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Abstract—General Video Game Playing (GVGP) has become
a popular line of research in the past years, leading to the
existence of a wide range of general algorithms created to
tackle this challenge. This paper proposes taking advantage of
this research to help in game design and testing processes. It
introduces a methodology consisting of using a team of Artificial
General Intelligence agents with differentiated goals (winning,
exploring, collecting items, Killing NPCs, etc.) and skill levels.
Using several agents with distinct behaviours that play the
same game simultaneously can provide substantial information
to influence design and bug fixing. Two methods are proposed
to aid game design: 1) the evaluation of a game based on the
expected performance in the behaviour of each of the agents,
and 2) the provision of visual information to analyse how the
experience of the agents evolves during the play-through. Having
this methodology available to designers can help them decide if
the game or level under analysis fits the initial expectations.
Including a Logging System can also be used to detect anomalies
while the development is still at an early stage. We believe this
approach allows the flexibility and portability to be easily applied
to games with different characteristics.

Index Terms—methodology, General Artificial Intelligence,
automatic testing, game design, team of agents

I. INTRODUCTION

Games evolve during their development process, both in
terms of implementation and design. New ideas are put into
practice during the production phase and need to be tested
quickly and efficiently. While using human play-testing is
a broad practice, there is no denying that this impacts the
company in terms of resources (human and technological),
time and money. Agent-based testing is a suitable alternative
for automatic game testing, and there is a prolific body of
work (as described later in this paper) that uses game specific
agents to evaluate content and agent behaviour. Although this
can provide some advantages for fast and reliable testing, the
design and implementation of these specific agents may not
be adaptable enough to the changes designers and developers
are regularly introducing. The use of general algorithms, on
the other hand, provides a level of generalisation, portability
and flexibility that cannot be matched by game-specific ones.

This paper proposes a methodology consisting of a team of
Artificial General Intelligence (AGI) agents with differentiated
goals to aid the design and testing processes during the devel-
opment of a game. Each of the agents forming the team has
its own objective (winning, exploring, collecting items, killing

NPCs, etc.) and skill level. This set up provides a flexibility
that would not be possible using just one. The designer can
choose the agents to run and set their expected targets of
performance. Each of the specialists selected plays the game
under evaluation focusing on its own goal and, as a result, a
Logging System and two types of reports are generated. The
first one gives information about how accurate the estimated
performance for each of the behaviours is, compared to the
actual results. The second one shows a graph that provides
visual feedback of how certain information of the game is
retrieved by the agents and evolves during the play-through.

This team of general agents is meant to respond to changes
and updates across multiple dimensions of game design:

1) Rules: The base of every game. Making any change to
the rules can trigger unexpected outcomes and affect other
rules in a way the designer did not plan to. General agents are
independent of the rules so they do not need to be adjusted
when they change to be able to check that everything is
working as it should be. It grants the possibility of carrying out
immediate testing to detect anomalies as soon as they appear.
It provides flexibility to the methodology, and it is one of the
core ideas of the approach proposed in this paper.

2) Levels: Where the action takes place. They shape how
the game is presented to the player. It includes increasing
the level of difficulty, reachable areas and distribution of the
elements of the game: the proportion of enemies by stages,
collectable items dispersed uniformly, etc. Reports from each
one of the general agents after they have played a certain level
can provide the information needed to check that these points
are covered as expected. An example would be analysing the
evolution of the number of Non-Player Characters (NPCs)
eliminated by the Killer (III-B8). The designer should be able
to notice peaks and an abrupt increase in the numbers in those
stages where they expect a big confrontation. If the play-
through graph does not present those peaks, the level should
be reviewed and fixed to work as desired.

3) Non-Player Characters (NPCs): NPCs’ performance
and interactions with the player have a big impact on the
experience while playing the game. Any update on their
implementation should be tested and their impact on player
experience analysed and measured. Analysing the general
agents’ reports and behaviour could provide an insight of this.
For example, checking the number of deaths vs. kills of the



Killer after a change is done to the NPCs, comparing the
difference on percentage of life lost between two Killers with
known disparate level of mastery, or tracking the whereabouts
of the NPCs (logging similar information to the one measured
for the feam) for behavioural checking.

4) Game Parameters: Even small updates in the parame-
ters can have a big impact in the game. An example is updating
the height of the jump of the avatar: if it is set to a very low
value, they might not be able to reach some areas of the game,
affecting the exploration. Analysing the information provided
by the agents can give a clue to know if the parameters are
set properly. In this example, the percentage of the exploration
reached by the Map explorer (III-B2) when the height of the
jump is modified could increase or decrease abruptly.

The proposed methodology works within the game. If using
algorithms specific to the game, every time any of its elements
is changed the algorithms would need to be updated as well.
Having general algorithms, with general goals independent
from the rules, implies that they do not have to be modified
every time a change is done. This is considered to be one of
the biggest strengths of the method proposed in this paper.
Another discussed benefit is being able to use the same
algorithms, without modifications, in different levels of the
same game as they are being created. Because of the general
goals, the heuristics would not need to be updated to fit
the specifications of a new level. It would allow checking
if it fulfils the expectations almost immediately after being
included in the game. Finally, as Section II-A states, there are
many types of GVGP algorithms, which provide a wide range
of options depending on the technology, characteristics and
implementation of the game considered. An example would
be the availability of a forward model or not.

The use of General Al does not mean that some game-
specific tweaks should not be added to improve the heuristics
performance, as long as the main general goals are not
changed. The strength of the proposed approach is based on
the generality, flexibility and robustness concepts of general
Al, which can adapt to significant changes in the game design.

This paper provides an overview of General Al frameworks
and automatic testing approaches in Section II, followed by
the description of the proposed methodology in Section III.
Section IV describes the limitations of this approach, and
conclusions and possible extensions are detailed in Section V.

II. BACKGROUND
A. General Video Game Playing

General Video Game Playing (GVGP) aims to develop
algorithms capable of playing video games without having
prior knowledge about them, with mere access to the state
of the game and the available actions [1]. The interest in the
research in this area has grown in recent years.

The most common techniques to tackle the problem, with
different implementations, are the use of Reinforcement Learn-
ing (RL), Tree Search and Evolutionary Algorithms. In order
to provide the resources to be able to develop and study
these different approaches, a series of frameworks have been

created. The main open-source frameworks available to the
research community are the Arcade Learning Environment
(ALE) [2], the General Video Game Al Framework (GVGAI)
[3], OpenAl Gym [4] and Project Malmo [5], among others.
These frameworks share the desire of encouraging the study
of the Artificial General Intelligence (AGI) but have different
characteristics, leading to the creation of numerous types of
algorithms, which keep growing and being improved.

One of the first general frameworks is ALE, a testbed for
comparing and evaluating planning and learning algorithms,
providing an interface to Atari 2600 games, like Space In-
vaders and Ms Pac-Man [2]. Most of the research carried out
using this framework has focused on Reinforcement Learning,
as Mnih et al. work [6]. They showed how using Deep Q-
Networks (DQN) receiving only a screenshot and the game
score as inputs through a set of 49 games it was possible to
achieve a level of performance comparable to a professional
human player in many of the games tested. The environment
also allows the use of planning algorithms, but the research in
this area using this framework is very rare. A reason for this
could be the complexity in finding heuristics general enough
to have good performance over all the games [7].

The GVGAI Framework has been used for the ongoing
GVGAI Competition since it was run in 2014 [3]. The
games used to benchmark the algorithms are described in the
Video Game Description Language (VGDL) [8], originally
implemented in Python by Tom Schaul [9]. It allows the
implementation of single and two-player 2D Arcade games.

Providing a forward model that allows agents to foresee
the possible states originated by taking any of the available
actions, the first competition encouraged the submission of
single player planning algorithms. Over the years, the compe-
tition has been expanded to cover other novel areas of general
Al, releasing two-player [10], level [11] and rule generation
[12], and a learning track [13], which removes the availability
of the forward model and provides a screen capture to promote
research on other learning algorithms.

The algorithms developed to work in this framework and
submitted to the competition are very assorted: several vari-
ations of Monte Carlo Tree Search (MCTS) [14], including
its Open-Loop variations (OLMCTS) that works better in
stochastic environments, and evolutionary algorithms, like
Rolling Horizon Evolutionary Algorithm (RHEA) [15] and
Random Search (RS). Two algorithms that, so far, have shown
best overall performance, and therefore, have been claimed
winners of some of the competitions, are Adrien Couétoux’s
Open Loop Expectimax Tree Search (OLETS) [3] and Joppen
et al.’s YOLOBOT [16]. An insight of the framework, its wide
use, algorithms implemented and a complete list of the winner
algorithms per year can be found in a recent survey [17].

Another popular toolkit is OpenAlI Gym, oriented to test
Learning approaches providing a common interface for a col-
lection of environments based on pre-existent RL. benchmarks
[4]. Tt includes, among others, Afari, which uses ALE. This
collection grows over time.

In contrast with other frameworks, it provides an abstrac-



tion for the environment instead of the agent and does not
provide a hidden test set. OpenAl encourages peer review
and collaboration by sharing the code and a description of
the approach followed, instead of arranging a competition
between the algorithms. The framework focuses on both the
performance of an algorithm and the amount of time it takes
to learn. It keeps a strict version number scheme every time a
change is made in an environment.

Finally, Project Malmo is a platform built on top of
Minecraft designed to support AGI research in reinforce-
ment learning, planning, multi-agent systems, robotics and
computer vision [5]. In this framework, agents are exposed
to a 3D environment with complex dynamics that provides
the experimenters with the tool to set complicated tasks. In
2017, the Malmo Collaborative Al Challenge' was run using
this environment to encourage the research in collaborative
Artificial Intelligence. The goal of the competition was to
create agents capable of learning to achieve high scores when
working with a range of both artificial and human partners.

The existence of these (and other) frameworks implies that
there is a huge variety of algorithms with different character-
istics, weaknesses and strengths, at everyone’s disposal. There
is a large and active community of researchers working on
improving those general algorithms and creating new ones.

B. Automatic Testing and Al Assisted Game Design

When creating a game or adding new levels to it, they should
go through a testing process to make sure their characteristics
are aligned with the expectations and that no bugs are affecting
the gameplay. The Quality Assurance (QA) of the games is
usually carried out manually by members of the development
team or game testers. Automated testing aims to facilitate
the QA by using automatic processes. They are generally
game-dependent, which is a big limitation as they should be
implemented specifically for the game under development.
This paper proposes a methodology general enough to be
easily adaptable to any game, without having to invest much
time in game-specific setting ups.

Intrinsic motivation refers to a series of physical needs that
motivates a certain behaviour without the direct existence of
an external reward like the score. S. Roohi et al. state how the
emerging field of simulated-based game testing looks promis-
ing [18]. Being able to use simulated agents instead of human
players to provide feedback during the game design process
can increase the speed and reduce the costs. These authors
review the existing literature on intrinsic motivation in player
modelling, focusing on simulation-based game testing. They
come to the conclusion that its application to automatic testing
is sparse and hope that their work would provide new ideas
to the research community. This paper takes this inspiration
and suggests using a series of agents (not necessarily just
intrinsically motivated) for simulation-based game testing.

In [19] Holmgéard et al. present an approach for automated
playtesting using archetypal generative player models called

Uhttps://www.microsoft.com/en-us/research/academic-
program/collaborative-ai-challenge/

Procedural Personas. In this work, they use a variation of
Monte Carlo Tree Search (MCTS) where its Upper Confidence
Bound (UCB) equation is adapted by evolution to be able to
create players with differentiated goals and behaviours. They
create four Procedural Personas (Runner, Monster Killer,
Treasure Collector and Completionist) to play their test game
Minidungeons 2 focused on four different primary objectives.
These are, in order, reaching the exit, killing enemies, collect-
ing items and consuming any game object that is possible to
be collected or killed. All of them were also given a secondary
goal: reaching the exit as quickly as possible for the Runner
or just being able to reach it, for the rest of them.

The authors ran a series of experiments to compare the
performance between the evolved personas and the baseline
algorithms and to test how different they interact with the
environment. The results show how all these evolved per-
sonas perform better than baseline UCB1 ones regarding the
computational time required to reach the exit and, therefore,
finishing the levels. They notice how these evolved personas,
even when all managed to reach the end of the level, had
differentiated play-styles depending on their primary goal and
were affected by the patterns of the level played. They discuss
how these personas with differentiated behaviours can be used
for level evaluation, either providing feedback to a human
game designer or assisting the improvement of automatically
generated levels, driven by their distinct play-traces. Because
they are oriented to provide useful feedback to the game or
level designer, they argue how they should define the utility
functions to fulfil the priorities of the design.

The methodology presented in this paper is inspired by this
work but aims to have a more general and portable approach,
capable of being applied to several different games without
having to design specific types, or utility functions to fit the
game under consideration. We believe that extending the idea
to use general agents, developed with general goals that can
be applied to several different games, can provide significant
advantages. A team of pre-defined types with general goals
and approaches gives the designer the chance to choose which
agents fit the characteristics of the game.

S. Nielsen et al. used the Relative Algorithm Performance
Profile (RAPP) approach to estimate the quality of a certain
game based on the performance of general agents [20]. They
compared the performance between known algorithms in a
range of hand-designed, mutated and random generated VGDL
games. Their premise argued that a game that has a high skill
differentiation is likely to be a good one. Despite the results
backing their hypothesis, complexity does not necessarily infer
quality and, by its own, this approach is not able to provide
further information about the game under evaluation.

The evaluation that this paper proposes is based on the
performance of the general agents, but using a different ap-
proach. Although RAPP can be used to make the methodology
stronger, there are some important differences to highlight.
Firstly, in [20] they used seven different general algorithms,
including an explorer, but they only based their performance
on the winning rate and difference of score. In our case, the



agents used, if with distinct goals, are not compared between
them. However, they provide particular information about their
own play-through and performance based on each of their
objectives. Also, our methodology is expected to provide
deeper feedback and richer information than a mere state of
the good/bad quality of the game.

T. Machado et al. built the Computationally Intelligent
Collaborative EnviROnment (Cicero) [21], which is a general-
purpose Al-assisted tool for 2D tile-based game design. It was
built on top of the GVGAI framework, assisting in the creation
and development of VGDL games. It provides a game editing
mechanism to add the sprites and rules that form the game
and includes a mechanics recommender. It suggests certain
sprites and rules based on the ones added. It also grants an
automatic testing feature that shows game rule statistics in
real time and a level visualisation. To test the game, it is
possible to either play it manually or select one of the general
agents available in the framework. Running the game with a
general agent provides heat-maps of the player and the NPCs.
Also, during the automatic gameplay, a list with the different
rules and the stats for each of the interactions of the game
are shown. Cicero was expanded to include SheekWhence,
a retrospective analysis tool for gameplay session [22]. This
extension includes a recording of the gameplay to analyse the
sequence of events, being able to go forward and backwards
in the session. Its limitation is that it is very oriented to VGDL
and the GVGAI framework, impeding its application to a
wider range of games. Also, although general algorithms are
used for evaluation, it is not taking advantage of most of the
information that could be extracted from their play-through to
provide richer information to the designers. Moreover, these
agents’ ultimate goal is winning, so their behaviour is not as
assorted as including a team with different objectives.

III. GENERAL AI TEAM TO ASSIST GAME DESIGN
A. Overview

This paper proposes a methodology capable of assisting the
design and testing process during the development of a game.
The evaluation uses a team; a series of General Al algorithms
with differentiated goals (Section III-B). Each one of the
agents plays and behaves differently within the same game.
Extracting certain information from their play-through, and
having the right tools to interpret it can help the designer. They
can check if they are on the right path, or if a change needs
to be carried out to get aligned with the expected outcome.
In contrast with meta-heuristic approaches, where a heuristic
is involved in deciding which type of agent is run depending
on the state of the game, in our case, all the agents play the
game simultaneous and independently.

The methodology needs a series of entities to work. The
Designer is the final user and responsible for the game. They
want to make sure that the content (game or level) under
development fits the expectations of the design without errors.
They would provide the part of the Game and set up the
processes required for its evaluation. Three types of outputs
are generated after the methodology is applied to evaluate the

game, two of which are reports. Firstly, the Target Reports
provide the results of evaluating the game based on each of
the agents’ behaviours, compared to expected targets. These
targets are set before the tests are run. Next, the Visual
Reports provide visual information about the evolution of the
information retrieved by each of the agents during their play-
through. This information is presented in a series of graphs.
Lastly, the Logging System records the logs resulting from
the algorithms’ play-through to provide support for testing and
debugging (Section III-D).

The main steps of this methodology are as follows:

1) Setting up the team: There is a range of general
agents of different types and with a range of skills. The
designer can choose, and optimise, the ones they believe fit
the characteristics of the game and design expectations. They
can also set an expected performance for each of the agents.

2) Integrating the game: The methodology focuses on
being portable and flexible enough to be used with different
games. However, it is needed to set it up to be able to run the
algorithms, extract information from their play-through and
record the metrics in the Logging System.

3) Evaluation process: The types of agents and skills
picked by the designer are run a certain number of times in
the game provided. Each of the agents’ gameplay logs a series
of metrics and errors triggered to be able to have detailed
information about what happened.

4) Generating reports: The information provided by each
of the agents (Section III-B) is processed to generate the two
different type of reports presented in Section III-C.

B. The Team

This paper proposes using a series of general algorithms
with differentiated goals, capable of playing a game focusing
on their specific objectives. Differentiating the heuristics in
General Video Game Playing was introduced by C. Guerrero-
Romero et al. in [23], and some of the members of the
suggested team have been inspired by their work.

The inspiration also comes from R. Bartle’s player types
[24]. This work presented four approaches to play MUD
games, showing how the same game can be played in various
ways based on the motivation of the players, leading to distinct
behaviours. Even when this work is specific for MUDs, it has
been a reference to find types applicable to different games.
Recently, N. Yee has developed a player motivation profile
based on data from more than 250.000 players, coming up
with 6 main differentiated clusters of gaming motivations [25].

A team of agents focused on different tasks provides a
flexibility that would not be possible using just a specific
one. The general objectives presented in this section cover
different aspects, which could be present, or not, in a game.
The designer can accommodate the methodology to adapt
their intentions and needs by including the agents to fit its
characteristics. The following is a non-exclusive list of agents
proposed to form the team, their targets and the information
to provide:



1) Winner: Focused on winning the game; maximising the
score when a winning state is not immediately reachable. The
information provided by an agent of this type can be the
number of wins, game ticks to victory, or strategy followed
when there is more than one option available.

2) Map explorer: Focused on covering the reachable areas
as much as possible. The information provided by an agent
of this type can be the number of different positions of the
map visited, the total percentage of the map explored, or game
ticks required to finish the exploration.

3) Novelty explorer: An alternative for an exploratory
agent is considering states instead of positions; going through
as many different game states as possible and providing this
number as a result. It is related to the Novelty appraisal
common in intrinsically motivated agents in Al [18]. Also, the
inspiration for this kind of agent comes from the work done
by M. Bellemare et al. in [26]. The authors proposed con-
necting the information gained through the learning process
and count-based exploration, which guides agents’ behaviour
to reduce uncertainty. This approach is designed to explore the
environments more practically and efficiently.

4) Curious: Focused on interacting as much as possible
with the elements of the game, always prioritising those
that have not been interacted with before. The information
provided can be the number of elements interacted with,
actions triggered when they happened, or game ticks required
to interact with the different elements of the game.

5) Competence seeker: Based on the model of empower-
ment of intrinsic agents, which denotes the degree of control
the agent feels having over the environment [18]. It is related
to the amount of information the agent is capable of collecting
when a series of actions are performed. It can provide informa-
tion about the level of expertise gained during its play-through.

6) Record breaker: Focused on maximising the score and
solving puzzles, without paying attention to the chances of
winning the game. The information provided can be the
number of points obtained, puzzles solved or game ticks
required for these.

7) Collector: Focused on collecting the items available in
the game. The information provided can be the number of
items collected, counts per type of item, or game ticks required
to collect the different items present in the game.

8) Killer: Focused on removing from the game as much
Non-Player Characters (NPCs) as possible. The information
provided by an agent of this type can be the number of NPCs
killed, the number of times killed by an NPC, counts per type
of NPC encountered, or game ticks required to kill all the
enemies present in the game.

9) Risk analyst: Focused on analysing the level of risk
during the play-through and taking actions to maintain it at a
certain level chosen by the game designer. A low-risk agent
would tend to avoid situations where the chances of losing
the game are high, like bumping into a hoard of enemies or
complex areas. A high-risk agent would tend to do the opposite
and jump into dangerous situations. The information provided
by an agent of this type can be the risk percentage predicted at

every moment, the number of deaths, NPCs killed, obstacles
overcame or game ticks until losing the game.

10) Semantic: Focused on tasks related to linguistics, as
coaching the dialogue of the game or making sure the narration
flows and is consistent. The information provided by an agent
of this type can be the estimated quality of the dialogues, the
number of possible outcomes depending on the choices and
the level of consistency of the narrative.

11) Scholar: Focused on learning the outcome of the
actions available, taking as much knowledge about the game
as possible. The information provided by an agent of this type
is the percentage of accuracy of the knowledge gained during
the duration of the gameplay. As it is needed to have concrete
information about the rules and outcomes of the interactions
with the game to be able to check the quality of the predictions,
the generality of this type of agent is improbable. However, an
agent with this kind of objective is an interesting addition to
the team as it can be used to detect anomalies during gameplay.
There is a high chance that an agent focused on this kind of
task finds unexpected rules or bugs on the existent ones that
should be fixed.

C. Assisting Game Design

Two different types of reports are provided in order to check
the validity of the design of the game.

The first kind is Performance-target based reports,
thought to evaluate the game based on the expected per-
formances in the behaviour of each of the agents. In the
experiments carried out in the GVGAI framework for the
work presented in [23], results for same heuristics algorithms
showed a clear distinction depending on the type of game.
A clear example is the results obtained using the Exploration
Maximization Heuristic (EMH). Algorithms using this heuris-
tic focused on maximising the exploration of the level. Their
performance was calculated by obtaining the percentage of
the level explored dividing the number of different positions
visited, by the total. In completely accessible maps in games
like Butterflies, the agents using the EMH ended up with an
average percentage of performance higher than 80% in most
of the cases. Whereas, in games with large maps, or where a
series of steps were needed to unlock the access to the different
areas, like Roguelike, any of those agents got an average higher
than 45%2. The presence of these differences on performance
can be used in designer’s benefit, providing an estimation of
performance that agents should achieve depending on the type
of game designed.

Before running the feam, the designer would be able to
choose the agents considered appropriate for the game under
evaluation and to set an estimated desired percentage of
performance for each of them. After a series of runs carried out
by each of the agents, an error for the expected values would
be obtained and returned, to inform if there is an agreement
between the ideal values and the reported ones. For example, if

2This percentage was not explicitly mentioned in the paper, but it has been
taken from the same results obtained in those experiments



a designer plans a game to be easily accessible but challenging
to win, they would assign a high desired value to the Map
explorer and a low value to the Winner. After several runs
of the agents, the errors would be reported by calculating the
difference between the targets and the real values. With this
information, they would be able to check if the design matches
the expectations, or how distant the values are.

The second type of information retrieved can be easily
interpreted by the designer in the form of Visual reports.
These are meant to provide graphs that analyse how the infor-
mation retrieved by the agents (number of different positions
or states visited, number of eclements interacted with, etc.)
evolves during the play-through. The designer should be able
to extract and conclude interesting information about their
game by analysing the shape and evolution of the plotted
values. A continuous trend means that the agent is capable
of getting information without many impediments, improving
uniformly. On the contrary, if the growth is stuck for a period
of time, it either means that there is nothing more to be
discovered, all targets of the agent have been reached, or that
there is an obstacle (or a series of obstacles) blocking the agent
to achieve its goals. Let’s take a possible play-through graph
obtained for the Map explorer as an example. It could show a
uniform growth to a certain point, keep still for a while to end
up increasing uniformly again. This shape could be interpreted
as follows: the map of the game is divided into two areas and
an action from the player is required to progress in the game.

This method could also be used to analyse the distribution
of different elements of the game. In the example of the
Collector, the growth of the graph would show peaks in those
areas where there are several items to collect.

D. Logging System

The Logging System keeps track of the information resulting
from running each of the agents: position by time, actions,
elements interacted with, responses triggered, etc. These logs
can help to detect anomalies and broken states of the game.

M. Nelson proposed seven strategies to extract information
from the game [27]. In [28], V. Volz et al. gather a list of
measures envisioned to be included in the GVGAI framework
to extract information from the gameplay. They differentiate
between agent-based, interpreted and direct and indirect log-
gable measures. Because of the generality of the framework
this list was collected for, it could be taken as a reference to
use in this methodology. Having a team of agents, instead of
a unique one, can cover more game states, allowing to trigger
errors that would be difficult to catch otherwise.

E. Variations

Same algorithms with different parameters have different
strengths. The team can include several versions of the algo-
rithms with same objectives, but different levels of mastery,
based on those parameters. There are several existing methods
to be able to arrange a series of algorithms by measuring
their performance, used for several competitions and online
rankings. The most distinguished ones are the Bayes Elo

system [29], Glicko [30] and TrueSkill [31], the skill rating
system used in Xbox Live and recently extended. The designer
can be given the opportunity to choose between differentiated
skilled agents and even perform Relative Algorithm Perfor-
mance Profiles checks (II-B). This enlargement allows an even
bigger range of choices and richer information available.

Another possible extension can be to take into considera-
tion the information retrieved by all agents as a whole and
study the correlations between them. The designer can choose
which agents’ information combine to obtain greater levels of
granularity.

IV. LIMITATIONS

The approach proposed in this paper has a clear strength,
but there are a series of limitations, presented in this section.

The time needed to perform the evaluations should be
taken into consideration to arrange enough time to analyse
the reports and to plan the actions to be taken as a result. The
more complex the game is, the more time the evaluation would
take, as the agents would need more time to run and finish the
play-through to provide feedback. A feasible solution would
be presenting the game split into stages or levels; analysing
small chunks each time. Also, the complexity of the game
affects the performance of the algorithms as General Al has
some limitations in solving complicated environments.

The methodology presented here would obviously be
strengthened if these limitations would not exist or should
they be minimised. Thus, it is also an aim of this paper to
motivate and encourage research on these areas:

A. Reinforcement Learning

One of the limitations when working with Reinforcement
Learning (RL) algorithms, is that they need off-line training
and their performance depends on the size and intricacy of the
system. They must explore the environment, having to decide
between exploitation and exploration as it learns which actions
lead to rewards [32]. The more complex the game is, the more
they struggle as more the rewards are delayed in time.

There have been clear advances in RL methods, showing
good performance in well-defined problems. An example is
AlphaGo mastering Go [33]. Although the rules of the game
are simple, it has certain characteristics that impeded Al to
master it for a long time: deep games, large branching factor
and, above all, lack of a good state evaluation function. Other
examples showing the progress in RL, applied to video games,
come from the work done by Mnih. ef al. [6] (see Section II)
and the research on the VizDoom platform [34].

Despite this progress, RL has not yet provided world
winning approaches for more complex games, such as Star-
craft [35]. Not only games like this require multiple levels
of abstraction and reasoning but also include many real-world
features that limit the application of these techniques. Exam-
ples are, in this and other games, the presence of a continuous
state and action space, stochasticity, partial observability (fog
of war is present in multiple strategy games) and multi-agent
systems.



B. Planning Algorithms

These algorithms do not require off-line training (setting
aside the parameters optimisation discussed in the next sec-
tion) and therefore have a quick set-up. However, they require
a forward model to be able to simulate possible future states
to choose the best action available. Hence, there exists the
challenge of having to create a forward model from scratch to
include it in the game or working with abstract or not precise
forward models available.

Moreover, the number of roll-outs (that depends on process-
ing time and resources) have a big impact on the behaviour
and performance, as the more simulations they are allowed to
see, more information they get about the future. In [36], the
authors compare the differences in performance in the Physical
Travelling Salesman Problem when a budget of 40ms or 80ms
is provided to MCTS, RHEA and RS. It has an impact on the
number of roll-outs available per turn for the MCTS and the
number of individuals for the Genetic Algorithms (GA). In the
General Al scope, M. Nelson [37] ran a series of experiments
through 62 games that form the GVGAI framework. The goal
was checking how the performance of the MCTS is affected
when varying the time budget provided to return an action,
which influences the number of roll-outs it gets to take.

C. Parameter Optimisation

General Al algorithms use a series of parameters that have
a big impact on their performance and behaviour and, in
most of the cases, need to be optimised. As mentioned in
the previous section, if the number of roll-outs available to
the planning algorithm is modified, the number of predictions
will be reduced or extended and, therefore, the information
available to take a decision will be affected, influencing the
results. In evolutionary algorithms, the size of the population
has an impact on the performance. Gaina et al. compared how
the winning rate of the RHEA was influenced by the size of
the population and individual length [15], so the optimisation
of the parameters is important indeed.

Optimising the parameters to the game under evaluation
could take time. If not enough time is allowed, their ex-
pected performance could drop, which would end up providing
misleading reports. The optimisation has usually been done
off-line to provide enough time to reach a certain level of
performance. However, there has been some recent progress,
and an online adaptive parameter tuning mechanism for MCTS
has been implemented in GVGP, with promising results [38].

The N-Tuple Bandit Evolutionary Algorithm (NTBEA)
shows ways to mitigate some of the limitations presented by
this parameter optimisation. Lucas et al. describe the NTBEA
as a simple, informative and efficient model capable of being
applied to numerous optimisation-related problems [39]. In
the referenced work they show how to apply this approach
to optimise the parameters of RHEA. In [40] Kunanusont
et al. use this algorithm to evolve the game parameters of
Space Battle, affecting its design. They argue how the results
obtained in the experiments carried out show how NTBEA
could be used for Al-Assisted Game Design.

The team should be well-tuned to allow the agents to
recognise and carry out the actions expected to reach their
goals, in order to obtain proper results that fit the expectations
and interpret the feedback accordingly.

D. The Challenge of General Al

Developing algorithms capable of working through different
games is a challenging task as it is not possible to use any
game-specific information to guide them. Because of the dif-
ficulties of the problem, several approaches have been created
and are being investigated to tackle it. Thus, General Al is an
ongoing research. Even considering the latest improvements,
the results of the GVGAI Competition® show how it is still not
good enough to generalise to every kind of game. Even when
the agents perform well in some games, there are games with
a very low percentage of success; and any algorithm manages
to perform uniformly good through all of them.

Furthermore, general algorithms can be applied to several
areas in games: from one player simple games to multi-player
collaborative games, where they need to work together to
achieve a common objective. The variety of the problems to
tackle increases the complexity of the generalisation.

V. CONCLUSION

This paper proposes a new methodology using General Al
for assisting game design and testing and explains its features.
It presents a series of differentiated goals to be applied to the
general agents to play the game in different ways. Having
agents focusing on targets that go beyond simply winning
the game leads to specialists with distinct gameplay styles
to use to extract information. The two type of reports and
logging system generated can help the designer to check
if their game under evaluation fulfils the expectations. The
information retrieved can be used to detect bugs, balance the
game or tweak its parameters. Because of the independence of
the rules given by the generality of the Al, this approach allows
an early integration in a game under development without
requiring major modifications when it is extended or modified.

This proposed methodology is rooted in previous work
on the field of general game Al, automatic playtesting and
Al-assisted game design. It takes into account the needs of
the games industry for efficient and accurate game testing
and highlights interesting areas of future research. Several
extensions in the methodology are possible, as including
agents with different levels of skill, players tackling multiple
objectives or adding collaborative and social-oriented profiles
that can fit multi-player games. Also, it can create reports
considering the objectives of the different specialists at once,
combining the results obtained to analyse the information of
multiple agents outputs, study their correlations and provide a
greater level of granularity.

We believe that using general algorithms is the next step
for automatic game design and testing in order to provide a
portability non-existent in the approaches followed to date.

3http://www.gvgai.net/



Furthermore, introducing the option to choose between sev-
eral algorithms with differentiated behaviours and skills adds
flexibility to adapt the methodology to the characteristics of
the game under evaluation.
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