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ABSTRACT 
This paper provides a computational intelligence perspective on 
the design of intelligent video game agents.  The paper explains 
why this is an interesting area to research, and outlines the most 
promising approaches to date, including evolution, temporal 
difference learning and Monte Carlo Tree Search.  Strengths and 
weaknesses of each approach are identified, and some research 
directions are outlined that may soon lead to significantly 
improved video game agents with lower development costs.  

Categories and Subject Descriptors 
A.1.2 [Artificial Intelligence]: Applications and expert systems – 
games. G.3 [Probability and Statistics]: Probabilistic algorithms, 
including Monte Carlo. I.2.6 [Learning]: Connectionism and 
neural nets, Parameter learning. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Games, Artificial Intelligence, Computational Intelligence, Monte 
Carlo Tree Search, Evolutionary Algorithms, Temporal 
Difference Learning. 

1. INTRODUCTION 
This paper describes a promising approach towards building 
intelligent adaptive video game agents.  The aim is to design an 
architecture that can be used to provide a variety of intelligent 
capabilities across a range of games, with a minimum of human 
design input required for achieving acceptable performance on 
each individual game. The computational intelligence (CI) 
approach involves a minimum of game-specific programming.  
Instead, the main idea behind CI methods is that the intelligence 
emerges from the statistics of many simple low-level interactions, 
whether these be activations in a neural network, hypothetical 
actions explored in Monte Carlo Tree Search, or parameters 
adjusted to optimize a reward signal while performing Temporal 
Difference Learning. 

To give a human-oriented perspective on the type of intelligence 
we are aiming for, imagine the task of learning to play a video 
game to a reasonable standard without any prior knowledge of the 
game and without explicitly knowing the rules.  This is the task 
typically faced by human players of video games, exemplified by 
the classic arcade games of the 1980’s.  With this long-term aim 
in mind, we also have a significantly simpler version of the 
problem where the agent has access to the complete game state 
and the forward model, and hence is able to construct and search 
game trees using the forward model.  This is something that a 
human player does not have access to, but can be used to 
significantly simplify the problem of generating intelligent 
adaptive game agents.  Part of being an expert human player may 
involve constructing an approximate forward model, but this in 
itself is a major challenge. 

There are a number of good reasons for investigating more 
adaptive game agent AI, including the following: 

 Self-learning or adaptive agents are one of the long-
term grand challenges of AI, and games provide an 
excellent test bed on which to evaluate such agents.  In 
addition to providing challenges of wide-ranging 
complexity, games also enable humans to interact with 
AI agents in many of these scenarios. 

 Incorporating intelligent agents into games could 
provide players with a more immersive experience, with 
the spine-tingling feeling of competing against 
intelligent beings, whether they display human-like 
intelligence or some strange alien type of intelligence; 
the commercial opportunities are immense. 

 Provision of reasonable-performance intelligent agents 
with no (or minimal) programming effort is useful in the 
design, evaluation and testing of procedurally generated 
game content, such as game-levels, weapons and 
vehicles. 

Regarding the latter point, a recent review of procedural content 
generation for games can be found in [1].  The idea of using the 
ability of agents to learn to play a game was explored by Togelius 
and Schmidhuber [19].  More recently, Tozour1 has been evolving 
scripted agents to aid in the design process of a robot tower 
defence game.  Clearly, there is much potential for using 
automatically designed agents in this way, and as the agents 
become smarter so the potential for exploitation will increase. 

                                                                 
1 http://aigamedev.com/open/interview/evolution-in-cityconquest/ 
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Given that this is a useful and interesting endeavor, the question 
arises of the best way to create such adaptive agents.  Although no 
one has yet done this, many of the enabling technologies are 
becoming increasingly mature.  This paper presents a perspective 
on which are the essential and desirable techniques, and how they 
can be used in conjunction with each other. 

2. TECHNIQUES 
This section describes the main computational intelligence 
techniques which have an important role to play in the 
construction of adaptive game agents, together with discussion of 
their strengths and weaknesses. 

2.1 Evolutionary Algorithms 
Evolutionary algorithms (EA) are one of the most popular 
approaches for adapting an agent to perform well on a problem, 
and they are one of the easiest to deploy.  Unfortunately, it is also 
very easy to get poor or mediocre results with an EA, and a great 
deal depends on the choice of representation, and other details.  
The process is as follows: 

1. Design a representation. 

2. Design a fitness function. 

3. Choose an evolutionary algorithm. 

4. Run the algorithm and save a selection of the best or 
most interesting evolved agents. 

Although this can indeed be very simple, there is ample 
opportunity for expertise and innovation in the above steps, 
especially in steps 1 and 2.  For step 3, Covariance Matrix 
Adaptation Evolutionary Strategy (CMA-ES) [8] is a good default 
choice if the adaptive elements of the agent can be coded as a 
vector of real numbers, which is the case when evolving game 
agents based on neural networks and many other agent 
architectures where some real-valued parameters control aspects 
of an agent’s behavior. 

Note that the above process focuses on using an EA rather than on 
designing one, which is why there is no mention of the variation 
operators (e.g. mutation and crossover).  When using an algorithm 
such as CMA-ES, those details are the responsibility of the 
algorithm. 

There is a good deal of skill in designing an appropriate 
representation, and one should be aware of the limitations of EAs 
and what can realistically be achieved within a given number of 
fitness evaluations.  One of the simplest problems for an EA is the 
standard one-max problem: the aim is to evolve a bit string of 
length B consisting entirely of ones, where the fitness is given as 
the number of ones in the string.  EAs solve this problem for a bit 
string of length B in an expected B log_2(B) number of fitness 
evaluations, learning B bits of information in the process.  When 
co-evolving agents, however, it is common to evaluate a 
population of N players by playing a full round-robin league of 
(approximately) N-squared games.  If single parent selection is 
used, the identity of the winning player can be coded in log_2(N) 
bits, which places an upper bound on the information gained from 
that number of games.  In practice it is hard to get close to this 
upper bound [11] even for simple games.  Furthermore, evolution 
is sensitive to the representation used.  For example, [10] found 
evolution to perform relatively well when evolving multi-layer 
perceptrons, but extremely poorly when evolving interpolated 
table functions, due to epistasis in the representation. 

General discussion of using evolutionary algorithms in 
conjunction with games can be found in [13],[12]. 

2.1.1 Evolution versus Coevolution 
For single-player games evolution can be used directly to evolve 
agents, using the game score as a fitness function.  By single-
player games we include games that involve any number of non-
adaptive or generally “not very smart” opponents, such as the 
enemies in Super Mario or the ghosts in the original version of Ms 
Pac-Man.  In the latter case the ghosts do chase the player while 
exhibiting some non-determinism (so learning a fixed route for 
example is ineffective), but some reasonably effective strategies 
can be learned without even using game-tree search.   

However, for evenly balanced two-player games, including 
classic board games, coevolution offers a more interesting 
approach than straight evolution if the aim is to generate strong 
players without using an existing strong player to compete 
against.  Coevolution has the potential to create strong players 
where none previously existed, whereas using evolution to evolve 
strong players would require an existing strong player to play 
against.  If evolution is used to evolve agents against a weak 
player then the evolutionary process will just do enough to beat 
the weak player convincingly and then have no incentive to 
progress any further. 

Coevolution solves this problem by using a relative fitness 
function: fitness is estimated by the playing performance of each 
player against other players in the current population, and perhaps 
also against players in a dynamically created “hall of fame” 
archive created from the best players found during an 
evolutionary run.  In principle coevolution could produce a long-
running arms race culminating in players that eventually solve the 
game at hand. However, there are several reasons why this rarely 
happens in practice, including: 

 Limitations imposed by the chosen representation.  For 
example, if a value function is being evolved as a 
weighted combination of some simple game features, 
then there is a limit to how smart this could ever be. 

 Intransitivities in the population of game players.  This 
leads to problems in measuring the fitness of an 
individual agent.  An agent may appear very strong with 
respect to the current population, but actually be the 
weakest member of the current population when in 
competition with a different set of players.  This 
problem can only occur when the players of a game 
exhibit intransitivities.  The extent to which 
intransitivities exist depends not only on the nature of 
the game, but also on the nature of the players. 

 Insufficient number of games to effectively train 
parameters.  This arises when the parameter space is 
large e.g. an N-Tuple network for playing Othello may 
have thousands or tens of thousands of weights.  To 
learn good values of these weights could require 
millions of fitness evaluations, and an even larger 
number of games played. 

 Noisy or inaccurate fitness evaluations caused by games 
with random elements, or even in games of perfect 
information where games may be played from many 
different states in order to gain a more accurate picture 
of the relative merits of each player. 
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 The search space induced by the chosen representation 
may be difficult to search, containing many local 
optima or neutral plateaus. 

Note that only the problem of intransitivities between the agents 
is unique to co-evolution; the other problems pose an equal threat 
to non-co-evolutionary EAs. 

Interestingly, it is possible to design experiments to test which of 
these problems is most serious for a given combination of game 
and player architecture.  For example, if intransitivities are 
suspected as being the main problem in co-evolving a game agent, 
then the same experimental setup can be used with the exception 
of replacing the relative (co-evolutionary) fitness measure with 
one based on playing against a controlled strength agent: a strong 
agent that is artificially weakened using forced random moves to 
always match the level of the evolving agents, such that the 
evolving agents win 50% of games on average.  This removes any 
problems caused by intransitivities; if evolution still fails, then 
one of the other problems listed above could be to blame. 

2.2 Reinforcement Learning (RL) 
Although technically EAs could be placed within a broad RL 
umbrella in the sense that they aim to improve over time with 
respect to some reward function, in practice there are clear 
differences in how each approach is normally applied.  Classic 
EAs operate at the population level, and measure “bottom-line” 
fitness i.e. how well an agent performs on a complete task or set 
of tasks.  Conversely, classic RL algorithms such as Temporal 
Difference Learning (TDL) operate at the level of an individual: 
an individual modifies its behavior during its lifetime to improve 
its expected reward, which may be given at the end of each task 
or during a task.  Temporal difference learning works 
outstandingly well on small toy problems where the game states 
can be exactly enumerated in a table.  In such cases learning then 
corresponds to estimating the value of each table entry.  For most 
games of interest the state space is either discrete and large, or 
continuous, and this direct tabular representation cannot be 
applied.  In such cases some form of function approximation must 
be used, and this can be fraught with difficulty.  Choosing the 
correct form of function approximator is of critical importance 
and can mean the difference between success and failure. 

TDL is also sensitive to parameter choices such as the learning 
rate.  Recent approaches such as Least Squares TD (LSTD) work 
in batch mode and choose a locally optimal step size for each 
parameter updated, in the sense of minimizing the mean square 
error (MSE).  Interestingly, recent results [Thomas Runarsson, 
personal communication] indicate that the common practice of 
using TDL to minimize the MSE may be far from optimal for 
game playing.  When playing a game, what matters is the action 
selected at each stage.  The actual state value or state-action value 
estimates are not what really matters: they only matter as a means 
to select the correct action.  For this reason there has been interest 
in applying preference learning to this problem instead.  In 
preference learning, the aim is to learn the correct decisions 
directly rather than estimate the expected rewards for each action. 

2.3 Monte Carlo Tree Search (MCTS) 
Computer chess players have played at super-human levels for 
over a decade, and during that time Go has been one of the main 
challenges for reaching or surpassing expert human performance.  
For many years progress on Computer Go had been rather slow, 
and reaching expert levels of human play seemed many decades 
away.  MCTS changed all that, causing a radical improvement in 

performance.  The best MCTS-based players are now on a par 
with the best human players for the smaller 9 x 9 version of the 
game, and are making good progress on the full size 19 x 19 
game.  This has naturally sparked a great deal of interest in 
researching other games that MCTS might be good for, and 
already it has achieved dominance on connection games such as 
Hex and Y [1].  For a comprehensive survey see [3].  MCTS is 
also the leading approach to general game playing. 

MCTS builds a game tree selectively by performing random 
simulations (also known as roll-outs) from a game state to predict 
the value of being in that state.  This is depicted in Figure 1 (from 
[2]).  The tree is grown selectively.  A node in the tree is selected 
for expansion using a tree policy to navigate down the tree 
(shown as the bold line on the left tree).  The Upper Confidence 
Bounds for Trees (UCT) formula [9] is often used to guide child 
selection while navigating the tree.  UCT aims to optimally 
balance the opposing needs of exploration versus exploitation, 
though it is usually used in conjunction with some heuristics to 
achieve better performance. 

A random simulation (also known as roll-out or play-out) is then 
made from the selected leaf node of the tree.  The roll-out 
normally continues to the end of the game, at which point the 
exact value is known.  This value is then propagated up the tree, 
and a new leaf node is added where the roll-out was made, as 
shown on the right tree in the figure.  The roll-out may be made 
by choosing uniform random moves, or may be biased towards 
more favorable moves. 

 

Figure 1: Illustration of how MCTS operates (from [2]). 

MCTS has many attractive properties, such as being an anytime 
algorithm where playing performance typically increases (in some 
cases logarithmically e.g. [5]) with the number of roll-outs that 
can be performed given the available time.  Perhaps more 
importantly, MCTS can be used in the absence of any good 
heuristic evaluation function. The fact that MCTS works at all is 
at least a little surprising: good players do not play randomly, so 
why should random simulations which sample only a tiny fraction 
of the search space provide any clue as to which move is good?  
Nonetheless, there is clearly important information in the roll-out 
statistics; at least enough to outperform non MCTS approaches.  
Furthermore, the tree grows with each roll-out, and increasingly 
represents more meaningful information. On tasks as difficult as 
playing Go, it is not that MCTS plays anywhere close to optimal, 
it is more the case that the problem is hard for any type of agent, 
and MCTS performs well compared to the competition (though 
not as well as expert humans yet on the full-size game). 

Of more interest to the current paper is whether MCTS can be 
used to endow video game agents with more intelligence.  Many 
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researchers and games industry insiders have questioned the value 
of this, imagining that an intelligent opponent would be boring to 
play against because it would simply thrash the human player 
every time.  This is not so, however, for at least three reasons.  
One is that the intelligent opponent might have a different 
objective other than winning; for example, it might be aiming to 
maximize the human player’s fun, much as a parent aims to do 
when playing a game with their child.  Secondly, the game can be 
re-balanced in other ways: it might be fun to play against super-
intelligent opponents that are limited in their physical strength, 
mobility, firepower, health or armor.  Thirdly, the aim may be to 
create an intelligent agent that is not competing against the player, 
but acts as a partner or an assistant.  The illusion of intelligence in 
this type of agent is crucial, and can be more important than the 
intelligence of the enemies. For instance, in first person shooter 
games, a companion may be a partner of the player during the 
whole game, while typical enemies appear on screen for only 5 
seconds on average.2 

There are some challenges to be overcome in using MCTS to 
boost the intelligence of video game agents, including making 
enough roll-outs in the severely limited time available to compute 
each action, and coping with the long roll-out depth needed to 
make progress in the game.  Depending on the type of game, the 
game state for a video game may be significantly more complex 
than for a classic board game, involving many continuous 
variables describing the position and velocity of each agent.  To 
ameliorate this it may be possible to use a simplified model of the 
game, or to represent the game state efficiently.  For example, 
when using MCTS to control a Pac-Man agent, the game state can 
be represented compactly using bit-sets to model the state of each 
pill (which can change from available to eaten), and then 
maintaining a separate data structure of pill positions, which for a 
given map never changes.  In this way it is possible to perform 
hundreds of roll-outs for each game tick.  Further improvements 
can be made by keeping part of the tree from one game tick to the 
next (the branch that corresponds to the selected action may be 
kept).  In this way actions may be selected on the basis of tens of 
thousands of roll-outs even though only a few hundred are made 
per game tick. 

When applying MCTS to video games a significant problem is to 
decide the value that should be fed back at the end of a roll-out. 
For games such as Go this is not a problem: each roll-out ends in 
a terminal state of the game at which time the value is known 
exactly: either 1 or 0 (either a win or a loss for the current player).  
The value at each tree node then approximates the probability of 
winning from that node.  In the case of video games, the situation 
is less clear.  Due to the nature of the game, most roll-outs will 
not end in a terminal state, and some heuristic value must be 
constructed to estimate the value of a state.   Finding a good 
heuristic is a significant problem, and for this EAs or TDL can be 
used; so far TDL has been used, but EAs would seem to offer an 
interesting alternative.  Interestingly, there are three distinct ways 
in which heuristics can be applied within MCTS.  They can be 
used to inform the tree-policy, and/or to bias the roll-outs, or to 
(as already mentioned) provide a heuristic value at the end of a 
roll-out (for the frequent cases where the true value is not 
obvious).  Even in arcade games such as Pac-Man, where the 

                                                                 
2 Mikael Hedberg, AI Game Dev Conference 2010, discussing  

the AI of Battlefield: Bad Company 2, for details see:  
http://aigamedev.com/open/coverage/paris10-report/#session10. 

score is updated every time a pill, edible ghost, or fruit is eaten, 
heuristics play an important part in evaluating game states, since 
many states with identical scores will have very different true 
values for the Pac-Man agent. 

Without a good heuristic MCTS may fail if applied naively, 
largely because the vast majority of roll-outs do not do anything 
of interest.  If at each game tick a video game character performs 
an action selected uniformly at random from the set of available 
actions, then most roll-outs will not do anything interesting at all, 
but just dither and not move much.  There are a number of ways 
of overcoming this problem, including choosing a higher-level 
action space (i.e. a space of macro-actions where each high-level 
action then has to be translated to a sequence of lower-level 
actions).  Another simpler way is to bias the roll-outs to increase 
the likelihood that the previous action is repeated.   

3. Evaluation and Competitions 
One of the most important driving forces behind progress in this 
area has been regular and rigorous evaluation.  For many games 
there are regular competitions.  These provide an ideal means by 
which to test any number of approaches, and to tune each 
approach to see which works best in practice.  While rigorous 
evaluation has been the feature of many research communities, 
this has been embraced with particular enthusiasm in games.   

Evaluation in pattern recognition and machine learning normally 
involves measuring performance on some pattern classification or 
prediction problem, where the correct answers are already known.  
In contrast to this, intelligent game-playing agents need to work 
out for themselves what actions to take in novel situations where 
no supervised training data exists.  Furthermore, game playing 
algorithms usually compete under strict time limits, so an 
appropriate balance must be found between optimality and 
timeliness.  Games naturally promote techniques which work well 
in practice.  The remainder of this section discusses two game 
competitions that are of particular relevance to this paper.  The 
first example, general game playing, is another area where MCTS 
has proven to be very successful, and the general aspects of this 
have some relevance to developing general purpose video game 
agents.  The second example, the physical travelling salesman 
problem is a simple video game being run as an open competition 
where naïve MCTS only achieves limited success, but more 
sophisticated MCTS approaches are already showing great 
promise. 

3.1 General Game Playing (GGP) 
In focusing on a single game there is a danger that the results will 
be of limited interest to the goal of developing a general purpose 
AI agent.  This danger may sometimes be overstated, since the AI 
community has learnt a great deal over the years with results from 
specific games often having a more general impact.  However, the 
fact remains that achieving high performance on a particular game 
can involve an enormous amount of game-specific hand tuning. 
Hence GGP [7] was developed as a way to make games a true 
challenge for machine learning. GGP games operate in two 
phases. In the first phase the game rules (specified in a type of 
first-order logic) are given to each player in order that it can 
analyse the rules, potentially do some learning about the game, set 
up any data structures etc. In the second phase play commences 
and continues until the end of the game. MCTS now seems to be 
the dominant algorithm in GGP, with the AAAI 2007 and 2008 
competitions being won by CadiaPlayer [6], an MCTS-based 
player, and the 2009 competition being won by Ary [14], another 
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agent with a significant MCTS component. GGP as it stands 
offers a fascinating challenge, but its use of a logic-based game 
description language naturally tailors it toward certain types of 
game (essentially mind-games), and means it is not appropriate 
for video or physics-based games.  Developing a type of GGP 
system for this type of game is an interesting possibility, and it 
remains to be seen which type of algorithm would perform best 
on this type of problem. 

3.2 Physical Travelling Salesman Problem  
This competition [15],[16] combines aspects of the classic 
Travelling Salesmen Problem (TSP) with aspects of vehicle 
driving (physics) – hence the Physical Travelling Salesman 
Problem (PTSP).  The aim is simply to visit all cities in the 
minimum time, but the salesman is now driving a physical object 
and has momentum and steering to take care of: in most cases the 
optimal TSP city order is very different to the optimal PTSP city 
order.  Figure 2 shows a sample map from the current IEEE 
World Congress on Computational Intelligence Competition [15]. 

 

Figure 2: A sample map from a currently running Physical 
Travelling Salesman Problem (PTSP) Competition. 

Applying MCTS to a simple 2D navigation game such as the 
PTSP provides an ideal way to study its weaknesses.  Since the 
roll-outs can be overlaid on top of the map, it is easy to see how 
far MCTS is exploring ahead, and whether it is able to incorporate 
long-term planning considerations into its solutions, or whether it 
is acting in a greedy manner.  If MCTS is applied in its most basic 
form to this problem, then it tends to do the latter, as also shown 
in Figure 2.  In the standard PTSP configuration, actions are very 
low level, and specify a force vector to be applied for the next 
time instant. A good solution for the map in Figure 2 would 
involve more than 1,000 such actions.  Interestingly, if MCTS is 
used with a higher-level action space [Whitehouse and Powley, 
personal communication] then this problem is alleviated, and 
good performance can be obtained.  Such an approach is currently 
leading the rankings on the Human versus Bot version of the 
PTSP (http://ptsp-game.net/).  This is of particular interest here, 
since it is a type of innovation (i.e. using macro-actions rather 
than actions from the original more fine-grained set) that could 
potentially be created through evolutionary adaptation, but not 
through temporal difference learning.  Another way to achieve 
long-term planning in the PTSP is to explicitly solve the problem 
in two steps, where one step optimizes the order of cities to visit 

and then second step works tries to find the best action sequence 
to drive that route.   

Given that the PTSP is a one-player game (at least in its current 
form) it would also be interesting to investigate the use of MCTS 
algorithms that have already been shown to work well on one-
player games, such as nested MCTS and Monte-Carlo Beam 
Search [4]. 

4. Proposed Approach 
Based on the above discussion, the architecture shown in Figure 3 
is proposed for a general purpose intelligent game agent 
generation system.  The system involves a population of MCTS 
game agents which evolves over time.  Evolution offers a very 
flexible way to do this and can easily incorporate major 
architectural changes.  Changes could include the nature of the 
function approximators used in the agent, such as multi-layer 
perceptrons or interpolated table functions.  Reinforcement 
learning algorithms such as TDL are unable to do this: they are 
restricted to adapting a fixed-size parameter vector.  Each agent is 
controlled by a number of parameters, including things such as 
roll-out depth, the value of the UCT exploration constant, plus 
many other variables controlling the behavior of the MCTS 
algorithm.  These can be adapted using evolution. 

 

Figure 3: Proposed adaptive MCTS agent architecture.  The 
system evolves a population of MCTS players: major 
structural changes occur at the evolutionary level.  Each 
player also has many parameters that are adapted during 
game play.  Function approximators help control tree policy, 
roll-out policy, and heuristic values given to terminal nodes of 
roll-out which are not terminal game states. 

For MCTS to be effective, heuristic value functions (expressed in 
some form of function approximator, which in the simple case 
could be a weighted sum of features) are often very important.  
For video game agents these can be applied in three ways: in the 
tree policy to help select which node to expand, in the roll-out 
policy to bias the roll-out to more interesting states, and in the 
case that a roll-out does not reach a terminal node of the game, to 
place a heuristic value on that state.   

How best to update these is an interesting problem.  Silver et al 
[18] incorporate TDL within MCTS to good effect. Robles et al 
[17] also found TDL could improve performance by updating a 
heuristic function both for the tree-policy and for guiding the roll-
outs.  However, given what was mentioned earlier about the value 
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of preference learning and focusing on actions made rather than 
mean-square error, alternative approaches are also of great 
interest.  One such approach would be to use an evolutionary 
algorithm to update the heuristic functions during the execution of 
the MCTS algorithm.  For example, roll-out bias heuristics could 
be evaluated on the quality of end state that they tend to reach.  In 
this way each roll-out informs the fitness function, and extremely 
rapid evolution may be possible.  Other types of adaptation that 
TDL is ill-suited to deal with and are best tackled using 
evolutionary approaches include adapting the temporal resolution 
of actions (e.g. repeating each movement action N times). 

5. Conclusions 
This paper discussed the motivation behind developing more 
intelligent and adaptive video game agents, and described the 
main research areas needed for this, namely evolution, 
reinforcement learning and Monte Carlo Tree Search.  Some of 
the strengths and weaknesses of each approach were identified, 
and placed in the context of some recent game-based 
competitions.  A game agent architecture was proposed, 
incorporating elements of evolutionary design, temporal 
difference learning, and Monte Carlo Tree Search.  The complete 
architecture is still a work in progress, but many of the 
components have been rigorously and independently shown to 
work in many different games and other domains.  The next step 
is to integrate these into an effective system, able to control 
agents in a variety of video games with a minimum of 
programming effort.  Although the big-budget game studios have 
been reluctant to use many statistical AI methods such as 
evolutionary algorithms and neural networks, there is a 
burgeoning market for mobile and casual games, and this offers 
an ideal testing ground for releasing these agents into the wild. 
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