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Abstract. Monte Carlo Tree Search techniques have generally dominated Gen-
eral Video Game Playing, but recent research has started looking at Evolutionary
Algorithms and their potential at matching Tree Search level of play or even out-
performing these methods. Online or Rolling Horizon Evolution is one of the
options available to evolve sequences of actions for planning in General Video
Game Playing, but no research has been done up to date that explores the capa-
bilities of the vanilla version of this algorithm in multiple games. This study aims
to critically analyse the different configurations regarding population size and in-
dividual length in a set of 20 games from the General Video Game AI corpus.
Distinctions are made between deterministic and stochastic games, and the im-
plications of using superior time budgets are studied. Results show that there is
scope for the use of these techniques, which in some configurations outperform
Monte Carlo Tree Search, and also suggest that further research in these methods
could boost their performance.

Keywords: general video game playing, rolling horizon evolution, games, monte carlo
tree search, random search

1 Introduction

General Video Game Playing (GVGP) is a sub-domain of Artificial General Intelligence
(AGI), which aims to create an agent capable of achieving a high level of play in any
given environment, that was potentially previously unknown. It uses video games as
testbeds for this purpose because of their complex nature, offering practical problems in
a constrained environment where it is easy to quantify results and observe performance.
In contrast with other domains such as robotics, where errors are expensive to correct,
video games are cheap alternatives for testing AI algorithms, as well as having the
possibility of multiple tests run very quickly (due to modern computational power).

The General Video Game AI Competition (GVGAI) [22, 23] offers a large corpus
of games described in a plain text language, making it easy to run general AI agents
in several different environments and analyse their performance. The competition has
already completed three editions of its single player track (starting in 2014), with two
additional tracks running in 2016 for two player games [7] and level generation [11].



Therefore, it is attracting a large interest on an international scale, with close to a hun-
dred participants every year across its different tracks.

This competition is becoming a popular way of benchmarking AI algorithms such
as enforced hill climbing [2], algorithms employing advanced path finding or using the
knowledge gained during the game in interesting ways [19, 6], or dominant Monte Carlo
Tree Search techniques [18]. All of the authors appear to agree on the complexity of the
problem proposed, as well as its importance, going beyond the realm of video games
towards that of AGI.

Among the techniques employed over the last years of the GVGAI, one of the most
promising is that of Rolling Horizon Evolutionary Algorithms (RHEA). These methods,
rather than basing the search on game tree structures, use influences from biological
sciences to evolve a population of individuals until a suitable one, corresponding to a
solution to the problem, is obtained. The way they are applied to the domain of GVGP
is by encoding sequences of in-game actions as individuals, using heuristics to analyse
the value of each sequence [20].

Up to date, there is no in depth evaluation of the vanilla version of RHEA on the
GVGAI framework, attending to certain crucial parameters such as population size and
individual length. It is hardly possible that the same parameter setting would work
equally well for all of the assorted games of the GVGAI corpus: on one hand, these
games can vary in many forms, such as their level of stochasticity, average duration of
a game, presence or absence of other NPCs, etc, but on the other hand, variations of
the population size and the lengths of the action sequences explored may be sensitive
to variations in the game design space.

The first objective of this paper is to perform an analysis of the vanilla version of
RHEA (see Section 3.2) on a subset of 20 GVGAI games, with special focus on the
population size and the individual length of this technique. This analysis is performed
attending to the different games presented, and their stochastic nature. Additionally,
this study aims to make a comparison with the sample Open Loop Monte Carlo Tree
Search (OLMCTS), the best sample agent included in the GVGAI framework, which is
actually the starting point of several winners of the competition in past editions.

The rest of this paper is structured as follows: Section 2 reviews work already
present in the literature on this topic, with Section 3 detailing background informa-
tion on the framework and algorithms used. Section 4 describes the approach taken and
the experimental setup, while Section 5 presents the results obtained from this exper-
iment. The paper concludes in Section 6 with a discussion of the results and notes on
future work that will be undertaken as a consequence of this study.

2 Relevant Research

The popularity of General Game Playing (GGP) has increased in the last decade, since
M. Genesereth et al. [8] organised the first GGP competition allowing participants to
submit game agents to play in a diverse collection of board games. Sharma et al. [25]
motivates research in this area by bringing to attention how agents trained without
prior knowledge of the game and excelling in specific games, such as TD-Gammon



in Backgammon [26] and Blondie24 in Checkers [1], cannot be successfully applied in
other scenarios or environments.

The problem is further expanded to video games in General Video Game Playing
(GVGP [12]), which provide the agents with new and possibly more complex chal-
lenges due to a higher and continuous, in practice, rate of actions. One of the first
frameworks to allow testing of such general agents was the Arcade Learning Envi-
ronment (ALE) [3], later used as benchmark for applying Deep Q-Learning to achieve
human level of play on the Atari 2600 collection [16]. The way the world was presented
to the agents in this framework was via screen capture; they would return an action to
be performed and the next game state would be processed by the system.

Monte Carlo Tree Search methods have dominated GVGP so far, and their variations
have been explored in various works [5]. However, Evolutionary Algorithms (EA) show
great promise at obtaining just as good, if not better, performance. Perez et al. [21]
compare EA techniques with tree search on the Physical Salesman Travelling Problem,
and their results are satisfactory, encouraging research in the area. In their work, the
authors employ several techniques to improve the state evaluation function, such as
avoiding opposite actions, movement blocks and pheromone exploration.

Samothrakis et al. [24] compare two variations of the Rolling Horizon setting of
EAs in a number of continuous environments, including a Lunar Lander game. The first
algorithm uses a co-variance matrix, while the second employs a value optimisation
algorithm. The Rolling Horizon refers to evolving plans of actions and, at each game
step, executing the first action that appears to be the best at present, while starting
fresh and creating a new plan for the next move, sequentially increasing the ”horizon”.
Their research suggests EAs to be viable algorithms in general environments, and that
a deeper exploration should be performed with an emphasis on heuristic improvement.

N. Justesen et al. [10] used online evolution for action decision in Hero Academy, a
game in which each player counts on multiple units to move in a single turn, presenting
a branching factor of a million actions. In this study, groups of actions are evolved for a
single turn, to be performed by up to 6 different units. With a fixed population of 100 in-
dividuals, the authors show that online evolution is able to beat MCTS and other greedy
methods. Later, Wang et al. [27] employed a modified version of online evolution using
a portfolio of script to play Starcraft micro. In this work, rather than evolving groups or
sequences of actions, the algorithm evolved plans to determine which script (among a
set of available ones) each unit should use at each time step. Each gene in the individual
represents a script that will be executed by a given unit in the next turn.

Other different approaches to EAs have been explored in the past, such as combin-
ing them with other techniques in order to produce hybrids, and take advantage of the
benefits of each algorithm [9]. For example, evolution was used during the simulation
phase in a Monte Carlo Tree Search algorithm by Perez et al. [19], or, for a different
effect, the MCTS parameters were adjusted with evolutionary methods [14]. There has
been recent work that has attempted to give more focus to the evolutionary process
and instead integrates tree structures into EAs, or uses N-armed bandit techniques and
Upper Confidence Bounds (UCB) for informing and guiding the evolution process [13].



3 Background

3.1 The GVGAI Framework

The experiments presented in this paper were run within the General Video Game AI
framework1, frequently used in recent literature for benchmarking Artificial Intelligence
agents due to its large and constantly increasing collection of games. This framework
currently includes 100 single player and 40 two-player games, of both deterministic and
stochastic nature. All of them are real time games, where the agents receive a 1 second
time budget for initialisation purposes and a 40ms budget for selecting an action to be
performed during each game step.

The action space available to the agents is limited to a maximum of 5, although it
can vary across games. The agents may choose to perform no action (ACTION NIL; it
is important to note that this is not equivalent to the avatar stopping movement), to move
in a certain direction (ACTION LEFT or RIGHT, UP or DOWN, correspondingly), or
to perform a special action (ACTION USE) that depends on the game, and may range
from shooting to creating or activating various game objects.

Concrete information about the game rules is not available to the agents, although
they do have access to details about the current game state through a State Observation
object. This includes the current score, game tick, a description of the state of the avatar
(such as position, orientation, resources etc.), and data about other game objects (such
as NPCs, portals or static objects).

Another tool available to the agents through this framework is a Forward Model
(FM), which allows for simulation of possible future states of the game (this simulated
state may not be accurate in stochastic games). In order to advance the Forward Model,
the agent must supply one of the legal actions of the game to an advance function,
which would roll the state of the game forward following this move.

Games vary in nature not only in their probabilistic states, but also in the presence
of certain game objects (e.g. NPCs and portals), scoring methods (binary, in which 1
point is awarded for winning, 0 otherwise; incremental, which sees continuous small
rewards spread out in the game; or discontinuous, in which certain actions or sequences
of actions may produce a sudden large gain), or the conditions which lead to an end state
(e.g. counters, timers or exit doors). This results in a great variety of games, which truly
tests the abilities of general agents. Figure 1 shows a few examples of games included
in this framework, which were also employed in this study.

The ranking of controllers in the GVGAI competition used for the results analysis of
this paper employs a Formula 1 point system per game: agents are sorted based on their
performance (win percentage, score and time steps, in this order, with the secondary
ones used as tiebreakers if needed) for each game, then awarded a number of points
depending on their position: 25 for the first, then 18, 15, 12, 10, 8, 6, 4, 2, 1 and 0
for all subsequent entries. The points are then summed to a total used to determine the
position in the overall rankings. This system is meant to emphasise the generic aspect
of the competition, as achieving a high average win rate is not equivalent to performing
well across all games.

1 www.gvgai.net



Fig. 1. Games in GVGAI Framework: Aliens, Missile Command, Sea Quest and Survive Zombies
(from left corner, clockwise).

Fig. 2. Rolling Horizon Evolutionary Algorithm cycle.

3.2 Rolling Horizon Evolutionary Algorithms

Rolling Horizon Evolutionary Algorithms (RHEA) [21] are a subset of EAs which use
populations of individuals representing action plans or sequences of actions. The in-
dividuals are evaluated by simulating moves ahead using a Forward Model. From the
current state of the games, all actions (genes of the individual) are executed in order,
until a terminal state or the length of the individual is reached. The state reached at that
point is then evaluated with a heuristic function and the value assigned as the fitness of
the individual.

In general, the algorithm starts with a random population of individuals. At each
game step it applies traditional genetic operators (such as mutation, randomly changing
some actions in the sequence, and cross-over, combining individuals in different ways)
to obtain new individuals for the next generation of the population. Each one of them is



Fig. 3. Monte Carlo Tree Search steps [5]

then evaluated and assigned a fitness, according to which the population is sorted and
only the best are carried forward to subsequent generations. This process ends when an
end condition is satisfied, such as a time or memory limit reached or a certain number
of iterations have been performed. The action selected by the algorithm is represented
by the first gene in the best individual found at the end of the evolutionary process. The
action is played in the game, a new state is received in the next step by the agent, and
new iterations are performed to evolve new action plans.

As the agents have a limited amount of time to make decisions in real-time games,
one of the popular methods in the literature consists of generating only one new indi-
vidual at each generation, therefore making it possible to interrupt the process at any
point. The most basic form this algorithm can take is that of a Random Mutation Hill
Climber [15], where the population size is only 1, using the mutation operator as the
only way to navigate through the search space.

3.3 Open Loop Monte Carlo Tree Search (OLMCTS)

Open Loop Monte Carlo Tree Search (OLMCTS) is an MCTS implementation for the
GVGAI framework. This particular agent does not store the states of the game in the
nodes of the tree, but instead uses the forward model to reevaluate each action. OLM-
CTS uses four simple steps to produce a high level of play: selection (using a tree policy
to select one of the current leaves of the tree, which is not yet fully expanded), expan-
sion (adding a new child of the selected node to the tree), simulation (a Monte Carlo
process using the forward model to advance through the game with random actions)
and back-propagation (the state reached after the MC simulation is evaluated using a
heuristic and its value backed up the tree to the root node, updating all other parent
nodes). The steps of the MCTS algorithm are depicted in Figure 3.

When reaching the limit of its execution budget (memory, time, iterations, or, as
is the case of this paper, number of calls to the forward model advance function), the
algorithm returns action to apply via a recommendation policy. In the GVGAI imple-
mentation of this agent, the action returned is that of the child of the root node that
has been selected more often. For an in depth description of Monte Carlo Tree Search,
variants, improvements, and applications, the reader is referred to [5].



4 Approach and Experimental Setup

4.1 Methods

This paper analyses how modifying the population size (P ) and individual length (L)
configuration of the vanilla Rolling Horizon Evolutionary Algorithm (RHEA) impacts
performance in a generic setting. Exhaustive experiments were run on all combina-
tions between population sizes P = {1, 2, 5, 7, 10, 13, 20} and individual lengths L =
{6, 8, 10, 12, 14, 16, 20}. The budget defined for planning at each game step was set as
480 Forward Model calls to the advance function, the average number of calls OLM-
CTS is able to perform in 40ms of thinking time in the games of this framework2.
Larger values for either individual length or population size were not considered due
to the limited budget and the complete nature of the experiment (analysis of all combi-
nations); values above 24 would not allow in certain cases for a full evaluation of even
one population.

The fitness function used by RHEA evaluates the state reached after executing the
sequence of actions in an individual, and returns the current in-game score of the player.
In the case where an end-game state has been reached, it instead gives a large penalty
for losing the game (or, alternatively, a high reward for winning).

To expand the analysis of the results, a particular configuration was also tested,
using P = 24 and L = 20. Effectively, given the budget of 480 Forward Model calls,
this is an equivalent method of Random Search (RS). The algorithm only has enough
budget to initialise the population before applying any genetic operator. In essence, this
configuration evaluates 24 random walks and returns the first action of the best sequence
of moves found.

The algorithm itself begins with the initialisation of the population, which sets each
individual to a sequence of actions selected uniformly at random. The genes of the in-
dividual take integer values in the interval [0, N-1], where N is the number of available
actions in that particular game state, therefore each value corresponding to an in-game
legal action. The evolutionary process then proceeds in a slightly different way de-
pending on the population size. For the case in which there is only one individual in a
population, one new individual is mutated at each iteration and it replaces the first if its
fitness is higher (RHEA is set to maximize the fitness provided by the value function).

For a population of size 2, the best individual is passed on to the next generation
unchanged (elitism of 1), then uniform crossover and mutation are applied to the 2
individuals to generate the second solution for the new population. If the population
contains 3 or more individuals, similar rules apply, but the 2 parents are selected for
crossover through a tournament of size 2. The mutation operator always modifies one
gene of the individual, chosen uniformly at random. It is important to note that the
initialisation is counted in the budget received for evolution, in order to ensure that
there is a trade-off in higher population sizes.

In order to validate the results, Open Loop Monte Carlo Tree Search was also tested
on the same set of 20 games, under the same budget conditions. OLMCTS has proven

2 Using these forward model calls instead of real execution time is more robust to fluctuations on
the machine used to run the experiments, making it time independent and results comparable
across different architectures.



Table 1. Names, indexes and types of the 20 games from the subset selected. Legend: S - Stochas-
tic, D - Deterministic.

Idx Name Type Idx Name Type Idx Name Type Idx Name Type

0 Aliens S 4 Bait D 13 Butterflies S 15
Camel
Race

D

18 Chase D 22 Chopper S 25 Crossfire S 29 Dig Dug S

36 Escape D 46
Hungry
Birds

D 49 Infection S 50 Intersection S

58 Lemmings D 60
Missile

Command
D 61 Modality D 67

Plaque
Attack

D

75 Roguelike S 77 Sea Quest S 84
Survive
Zombies

S 91
Wait for

Breakfast
D

to be the dominating technique out of the sample ones provided in the GVGAI com-
petition, with numerous participants using it as a basis for their entries before adding
various enhancements on top of its vanilla form. The winner of the first edition of the
competition in 2014, Adrien Couëtoux [23], employed an Open Loop technique quite
similar to this algorithm.

4.2 Games

All of the combinations explored in this study were run on 20 games of the GVGAI
corpus, on all 5 levels, 20 times each, resulting in 100 games played per configuration.
The games were selected using two different classifications present in literature in order
to balance the game set and analyse performance on an assorted selection of different
games. The first classification was that generated by Mark Nelson [17] in his analysis
of the vanilla Monte Carlo Tree Search algorithm in 62 of the games in the framework,
sorted using the win rate of MCTS as a simple criterion. The second classification con-
sidered for this study was the clustering of 49 games by Bontrager et al. [4], which
separated the games into groups based on their similarity in terms of game features.
Combining these two lists and uniformly sampling from both provided a diverse sub-
set appropriate for this experiment, which contains 10 stochastic and 10 deterministic
games. See Table 1 for the name of these games and the indices used in later figures in
this document.

5 Results and Discussion

This section presents and analyses the results obtained from different angles. Observa-
tions are made attending to the nature of the game and variations of the population size
and individual length. Section 5.1 compares the performance using smaller or larger
population, while Section 5.2 discusses the impact of individual length. Later, the per-
formance of RHEA is also compared to RS employing different budgets (Section 5.3)
and OLMCTS (Section 5.4) as supplied by the GVGAI framework. As the game set



Fig. 4. Change in winning rate as population size increases, for individual lengths L = 6 and
L = 14, in all games tested for this paper. The Standard Error is shown by the shaded boundary.
Please refer to Table 1 for the names of the game indexes presented here.
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used is divided equally between deterministic and stochastic games, an in-depth anal-
ysis is carried out on each game type, although it is not implied the trend would carry
through in other games of the same type.

Additionally, a Mann-Whitney non-parametric test was used to measure the statis-
tical significance of results for each game (p-value = 0.05). Table 4 summarises the
winning rates of all configurations tested in this study.

5.1 Population Variation

Figure 4 shows the change in winning rate as population size increases, for L = 6
and L = 14 (figures for other individual lengths have been omitted for the sake of
space). Each of the 20 games that these algorithm configurations were tested on showed
different performance and variations. There is a trend noticed in most of the games,
with win rate increasing, regardless of the game type (c.f. Table 4). Exceptions are for
games where the win rate starts at 100%, therefore leaving no room for improvement
(games with indexes 0 and 50, Aliens and Intersection, respectively) or, on the contrary,
when the win rate stays very close to 0% due to outstanding difficulty (game index 75,



Table 2. Winning rate for different values of population size (P ) and individual length (L), in
all 20 tested games. Average of standard errors indicated between brackets. Highlighted in bold
style is the best result.

P L=6 L=8 L=10 L=12 L=14 L=16 L=20
1 35.45(2.54) 38.25(2.54) 37.95(2.47) 36.70(2.58) 34.20(2.42) 33.55(2.57) 33.15(2.60)

2 39.95(2.62) 40.95(2.55) 41.05(2.62) 40.25(2.48) 39.50(2.56) 38.75(2.56) 36.80(2.60)

5 42.55(2.57) 43.50(2.39) 44.65(2.40) 44.25(2.38) 43.80(2.34) 44.95(2.53) 46.05(2.54)

7 43.00(2.49) 42.60(2.43) 44.65(2.36) 44.35(2.45) 45.30(2.23) 44.80(2.47) 47.05(2.56)

10 42.25(2.53) 43.60(2.49) 44.05(2.26) 45.80(2.47) 45.05(2.35) 46.60(2.45) 46.80(2.49)

13 42.65(2.43) 45.15(2.48) 45.15(2.47) 45.00(2.42) 46.25(2.41) 47.40(2.30) 47.05(2.42)

20 42.75(2.51) 43.20(2.60) 44.75(2.31) 45.50(2.34) 46.45(2.32) 46.30(2.32) 47.50 (2.33)

Table 3. Winning rate for different values of population size (P ) and individual length (L), in
the 10 deterministic tested games. Average of standard errors indicated between brackets. High-
lighted in bold style is the best result.

P L=6 L=8 L=10 L=12 L=14 L=16 L=20
1 22.30(2.88) 26.80(2.95) 26.90(2.93) 25.30(2.91) 24.20(2.84) 23.00(3.01) 22.50(2.99)

2 26.40(3.13) 26.80(3.08) 27.90(3.05) 27.90(2.92) 27.10(2.91) 26.80(2.93) 24.50(2.99)

5 28.70(3.08) 29.70(3.10) 31.90(3.18) 31.80(2.88) 30.00(2.86) 32.00(3.04) 32.20(3.19)

7 28.80(3.26) 29.00(3.00) 30.80(3.09) 30.40(3.01) 31.70(2.82) 32.00(2.99) 34.30(3.12)

10 27.70(3.18) 31.00(3.27) 29.50(2.90) 33.00(3.03) 32.60(2.94) 32.40(3.11) 33.20(3.05)

13 28.90(3.19) 32.20(3.32) 32.10(3.06) 31.80(3.07) 33.30(3.18) 34.70 (2.88) 34.00(2.97)

20 28.60(3.19) 29.90(3.34) 31.50(2.87) 32.30(3.05) 33.10(3.11) 32.10(2.84) 34.30(3.02)

Table 4. Winning rate for different values of population size (P ) and individual length (L), in the
10 stochastic tested games. Average of standard errors indicated between brackets. Highlighted
in bold style is the best result.

P L=6 L=8 L=10 L=12 L=14 L=16 L=20
1 48.60(2.20) 49.70(2.13) 49.00(2.01) 48.10(2.25) 44.20(2.00) 44.10(2.12) 43.80(2.22)

2 53.50(2.12) 55.10(2.02) 54.20(2.20) 52.60(2.05) 51.90(2.20) 50.70(2.20) 49.10(2.22)

5 56.40(2.07) 57.30(1.68) 57.40(1.61) 56.70(1.88) 57.60(1.81) 57.90(2.01) 59.90(1.89)

7 57.20(1.72) 56.20(1.85) 58.50(1.64) 58.30(1.90) 58.90(1.63) 57.60(1.95) 59.80(2.00)

10 56.80(1.88) 56.20(1.71) 58.60(1.63) 58.60(1.91) 57.50(1.77) 60.80 (1.79) 60.40(1.93)

13 56.40(1.68) 58.10(1.65) 58.20(1.88) 58.20(1.76) 59.20(1.63) 60.10(1.71) 60.10(1.86)

20 56.90(1.83) 56.50(1.86) 58.00(1.74) 58.70(1.64) 59.80(1.53) 60.50(1.80) 60.70(1.64)

Roguelike). The winning rate on game with index 25, Crossfire, increases significantly
from 0 to 10% (p-value = 0.02) along with the increase in population size. This suggests
that games which a priori seem unsolvable, can be approached by exploring more with
a larger population.



Deterministic games Winning rate increases progressively in most of the tested de-
terministic games (Figure 4, top). A high diversity of the performance over the tested
games is observed, with the concrete winning rate having a high dependency on the
given game. The games with indexes 60 and 91 (Missile Command and Wait for Break-
fast, respectively), stand out in these cases as they achieve a larger increase in perfor-
mance, particularly with longer individuals.

Stochastic games Regarding stochastic games (Figure 4, bottom) in particular, it is
important to separate them based on their probabilistic elements and their impact on
the outcome of the game. For example, the game with index 84, Survive Zombies, has
numerous random NPCs and probabilistic spawn points for all object types, in contrast
with game numbered 0, Aliens, where its stochastic nature comes only from the NPCs
dropping bombs in irregular intervals.

In games numbered 13 and 22 (Butterflies and Chopper respectively), a big im-
provement in terms of winning rate is observed by increasing the population size from
2 (the case in which there is no tournament) to 1, and this remains stable with larger
populations.

When the length of the individual is fixed to a small value, increasing the popula-
tion size is not beneficial in all cases, sometimes having the opposite effect and causing
a drop in win rate (games with indexes 77 and 84, Sea Quest and Survive Zombies,
respectively). On the contrary, the game with index 22, Chopper, sees a great improve-
ment (from an average of 29% in population size P = 1 to 98% in population size
P = 20, p-value� 0.001, for both win rate and scores achieved).

In general, a conclusion that could be drawn from these experiments is that increas-
ing the population size rarely hinders the agent to find good solutions. In fact, in some
cases it makes the difference between a very poor and a very successful performance
(from 29% to 98% in Chopper). An explanation for this phenomena could be that the
higher diversity in the population allows the algorithm to perform a better exploration
of the search space.

5.2 Individual Variation

Figure 5 illustrates the change of the winning rate in each of the 20 games as individual
length increases, for population sizes P = 1 and P = 5. The full results using a variety
of population size and individual length are given in Table 4. Using identical numbers
of individuals when the population size is large (P ≥ 5) and increasing the individual
length, i.e., simulation depth, leads to a growth of winning rate (c.f. Table 4).

Deterministic games When there is only one individual in the population, thus no
crossover is involved, the winning rate experiences a significant increase followed by a
drop along with the increase of individual length. This is due to the fact that the size of
search space of solutions increases exponentially with the individual length. With few
individuals evaluated, the algorithm struggles to find optimal solutions. This issue can
be solved by increasing the population size, as shown in Figure 5 (top). For instance,
the game with index 67, Plaque Attack, sees a variation from 68% to 83% to 55% with
population size P = 1; while with population size P = 5, there is a constant increase
from 79% to 97%.



Fig. 5. Change of the winning rate as individual length increases, for population sizes P = 1 and
P = 5, in all games tested for this paper. The standard error is shown by the shaded boundary.
Please refer to Table 1 for the names of the game indexes presented here.
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Stochastic games In stochastic games, however, matters are different. In this case, the
performance of the different variants of RHEA depends greatly on the game played. For
instance, in game 13 (Butterflies), performance drops significantly (p-value = 0.001)
from a win rate of 91% (L = 6) to 75% (L = 20), using a population of P = 2
individuals. An even bigger difference can be seen in game 22 (Chopper) which drops
from 78% (L = 6) to 30% (L = 20) for a population of P = 2 individuals (p-value�
0.001 for both win rate and in-game scores). No significant change in win rate can be
appreciated in larger population sizes.

In general, increasing the length of the individual provides better solutions if the size
of the population is high, although the effect of increasing the population size seems to
be bigger. This can be clearly observed in the results reported in table 4.

5.3 Random Search

The version of RHEA using large values for population size and individual length is
reminiscent of the Random Search (RS) algorithm. We perform a RS on the same set of
games using P = 24 individuals and simulation depth L = 20. As a budget of 480 calls



Table 5. Comparison of winning rates and points achieved by RHEA with different budgets and
OLMCTS. It shows rates and points for all games (T), deterministic (D) and stochastic (S). With
budget 480, the RS is equivalent to a RHEA using 24 individuals and individual length 20.

Algorithm Average
Wins (T) Points (T) Average

Wins (D) Points (D) Average
Wins (S) Points (S)

RHEA-1920 48.25(2.36) 351 36.30(2.88) 181 60.20(1.84) 170

RHEA-1440 48.05(2.23) 339 35.40(2.82) 177 60.70(1.65) 162

RHEA-960 47.85(2.39) 323 34.60(2.99) 162 61.10(1.79) 161

OLMCTS-480 41.45(1.89) 316 22.20(2.45) 149 60.70(1.34) 167

RHEA/RS-480 46.60(2.40) 271 32.90(3.04) 131 60.30(1.76) 140

to the forward model is allocated to this algorithm, RS is equivalent to RHEA using this
population size and individual length. The average winning rate in each of the tested
games is summarized in the last row of Table 5.

RS performs no worse than any variant of RHEA studied previously. This result
supports one of the main findings on this paper: the vanilla version of RHEA is not
able to explore the search space better than (and, in most cases, not even as good as)
RS in the framework tested when the budget is very limited. In order to test the limits
and potential benefits of evolution, an additional set of experiments was run, using the
same P = 24, L = 20 configuration, but increasing the forward model budget from
480 advance calls to 960, 1440 and 1920. It’s notable that, for these new budgets, the
population is evolved during 2, 3 and 4 generations, respectively.

The results, presented in Table 5, suggest that the solution recommended by RHEA
at the end of optimisation converges towards the optimal solution while increasing the
budget. As the budget becomes higher, the win rate increases first, to then stabilise when
it reaches the highest budget tested. The difference observed is smaller than that given
by the search in terms of population sizes and individual lengths.

In stochastic games, there is no difference observed in the average winning rate, but
there is a small increase in ranking points, which vary according to the budget. However,
there is a clearer improvement in performance distinguished in deterministic games.
This may be due to the fact that resampling an individual is useless in deterministic
games, whilst a single evaluation of a solution in a stochastic environment may be
inaccurate.

5.4 RHEA vs OLMCTS

Table 5 also includes the performance of the GVGAI sample OLMCTS agent. The
sample OLMCTS agent uses a playout depth of 10, hence the comparisons presented
here relate to RHEA configurations with individual length L = 10. Results show that,
although RHEA is significantly worse when its population size is small, it outperforms
OLMCTS when the number of individuals per population is increased (P > 5). A
second interesting contribution of this paper is that it is possible to create an RHEA



capable of achieving a higher level of play than OLMCTS, which is the base of most
dominating algorithms in the GVGAI literature.

In addition, OLMCTS also falls short when comparing it to RS with regards to
the average percentage of victories. However, it does manage to gain a higher number
of ranking points in these games against the other 4 agents. Considering the fact that
points are awarded for each game in order to value their generic capabilities, this result
suggests that OLMCTS is more general than the vanilla version of RHEA.

Finally, if an analysis is carried out per game type, OLMCTS appears to be similar
to RS in stochastic games but, not surprisingly, its performance is much worse than
RS in deterministic games, becoming comparable to the worst configuration of RHEA
found during these experiments (population size P = 1 and individual length L = 20).

6 Conclusions and Future Work

This paper presents an analysis of population size and individual length of the vanilla
version of Rolling Horizon Evolutionary Algorithm (RHEA). The performance of this
algorithm is measured in terms of winning rate in a subset of 20 games of the General
Video Game AI corpus. These games were selected based on their difficulty and game
features, in order to present a reduced set of challenges as assorted as possible. Games
were also chosen so there would be a split between deterministic and stochastic ones.

One of the main findings of this research is the fact that RHEA is unable to find
better solutions than Random Search (RS) in the settings explored, being worse than
RS in many cases. Rather than an indication of RHEA being not suitable for GVGAI,
these results suggest that the vanilla version of the algorithm is not able to explore the
search space quickly enough given the limited budget. Therefore, this finding motivates
research in RHEA, in order to find operators and techniques able to evolve sequences of
actions in a more efficient way. The results presented in this paper with higher execution
budgets are an indication that this is possible.

At the same time, this paper highlights another interesting conclusion: given the
same length for the sequence of actions and the same budget (480 calls to the forward
model), RHEA is able to outperform Open Loop Monte Carlo Tree Search (OLMCTS)
hen configured with a high population size. Most of the entries of the GVGAI com-
petition, including some of the winners, base their entries in OLMCTS or similar tree
search methods. Thus, RHEA presents itself as a valuable alternative with a potentially
promising future.

Finally, this study analyses the performance of the different versions of the algo-
rithm in a game per game basis, and it is clear that in some games the agent performance
shows a trend after increasing the population size or the individual length. For instance,
in most games the agent benefits from using larger populations, but, in some of them,
it works better with fewer individuals. Similarly, a long sequence of actions typically
helps finding better solutions, but some games form the exception and RHEA performs
better with shorter individual lengths. In general, however, it has been observed that an
increase in the population size has a higher impact on the performance than considering
a further look ahead (longer individuals).



Therefore, although the general finding is that bigger populations and longer indi-
viduals improve the performance of RHEA on average, it should be possible to devise
methods that could identify the type of game being played, and employ different (or,
maybe, modify dynamically) parameter settings. In a form of a meta-heuristic, an agent
could be able to select which configuration better fits the game being played at the
moment and increases the average performance in this domain.

The most straightforward line of future work, however, is the improvement of the
vanilla RHEA in this general setting. The objectives are twofold: first, seeking big-
ger improvements of action sequences during the evolution phase, without the need of
having too broad an exploration as in the case of RS; and second, being able to better
handle long individual lengths in order for them to not hinder the evolutionary process.
Additionally, further analysis could be conducted on stochastic games, considering the
effects of more elite members in the population or resampling individuals, in order to
alleviate the effect of noise in the evaluations.
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