3) Batch Normalization: Finally, the third concept is to
utilize Batch Normalization (Batchnorm) in order to stabilise
learning. The key idea behind Batchnorm, which was intro-
duced by S. Ioffe and C. Szegey [14], is to normalize each unit
input to have zero mean and unit variance. Implementing this
normalization within the generator and discriminator networks
helps to deal with training problems that arise when poor
initialization is in place. Gradient flow is also improved in the
deeper networks. As mentioned in [3], this normalization was
critical for the generator to begin learning. When batchnorm
was implemented, the generator model was capable of avoid-
ing the Helvetica Scenario (described in Section III). However,
applying the batchnorm to all layers only resulted in a more
unstable model. Therefore, batchnorm was only applied to the
generator output layer and the discriminator input layer.

Finally, ReLU [15] activation is used throughout the gen-
erator, except from the output layer, which instead uses the
Tanh function. Implementing ReLU allowed the generator to
learn how to quickly saturate and cover the colour space of the
training distribution. Figure 4 in shows a visual representation
of G network.

B. Discriminator

Similar to the Generator, the Discriminator is also an
MLP with various changes to the CNN architecture. The
discriminator also incorporates the all-convolutional net, but



rather than replacing pooling functions with fracual-strided
convolutions, the discriminator replaces pooling functions with
strided convolutions. This allows the network to learn its own
special downsampling. All fully connected hidden layers have
been removed for deeper architectures. However, the last layer
of the discriminator is flattened and fed to a single sigmoid
output. Finally, batch normalization is also introduced in the
discriminator network’s input layer, which provides the same
benefits as described in the generator. Following the DCGAN
model, batch norm was not given to all layers as this would
cause sample oscillation and instability. Finally, LeakyReLU
activation [16] was implemented in the discriminator.

C. DCGAN

When the system is run, the generator attempts to create
a sample from random noise input using what information
it currently holds. The generator produces samples with the
intent of magnifying the possibility of the Discriminator
deciding that this sample is authentic (see Figure 5 for a
visual example). At the beginning of training the generator
will produce samples that are very distinguishable from the
training data. Once the sample is produced, it is passed to
the discriminator network. The discriminator then attempts to
distinguish between the two sources (generator sample and
training data) and reduce the probability that the generated
image is authentic. Backpropagation of gradient information
then takes place from the discriminator to the generator so
that the generator can improve its method and thus learn
how to generate better samples. Through various iterations of
training the generator can eventually reach a point where it is
simply reproducing the training data. Though this is unlikely
to happen with large datasets, it has been discovered in small
datasets of less than 50 samples.

Figure 5 shows a diagram with both networks, generator
and discriminator. P (A) holds the probability that Generated
Image A is an authentic image, while P (B) shows the prob-
ability that Training Data B is an authentic image. Firstly,
the Generator produces a sample from random noise input
with the intent of maximising P(A). The Discriminator takes
the generated sample along with a sample from the training
data and attempts to maximise the probability of P(B) while
minimizing P(A).

V. EXPERIMENTAL WORK

The system described here was trained on three custom
datasets: Human-like Characters, Environments and Faces.
Further details on each dataset are given below. There was
no pre-processing on the training images, other than ensuring
each dataset had a standard image size (i.e. 23 × 23 pixels).
As suggested in [3], a learning rate of 0.0002 was chosen. In
all models, the slope of the leak within LeakyReLU was set to
0.2. The Adam Optimiser [17] was used to accelerate training.
Finally, all weights were initialized from a zero-centred normal
distribution with a standard deviation of 0.02.

No online datasets were used for training for this ex-
periment. This is due to most dataset online using natural

images like human faces (celebA [18]) and rooms (LSUN
Bedrooms [19]). As these datasets do not fit the purpose of
this experiment, customs datasets were created instead:

• Human-like Characters: The most valuable dataset for
this experiment is Human-like Characters. This dataset
consists of 1, 210 sprites which resemble humans (two
legs, two arms, a face etc.). The variety of different
characters is vast, some characters having capes and
swords, others having guns and jetpacks. Each sprite was
23×23 pixels and no cropping was used. We trained this
dataset to 15, 000 epochs with a batch-size of 32.2

• Faces: This dataset consists of sprites of character faces.
Like the Human-like Characters dataset, this dataset has
quite a lot of diversity but still sticks to some similarities
(eyes, ears, face shape etc.). The diversity of the sprite
range from skin colour, hoods, scars, eye patches and
more. Faces only has 36 sprites for training, which is
very small, but relevant to analyze the output that can be
achieved. The dataset was trained to 5000 epoch and a
batch-size of 15.

• Creatures: This dataset contains 517 sprites which rep-
resent various different creatures typically present within
arcade games (trolls, demons, spiders). This dataset is
very experimental as most sprites have next to no simi-
larities. This dataset was trained to 10000 epochs with a
batch size of 32. Each sprite had a 48× 48 pixel size.

Figure 6 shows examples of the input data used in this work,
from these three categories. The first row shows sprites from
the Human-like Characters dataset, the second one from the
Creatures collection, and the last one from the Faces set. It is
worth mentioning that the second and third cases are purely
experimental, in order to address (respectively) two of the main
problems that could be found when generating sprites with
DCGANs in a games company: the diversity of available sprite
types and the small datasets of a particular kind. All sprites
were purchased from Oryx Design Labs3, acquired with the
aim of portraying real sprite sets that a small company could
have access to.

VI. RESULTS AND DISCUSSION

This section describes the results obtained in the three cus-
tom datasets, showing some examples generated from them.

1) Human-Like Characters: Figure 7 shows generated
sprites after 5000, 10000 and 15000 epochs. After 5000
epochs, there is still a strong presence of noise in the images
generated, especially surrounding the main character. Some
sprites, however, have developed a rather good representation
at this stage (i.e. on the bottom left corner of the upper image).

After 10000 epochs, some good representations have formed
along with some which are still mainly noise. There appears
to be evidence of two representations of training data being
morphed into one in the bottom row. Note that these are new,

2All experiments where tun in a PC with a GeoForce GTX 908Ti graphics
card, 32GB of RAM and an Intel Core i7 6700k (Skylake) processor.

3oryxdesignlab.com

oryxdesignlab.com


Fig. 5: Representation of a DCGAN.

Fig. 6: Examples of Sprites used as input for the DCGAN.

unique sprites, which have been formed at this stage. Finally,
after 15000, much more refined representations have been
formed, with most of them having only a small amount of
background noise. Training on this dataset to 15000 epochs
took around 16 hours. The different sprites shown in each
image correspond to the different batches the DCGAN uses to
generate them. The amount of noise shown in some of them is
quite significant, but some sprites clearly show a decent morph
between two of the inputs, generating a unique new image.
Figure 8 shows a couple of examples from the Human-like
and Faces datasets. In the case of the human-like sprite, it
seems like a solider character has been generated with some
morphing with a spaceman humanoid.

2) Faces: Figure 9 shows faces generated sprites after 1000,
2500 and 5000 epochs. Due to the smaller quantity of training
data, less epochs are required to achieve the same quality
of output. 5000 epochs on this dataset took merely 2 hours
and 30 minutes. Once again there is some clear evidence of
training data representations being morphed to form a new
sprite. It is possible to appreciate that the generated sprites
for Faces are less satisfying to the eye than the ones from
human-like characters. This is most likely due to the small
dataset size, meaning that the DCGAN has less information
to learn from. After 2500 epochs, clear representations are

Fig. 7: Generated Human-Like Characters after 5000, 10000
and 15000 epochs (up, middle and bottom, respectively).

forming alongside some morphing of representations. There is
little diversity from the training data, but the output still shows
that with reduced sets it is possible to train the DCGAN to
produce morphing representations and unique sprites.



Fig. 8: Samples of new generated sprites for the Human-like
(above) and the Faces (below) datasets. The two first sprites of
each column on the left are the original images from the input
datasets. The images on the right are created by the DCGAN.

Fig. 9: Generated Faces after 1000, 2500 and 5000 epochs
(up, middle and bottom, respectively).

3) Creatures: Figure 10 shows creatures generated after
5000, 10000 and 15000 epochs. As expected, the output
from 5000 and 10000 epochs still have a large amount of
background noise and accurate representations have not yet
been formed. The output from 15000 epochs begins to show
some progression on representation forming, although there
appears to be little evidence of correct morphing between the
sprites. This could be due to the sheer amount of diversity
in the sprites, therefore meaning that when two sprites begin
to morph their characteristics (wings, legs, face etc.) collide
with one another. This leaves the output sprite as an uneven
mismatch of components and very displeasing to the eye (see
third row of Figure 10 for evidence of this hypothesis).

4) Loss progression: Figure 11 shows the changes in the
discriminator and generator loss through the epochs for the
longer experiments of the three datasets. From left to right, it
shows Human-like characters, Faces and Creatures. The three
plots share some common characteristics, such as the gap
between loss of the Generator and loss of the Discriminator.

As can be seen, the Generator loss is always higher, due
to the fact the Generator has much more to learn over the
Discriminator. This can be seen as the general nature of a
DCGAN, since the Generator must learn from scratch whilst

Fig. 10: Generated Creatures after 5000, 10000 and 15000
epochs (up, middle and bottom, respectively).

the Discriminator has a clear reference to the dataset. All plots
have an increasing Generator loss through the experiments,
although it is less pronounced in the Faces experiments,
probably due to this being the smallest input dataset.

VII. CONCLUSIONS AND FUTURE WORK

We propose a method of utilizing Deep Convolutional Gen-
erative Adversarial Networks (DCGAN) for automatic sprite
generation and provide evidence that adversarial networks are
capable of generating unique new sprites from relatively small
datasets. In this work, we have generated sprites for three
different categories: Human-like sprites, faces and creatures.

Each one of these categories showcases a particular issue
within the problem tackled in this paper. First, the results
obtained within the first category show that, even with re-
duced datasets (of around a thousand sprites), it is possible
to generate new unique sprites with the network employed.
Secondly, for the Faces dataset, it is clear that the lack of data
(this tiny dataset size contains only 36 sprites) signifies more
the hazards of generating new clean sprites, but some results
are promising at this stage. The third category, creatures,
showcases the problem of feeding the network with an non



Fig. 11: Discriminator and Generator Loss in three experiments run for each one of the three cases explored. From left to
right: Human-Like Characters, Faces and Creatures.

extensive (517 images) but diverse set of sprites, having a
reduced number of entities per type: results are extremely
noisy and a high number of epochs is required to start
achieving interesting images.Finally, there is one problem
which was solved throughout all datasets. The uncertainty of
establishing the bold, colourful and diverse nature of sprite
images. Through outputs observed in all datasets utilized for
trraining, there is strong evidence to support the fact DCGAN
technology is suitable for accurate sprite generation.

The fact that the lack of training data prevents the network
from generating new sprites of good quality is not subject
to appeal. It is clear that this implies that in some cases the
network simply reproduces training data, and some outputs
have an excessive noise. We have shown that increasing the
quantity of training data within a dataset can assist in reducing
the probability of the network reproducing the input.

However, the lack of training data is in itself why we
consider this research interesting. Game companies, especially
small and indie members of the industry, may not have
the access or the resources needed to purchase or manually
generate excessive amounts of sprites to use for training. The
final goal of this line of research is to have a reduced set of
sprites (say, for instance, soldiers of an army) that serves as
a source for new and unique images that fit the theme (that
army), automatically generated from the available inputs.

In order to reach that goal, however, further work is needed.
The results shown in this paper suggest that the generation of
new sprites via DCGANs is possible, but more efficiency is
needed in order to produce novelty from reduced datasets.
An analysis of the network variables, such as batch sizes and
learning rates, could be a first subject of study.

Last but not least, it would be interesting to extend this study
to other areas of Procedural Content Generation in games. Ex-
amples are the automatic creation of levels, quests, narratives,
and even 3 dimensional sprites, which could be generated
using Deep Learning techniques.Another interesting advance
could be to introduce this research to Deep Visual Analogy
Making [2], thus creating a system capable of generating
unique sprites with various animations for each sprite.

REFERENCES

[1] A. J. Champandard, “Semantic style transfer and turning two-bit doodles
into fine artworks,” arXiv preprint arXiv:1603.01768, 2016.

[2] S. E. Reed, Y. Zhang, Y. Zhang, and H. Lee, “Deep visual analogy-
making,” in Advances in Neural Information Processing Systems, 2015,
pp. 1252–1260.

[3] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,”
arXiv preprint arXiv:1511.06434, 2015.

[4] C. Li and M. Wand, “Combining markov random fields and convo-
lutional neural networks for image synthesis,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2479–2486.

[5] M. Thoma, “A survey of semantic segmentation,” arXiv preprint
arXiv:1602.06541, 2016.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[7] J. Gauthier, “Conditional generative adversarial nets for convolutional
face generation,” Class Project for Stanford CS231N: Convolutional
Neural Networks for Visual Recognition, vol. 2014, p. 5.

[8] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Advances in Neural
Information Processing Systems, 2016, pp. 2226–2234.

[9] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image
models using a laplacian pyramid of adversarial networks,” in Advances
in neural information processing systems, 2015, pp. 1486–1494.

[10] Facebook AI Research, “Neural faces,” 2016 (Accessed: 27-03-2017).
[Online]. Available: http://carpedm20.github.io/faces/

[11] I. Goodfellow, J. P. Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances
in neural information processing systems, 2014, pp. 2672–2680.

[12] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” arXiv preprint
arXiv:1412.6806, 2014.

[13] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[15] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[16] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” arXiv preprint arXiv:1505.00853,
2015.

[17] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[18] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 3730–3738.

[19] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun:
Construction of a large-scale image dataset using deep learning with
humans in the loop,” arXiv preprint arXiv:1506.03365, 2015.

http://carpedm20.github.io/faces/

