
Towards More Intelligent Adaptive Video Game Agents:
A Computational Intelligence Perspective

 Simon M. Lucas
University of Essex

Wivenhoe Park
Colchester CO4 3SQ
00 44 1206 872048

sml@essex.ac.uk

 Philipp Rohlfshagen
University of Essex

Wivenhoe Park
Colchester CO4 3SQ
00 44 1206 874444

prohlf@essex.ac.uk

 Diego Perez
University of Essex

Wivenhoe Park
Colchester CO4 3SQ
00 44 1206 874444

dperez@essex.ac.uk

ABSTRACT
This paper provides a computational intelligence perspective on
the design of intelligent video game agents. The paper explains
why this is an interesting area to research, and outlines the most
promising approaches to date, including evolution, temporal
difference learning and Monte Carlo Tree Search. Strengths and
weaknesses of each approach are identified, and some research
directions are outlined that may soon lead to significantly
improved video game agents with lower development costs.

Categories and Subject Descriptors
A.1.2 [Artificial Intelligence]: Applications and expert systems –
games. G.3 [Probability and Statistics]: Probabilistic algorithms,
including Monte Carlo. I.2.6 [Learning]: Connectionism and
neural nets, Parameter learning.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Games, Artificial Intelligence, Computational Intelligence, Monte
Carlo Tree Search, Evolutionary Algorithms, Temporal
Difference Learning.

1. INTRODUCTION
This paper describes a promising approach towards building
intelligent adaptive video game agents. The aim is to design an
architecture that can be used to provide a variety of intelligent
capabilities across a range of games, with a minimum of human
design input required for achieving acceptable performance on
each individual game. The computational intelligence (CI)
approach involves a minimum of game-specific programming.
Instead, the main idea behind CI methods is that the intelligence
emerges from the statistics of many simple low-level interactions,
whether these be activations in a neural network, hypothetical
actions explored in Monte Carlo Tree Search, or parameters
adjusted to optimize a reward signal while performing Temporal
Difference Learning.

To give a human-oriented perspective on the type of intelligence
we are aiming for, imagine the task of learning to play a video
game to a reasonable standard without any prior knowledge of the
game and without explicitly knowing the rules. This is the task
typically faced by human players of video games, exemplified by
the classic arcade games of the 1980’s. With this long-term aim
in mind, we also have a significantly simpler version of the
problem where the agent has access to the complete game state
and the forward model, and hence is able to construct and search
game trees using the forward model. This is something that a
human player does not have access to, but can be used to
significantly simplify the problem of generating intelligent
adaptive game agents. Part of being an expert human player may
involve constructing an approximate forward model, but this in
itself is a major challenge.

There are a number of good reasons for investigating more
adaptive game agent AI, including the following:

 Self-learning or adaptive agents are one of the long-
term grand challenges of AI, and games provide an
excellent test bed on which to evaluate such agents. In
addition to providing challenges of wide-ranging
complexity, games also enable humans to interact with
AI agents in many of these scenarios.

 Incorporating intelligent agents into games could
provide players with a more immersive experience, with
the spine-tingling feeling of competing against
intelligent beings, whether they display human-like
intelligence or some strange alien type of intelligence;
the commercial opportunities are immense.

 Provision of reasonable-performance intelligent agents
with no (or minimal) programming effort is useful in the
design, evaluation and testing of procedurally generated
game content, such as game-levels, weapons and
vehicles.

Regarding the latter point, a recent review of procedural content
generation for games can be found in [1]. The idea of using the
ability of agents to learn to play a game was explored by Togelius
and Schmidhuber [19]. More recently, Tozour1 has been evolving
scripted agents to aid in the design process of a robot tower
defence game. Clearly, there is much potential for using
automatically designed agents in this way, and as the agents
become smarter so the potential for exploitation will increase.

1 http://aigamedev.com/open/interview/evolution-in-cityconquest/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’12, May 15–17, 2012, Cagliari, Italy.
Copyright 2012 ACM 978-1-4503-1215-8/12/05...$10.00.

293

Given that this is a useful and interesting endeavor, the question
arises of the best way to create such adaptive agents. Although no
one has yet done this, many of the enabling technologies are
becoming increasingly mature. This paper presents a perspective
on which are the essential and desirable techniques, and how they
can be used in conjunction with each other.

2. TECHNIQUES
This section describes the main computational intelligence
techniques which have an important role to play in the
construction of adaptive game agents, together with discussion of
their strengths and weaknesses.

2.1 Evolutionary Algorithms
Evolutionary algorithms (EA) are one of the most popular
approaches for adapting an agent to perform well on a problem,
and they are one of the easiest to deploy. Unfortunately, it is also
very easy to get poor or mediocre results with an EA, and a great
deal depends on the choice of representation, and other details.
The process is as follows:

1. Design a representation.

2. Design a fitness function.

3. Choose an evolutionary algorithm.

4. Run the algorithm and save a selection of the best or
most interesting evolved agents.

Although this can indeed be very simple, there is ample
opportunity for expertise and innovation in the above steps,
especially in steps 1 and 2. For step 3, Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) [8] is a good default
choice if the adaptive elements of the agent can be coded as a
vector of real numbers, which is the case when evolving game
agents based on neural networks and many other agent
architectures where some real-valued parameters control aspects
of an agent’s behavior.

Note that the above process focuses on using an EA rather than on
designing one, which is why there is no mention of the variation
operators (e.g. mutation and crossover). When using an algorithm
such as CMA-ES, those details are the responsibility of the
algorithm.

There is a good deal of skill in designing an appropriate
representation, and one should be aware of the limitations of EAs
and what can realistically be achieved within a given number of
fitness evaluations. One of the simplest problems for an EA is the
standard one-max problem: the aim is to evolve a bit string of
length B consisting entirely of ones, where the fitness is given as
the number of ones in the string. EAs solve this problem for a bit
string of length B in an expected B log_2(B) number of fitness
evaluations, learning B bits of information in the process. When
co-evolving agents, however, it is common to evaluate a
population of N players by playing a full round-robin league of
(approximately) N-squared games. If single parent selection is
used, the identity of the winning player can be coded in log_2(N)
bits, which places an upper bound on the information gained from
that number of games. In practice it is hard to get close to this
upper bound [11] even for simple games. Furthermore, evolution
is sensitive to the representation used. For example, [10] found
evolution to perform relatively well when evolving multi-layer
perceptrons, but extremely poorly when evolving interpolated
table functions, due to epistasis in the representation.

General discussion of using evolutionary algorithms in
conjunction with games can be found in [13],[12].

2.1.1 Evolution versus Coevolution
For single-player games evolution can be used directly to evolve
agents, using the game score as a fitness function. By single-
player games we include games that involve any number of non-
adaptive or generally “not very smart” opponents, such as the
enemies in Super Mario or the ghosts in the original version of Ms
Pac-Man. In the latter case the ghosts do chase the player while
exhibiting some non-determinism (so learning a fixed route for
example is ineffective), but some reasonably effective strategies
can be learned without even using game-tree search.

However, for evenly balanced two-player games, including
classic board games, coevolution offers a more interesting
approach than straight evolution if the aim is to generate strong
players without using an existing strong player to compete
against. Coevolution has the potential to create strong players
where none previously existed, whereas using evolution to evolve
strong players would require an existing strong player to play
against. If evolution is used to evolve agents against a weak
player then the evolutionary process will just do enough to beat
the weak player convincingly and then have no incentive to
progress any further.

Coevolution solves this problem by using a relative fitness
function: fitness is estimated by the playing performance of each
player against other players in the current population, and perhaps
also against players in a dynamically created “hall of fame”
archive created from the best players found during an
evolutionary run. In principle coevolution could produce a long-
running arms race culminating in players that eventually solve the
game at hand. However, there are several reasons why this rarely
happens in practice, including:

 Limitations imposed by the chosen representation. For
example, if a value function is being evolved as a
weighted combination of some simple game features,
then there is a limit to how smart this could ever be.

 Intransitivities in the population of game players. This
leads to problems in measuring the fitness of an
individual agent. An agent may appear very strong with
respect to the current population, but actually be the
weakest member of the current population when in
competition with a different set of players. This
problem can only occur when the players of a game
exhibit intransitivities. The extent to which
intransitivities exist depends not only on the nature of
the game, but also on the nature of the players.

 Insufficient number of games to effectively train
parameters. This arises when the parameter space is
large e.g. an N-Tuple network for playing Othello may
have thousands or tens of thousands of weights. To
learn good values of these weights could require
millions of fitness evaluations, and an even larger
number of games played.

 Noisy or inaccurate fitness evaluations caused by games
with random elements, or even in games of perfect
information where games may be played from many
different states in order to gain a more accurate picture
of the relative merits of each player.

294

 The search space induced by the chosen representation
may be difficult to search, containing many local
optima or neutral plateaus.

Note that only the problem of intransitivities between the agents
is unique to co-evolution; the other problems pose an equal threat
to non-co-evolutionary EAs.

Interestingly, it is possible to design experiments to test which of
these problems is most serious for a given combination of game
and player architecture. For example, if intransitivities are
suspected as being the main problem in co-evolving a game agent,
then the same experimental setup can be used with the exception
of replacing the relative (co-evolutionary) fitness measure with
one based on playing against a controlled strength agent: a strong
agent that is artificially weakened using forced random moves to
always match the level of the evolving agents, such that the
evolving agents win 50% of games on average. This removes any
problems caused by intransitivities; if evolution still fails, then
one of the other problems listed above could be to blame.

2.2 Reinforcement Learning (RL)
Although technically EAs could be placed within a broad RL
umbrella in the sense that they aim to improve over time with
respect to some reward function, in practice there are clear
differences in how each approach is normally applied. Classic
EAs operate at the population level, and measure “bottom-line”
fitness i.e. how well an agent performs on a complete task or set
of tasks. Conversely, classic RL algorithms such as Temporal
Difference Learning (TDL) operate at the level of an individual:
an individual modifies its behavior during its lifetime to improve
its expected reward, which may be given at the end of each task
or during a task. Temporal difference learning works
outstandingly well on small toy problems where the game states
can be exactly enumerated in a table. In such cases learning then
corresponds to estimating the value of each table entry. For most
games of interest the state space is either discrete and large, or
continuous, and this direct tabular representation cannot be
applied. In such cases some form of function approximation must
be used, and this can be fraught with difficulty. Choosing the
correct form of function approximator is of critical importance
and can mean the difference between success and failure.

TDL is also sensitive to parameter choices such as the learning
rate. Recent approaches such as Least Squares TD (LSTD) work
in batch mode and choose a locally optimal step size for each
parameter updated, in the sense of minimizing the mean square
error (MSE). Interestingly, recent results [Thomas Runarsson,
personal communication] indicate that the common practice of
using TDL to minimize the MSE may be far from optimal for
game playing. When playing a game, what matters is the action
selected at each stage. The actual state value or state-action value
estimates are not what really matters: they only matter as a means
to select the correct action. For this reason there has been interest
in applying preference learning to this problem instead. In
preference learning, the aim is to learn the correct decisions
directly rather than estimate the expected rewards for each action.

2.3 Monte Carlo Tree Search (MCTS)
Computer chess players have played at super-human levels for
over a decade, and during that time Go has been one of the main
challenges for reaching or surpassing expert human performance.
For many years progress on Computer Go had been rather slow,
and reaching expert levels of human play seemed many decades
away. MCTS changed all that, causing a radical improvement in

performance. The best MCTS-based players are now on a par
with the best human players for the smaller 9 x 9 version of the
game, and are making good progress on the full size 19 x 19
game. This has naturally sparked a great deal of interest in
researching other games that MCTS might be good for, and
already it has achieved dominance on connection games such as
Hex and Y [1]. For a comprehensive survey see [3]. MCTS is
also the leading approach to general game playing.

MCTS builds a game tree selectively by performing random
simulations (also known as roll-outs) from a game state to predict
the value of being in that state. This is depicted in Figure 1 (from
[2]). The tree is grown selectively. A node in the tree is selected
for expansion using a tree policy to navigate down the tree
(shown as the bold line on the left tree). The Upper Confidence
Bounds for Trees (UCT) formula [9] is often used to guide child
selection while navigating the tree. UCT aims to optimally
balance the opposing needs of exploration versus exploitation,
though it is usually used in conjunction with some heuristics to
achieve better performance.

A random simulation (also known as roll-out or play-out) is then
made from the selected leaf node of the tree. The roll-out
normally continues to the end of the game, at which point the
exact value is known. This value is then propagated up the tree,
and a new leaf node is added where the roll-out was made, as
shown on the right tree in the figure. The roll-out may be made
by choosing uniform random moves, or may be biased towards
more favorable moves.

Figure 1: Illustration of how MCTS operates (from [2]).

MCTS has many attractive properties, such as being an anytime
algorithm where playing performance typically increases (in some
cases logarithmically e.g. [5]) with the number of roll-outs that
can be performed given the available time. Perhaps more
importantly, MCTS can be used in the absence of any good
heuristic evaluation function. The fact that MCTS works at all is
at least a little surprising: good players do not play randomly, so
why should random simulations which sample only a tiny fraction
of the search space provide any clue as to which move is good?
Nonetheless, there is clearly important information in the roll-out
statistics; at least enough to outperform non MCTS approaches.
Furthermore, the tree grows with each roll-out, and increasingly
represents more meaningful information. On tasks as difficult as
playing Go, it is not that MCTS plays anywhere close to optimal,
it is more the case that the problem is hard for any type of agent,
and MCTS performs well compared to the competition (though
not as well as expert humans yet on the full-size game).

Of more interest to the current paper is whether MCTS can be
used to endow video game agents with more intelligence. Many

295

researchers and games industry insiders have questioned the value
of this, imagining that an intelligent opponent would be boring to
play against because it would simply thrash the human player
every time. This is not so, however, for at least three reasons.
One is that the intelligent opponent might have a different
objective other than winning; for example, it might be aiming to
maximize the human player’s fun, much as a parent aims to do
when playing a game with their child. Secondly, the game can be
re-balanced in other ways: it might be fun to play against super-
intelligent opponents that are limited in their physical strength,
mobility, firepower, health or armor. Thirdly, the aim may be to
create an intelligent agent that is not competing against the player,
but acts as a partner or an assistant. The illusion of intelligence in
this type of agent is crucial, and can be more important than the
intelligence of the enemies. For instance, in first person shooter
games, a companion may be a partner of the player during the
whole game, while typical enemies appear on screen for only 5
seconds on average.2

There are some challenges to be overcome in using MCTS to
boost the intelligence of video game agents, including making
enough roll-outs in the severely limited time available to compute
each action, and coping with the long roll-out depth needed to
make progress in the game. Depending on the type of game, the
game state for a video game may be significantly more complex
than for a classic board game, involving many continuous
variables describing the position and velocity of each agent. To
ameliorate this it may be possible to use a simplified model of the
game, or to represent the game state efficiently. For example,
when using MCTS to control a Pac-Man agent, the game state can
be represented compactly using bit-sets to model the state of each
pill (which can change from available to eaten), and then
maintaining a separate data structure of pill positions, which for a
given map never changes. In this way it is possible to perform
hundreds of roll-outs for each game tick. Further improvements
can be made by keeping part of the tree from one game tick to the
next (the branch that corresponds to the selected action may be
kept). In this way actions may be selected on the basis of tens of
thousands of roll-outs even though only a few hundred are made
per game tick.

When applying MCTS to video games a significant problem is to
decide the value that should be fed back at the end of a roll-out.
For games such as Go this is not a problem: each roll-out ends in
a terminal state of the game at which time the value is known
exactly: either 1 or 0 (either a win or a loss for the current player).
The value at each tree node then approximates the probability of
winning from that node. In the case of video games, the situation
is less clear. Due to the nature of the game, most roll-outs will
not end in a terminal state, and some heuristic value must be
constructed to estimate the value of a state. Finding a good
heuristic is a significant problem, and for this EAs or TDL can be
used; so far TDL has been used, but EAs would seem to offer an
interesting alternative. Interestingly, there are three distinct ways
in which heuristics can be applied within MCTS. They can be
used to inform the tree-policy, and/or to bias the roll-outs, or to
(as already mentioned) provide a heuristic value at the end of a
roll-out (for the frequent cases where the true value is not
obvious). Even in arcade games such as Pac-Man, where the

2 Mikael Hedberg, AI Game Dev Conference 2010, discussing

the AI of Battlefield: Bad Company 2, for details see:
http://aigamedev.com/open/coverage/paris10-report/#session10.

score is updated every time a pill, edible ghost, or fruit is eaten,
heuristics play an important part in evaluating game states, since
many states with identical scores will have very different true
values for the Pac-Man agent.

Without a good heuristic MCTS may fail if applied naively,
largely because the vast majority of roll-outs do not do anything
of interest. If at each game tick a video game character performs
an action selected uniformly at random from the set of available
actions, then most roll-outs will not do anything interesting at all,
but just dither and not move much. There are a number of ways
of overcoming this problem, including choosing a higher-level
action space (i.e. a space of macro-actions where each high-level
action then has to be translated to a sequence of lower-level
actions). Another simpler way is to bias the roll-outs to increase
the likelihood that the previous action is repeated.

3. Evaluation and Competitions
One of the most important driving forces behind progress in this
area has been regular and rigorous evaluation. For many games
there are regular competitions. These provide an ideal means by
which to test any number of approaches, and to tune each
approach to see which works best in practice. While rigorous
evaluation has been the feature of many research communities,
this has been embraced with particular enthusiasm in games.

Evaluation in pattern recognition and machine learning normally
involves measuring performance on some pattern classification or
prediction problem, where the correct answers are already known.
In contrast to this, intelligent game-playing agents need to work
out for themselves what actions to take in novel situations where
no supervised training data exists. Furthermore, game playing
algorithms usually compete under strict time limits, so an
appropriate balance must be found between optimality and
timeliness. Games naturally promote techniques which work well
in practice. The remainder of this section discusses two game
competitions that are of particular relevance to this paper. The
first example, general game playing, is another area where MCTS
has proven to be very successful, and the general aspects of this
have some relevance to developing general purpose video game
agents. The second example, the physical travelling salesman
problem is a simple video game being run as an open competition
where naïve MCTS only achieves limited success, but more
sophisticated MCTS approaches are already showing great
promise.

3.1 General Game Playing (GGP)
In focusing on a single game there is a danger that the results will
be of limited interest to the goal of developing a general purpose
AI agent. This danger may sometimes be overstated, since the AI
community has learnt a great deal over the years with results from
specific games often having a more general impact. However, the
fact remains that achieving high performance on a particular game
can involve an enormous amount of game-specific hand tuning.
Hence GGP [7] was developed as a way to make games a true
challenge for machine learning. GGP games operate in two
phases. In the first phase the game rules (specified in a type of
first-order logic) are given to each player in order that it can
analyse the rules, potentially do some learning about the game, set
up any data structures etc. In the second phase play commences
and continues until the end of the game. MCTS now seems to be
the dominant algorithm in GGP, with the AAAI 2007 and 2008
competitions being won by CadiaPlayer [6], an MCTS-based
player, and the 2009 competition being won by Ary [14], another

296

agent with a significant MCTS component. GGP as it stands
offers a fascinating challenge, but its use of a logic-based game
description language naturally tailors it toward certain types of
game (essentially mind-games), and means it is not appropriate
for video or physics-based games. Developing a type of GGP
system for this type of game is an interesting possibility, and it
remains to be seen which type of algorithm would perform best
on this type of problem.

3.2 Physical Travelling Salesman Problem
This competition [15],[16] combines aspects of the classic
Travelling Salesmen Problem (TSP) with aspects of vehicle
driving (physics) – hence the Physical Travelling Salesman
Problem (PTSP). The aim is simply to visit all cities in the
minimum time, but the salesman is now driving a physical object
and has momentum and steering to take care of: in most cases the
optimal TSP city order is very different to the optimal PTSP city
order. Figure 2 shows a sample map from the current IEEE
World Congress on Computational Intelligence Competition [15].

Figure 2: A sample map from a currently running Physical
Travelling Salesman Problem (PTSP) Competition.

Applying MCTS to a simple 2D navigation game such as the
PTSP provides an ideal way to study its weaknesses. Since the
roll-outs can be overlaid on top of the map, it is easy to see how
far MCTS is exploring ahead, and whether it is able to incorporate
long-term planning considerations into its solutions, or whether it
is acting in a greedy manner. If MCTS is applied in its most basic
form to this problem, then it tends to do the latter, as also shown
in Figure 2. In the standard PTSP configuration, actions are very
low level, and specify a force vector to be applied for the next
time instant. A good solution for the map in Figure 2 would
involve more than 1,000 such actions. Interestingly, if MCTS is
used with a higher-level action space [Whitehouse and Powley,
personal communication] then this problem is alleviated, and
good performance can be obtained. Such an approach is currently
leading the rankings on the Human versus Bot version of the
PTSP (http://ptsp-game.net/). This is of particular interest here,
since it is a type of innovation (i.e. using macro-actions rather
than actions from the original more fine-grained set) that could
potentially be created through evolutionary adaptation, but not
through temporal difference learning. Another way to achieve
long-term planning in the PTSP is to explicitly solve the problem
in two steps, where one step optimizes the order of cities to visit

and then second step works tries to find the best action sequence
to drive that route.

Given that the PTSP is a one-player game (at least in its current
form) it would also be interesting to investigate the use of MCTS
algorithms that have already been shown to work well on one-
player games, such as nested MCTS and Monte-Carlo Beam
Search [4].

4. Proposed Approach
Based on the above discussion, the architecture shown in Figure 3
is proposed for a general purpose intelligent game agent
generation system. The system involves a population of MCTS
game agents which evolves over time. Evolution offers a very
flexible way to do this and can easily incorporate major
architectural changes. Changes could include the nature of the
function approximators used in the agent, such as multi-layer
perceptrons or interpolated table functions. Reinforcement
learning algorithms such as TDL are unable to do this: they are
restricted to adapting a fixed-size parameter vector. Each agent is
controlled by a number of parameters, including things such as
roll-out depth, the value of the UCT exploration constant, plus
many other variables controlling the behavior of the MCTS
algorithm. These can be adapted using evolution.

Figure 3: Proposed adaptive MCTS agent architecture. The
system evolves a population of MCTS players: major
structural changes occur at the evolutionary level. Each
player also has many parameters that are adapted during
game play. Function approximators help control tree policy,
roll-out policy, and heuristic values given to terminal nodes of
roll-out which are not terminal game states.

For MCTS to be effective, heuristic value functions (expressed in
some form of function approximator, which in the simple case
could be a weighted sum of features) are often very important.
For video game agents these can be applied in three ways: in the
tree policy to help select which node to expand, in the roll-out
policy to bias the roll-out to more interesting states, and in the
case that a roll-out does not reach a terminal node of the game, to
place a heuristic value on that state.

How best to update these is an interesting problem. Silver et al
[18] incorporate TDL within MCTS to good effect. Robles et al
[17] also found TDL could improve performance by updating a
heuristic function both for the tree-policy and for guiding the roll-
outs. However, given what was mentioned earlier about the value

297

of preference learning and focusing on actions made rather than
mean-square error, alternative approaches are also of great
interest. One such approach would be to use an evolutionary
algorithm to update the heuristic functions during the execution of
the MCTS algorithm. For example, roll-out bias heuristics could
be evaluated on the quality of end state that they tend to reach. In
this way each roll-out informs the fitness function, and extremely
rapid evolution may be possible. Other types of adaptation that
TDL is ill-suited to deal with and are best tackled using
evolutionary approaches include adapting the temporal resolution
of actions (e.g. repeating each movement action N times).

5. Conclusions
This paper discussed the motivation behind developing more
intelligent and adaptive video game agents, and described the
main research areas needed for this, namely evolution,
reinforcement learning and Monte Carlo Tree Search. Some of
the strengths and weaknesses of each approach were identified,
and placed in the context of some recent game-based
competitions. A game agent architecture was proposed,
incorporating elements of evolutionary design, temporal
difference learning, and Monte Carlo Tree Search. The complete
architecture is still a work in progress, but many of the
components have been rigorously and independently shown to
work in many different games and other domains. The next step
is to integrate these into an effective system, able to control
agents in a variety of video games with a minimum of
programming effort. Although the big-budget game studios have
been reluctant to use many statistical AI methods such as
evolutionary algorithms and neural networks, there is a
burgeoning market for mobile and casual games, and this offers
an ideal testing ground for releasing these agents into the wild.

6. ACKNOWLEDGMENTS
Thanks go to members of the Game Intelligence Group at the
University of Essex for extensive discussions of many of the ideas
in this paper. This work was funded by EPSRC Grant
EP/H048588/1: UCT for Games and Beyond.

7. REFERENCES
[1] Arneson, B., Hayward, R.B. and Henderson, P., 2010,

Monte Carlo Tree Search in Hex, IEEE Transactions on
Computational Intelligence and AI in Games, vol.2, no. 4,
pp.251-258.

[2] H. Baier and P. D. Drake, 2010, The power of forgetting:
Improving the last good reply policy in Monte Carlo Go,
IEEE Transactions on Computational Intelligence and AI in
Games, vol. 2, no. 4, pp. 303–309.

[3] Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling,
P., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S.,
Colton, S., 2012, A Survey of Monte Carlo Tree Search
Methods, IEEE Transactions on Computational Intelligence
and AI in Games, vol. 4, no. 1, pp.1–43.

[4] Cazenave, T., 2012, Monte Carlo Beam Search, IEEE
Transactions on Computational Intelligence and AI in
Games, vol.4, no. 1, pp.68-72.

[5] Enzenberger, M., Müller, M., Arneson, B., Segal, R., 2010,
Fuego—An Open-Source Framework for Board Games and
Go Engine Based on Monte Carlo Tree Search, IEEE
Transactions on Computational Intelligence and AI in
Games, vol.2, no.4, pp.259-270.

[6] Y. Bjornsson and H. Finnsson, 2009, Cadiaplayer: A
simulation-based general game player, IEEE Transactions on
Computational Intelligence and AI in Games, vol. 1, no. 1,
pp. 4 –15.

[7] M. R. Genesereth, N. Love, and B. Pell, 2005, General game
playing: Overview of the AAAI competition, AI Magazine,
no. 2, pp. 62 - 72.

[8] N. Hansen, S. Mueller, and P. Koumoutsakos, 2003,
Reducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (CMA-ES),
Evolutionary Computation, vol. 11, pp. 1-18.

[9] L. Kocsis and C. Szepesvári, 2006, Bandit based Monte-
Carlo planning, in Proceedings of European Conference on
Machine Learning, Berlin, Germany, pp. 282–293.

[10] Lucas, S.M., 2010, Estimating Learning Rates in Evolution
and TDL: Results on a Simple Grid-World Problem, IEEE
Conference on Computational Intelligence and Games, pp.
372-379.

[11] Lucas, S.M., 2008, Investigating Learning Rates for
Evolution and Temporal Difference Learning, IEEE
Symposium on Computational Intelligence and Games.

[12] Lucas, S.M., 2008, Computational Intelligence and Games:
Challenges and Opportunities, International Journal of
Automation and Computing, vol. 5, pages: 45 – 57.

[13] Lucas, S.M. and Kendall, G., 2006, Evolutionary
Computation and Games, IEEE Computational Intelligence
Magazine, vol. 1, pages: 10 – 18.

[14] Méhat, J. and Cazenave, T., 2010, Combining UCT and
Nested Monte-Carlo Search for Single-Player General Game
Playing, IEEE Transactions on Computational Intelligence
and AI in Games vol. 2, pp. 271-277.

[15] Perez, D., Rohlfshagen, R. and Lucas, S.M., 2012, The
Physical Travelling Salesman Problem: WCCI 2012
Competition, IEEE Congress on Evolutionary Computation,
to appear.

[16] Perez, D., Rohlfshagen, R. and Lucas, S.M., 2012, Monte-
Carlo Tree Search for the Physical Travelling Salesman
Problem, Proceedings of EvoGames, to appear.

[17] Robles, D, Rohlfshagen, P and Lucas, S.M., 2011, Learning
Non-Random Moves for Playing Othello: Improving Monte
Carlo Tree Search, IEEE Conference on Computational
Intelligence and Games, pp. 305 – 312.

[18] Silver, D, Sutton, R.S. and Müller, M., 2008, Sample-based
learning and search with permanent and transient memories,
in Proceedings of 25th Annual International Conference on
Machine Learning, Helsinki, Finland, pp. 968–975.

[19] Togelius, J. and Schmidhuber, J., 2008, An Experiment in
Automatic Game Design. Proceedings of the IEEE
Symposium on Computational Intelligence and Games
(CIG), 111-118.

[20] Togelius, J., Yannakakis, G.N., Stanley, K.O. and Browne,
C., 2011, Search-Based Procedural Content Generation: A
Taxonomy and Survey, IEEE Transactions on
Computational Intelligence and AI in Games, vol.3, no.3,
pp.172-186.

298

