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Abstract

Games and Artificial Intelligence (AI) have had a tight re-
lationship for many years. A multitude of games have been
used as environments in which AI players can learn to act and
interact with others or the game mechanics directly; used as
optimisation problems; used as generators of large amounts
of data which can be analysed to learn about the game, or
about the players; or used as containers of content which can
be automatically generated by AI methods. Yet many of these
environments have been very simple and limited in scope. We
propose here a much more complex environment based on
the boardgame Terraforming Mars, implemented as part of
the Tabletop Games Framework: a very large and dynamic
action space, hidden information, large amounts of content,
resource management and high variability make this problem
domain stand out in the current landscape and a very interest-
ing problem for AI methods of multiple domains. We include
results of baseline AI game-players in this game and in-depth
analysis of the game itself, together with an exploration of
problem complexity, challenges and opportunities.

1 Introduction
We present a new game environment for Artificial In-
telligence methods based on the boardgame “Terraform-
ing Mars”. This is a game for 1-5 players published by
FryxGames in 2016 and currently ranked as one of the best
board games in the world1, with several expansions and a
multitude of fan-made content. In this game, players take
on the role of CEO of a giant corporation, all aiming to ter-
raform Mars, while competing to obtain the most points at
the end. We summarise the main challenges in this game
as follows: large, diverse and dynamic action space; large
state space; stochasticity; hidden information; wide variety
of point-earning and conflicting strategies; large variations
in game set-up options; large game parameter space.

As such, we consider this game a very important and in-
triguing problem for AI players, with parallels that can be
drawn to Strategy Games of wider interest to the commu-
nity, such as “StarCraft”. We aim to study not only the per-
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1https://boardgamegeek.com/browse/boardgame?sort=rank&
rankobjecttype=subtype&rankobjectid=1&rank=4#4

formance of AI techniques in this game, but also carry out an
in-depth analysis of the game itself, to better inform human
gameplay. Similar research into complex tabletop games has
been carried out in several board and card games. Walton-
Rivers et al. (2019), and later Bard et al. (2020), presented
“Hanabi” as an interesting challenge for AI with its unique
aspect of reverse hidden information: each player can see
the others’ cards in hand, but not their own. In this coopera-
tive game, AI players manage to surpass the main challenge
of effective communication and reach near-perfect scores.
Justensen et al. (2019) introduce “Blood Bowl”, a fantasy
football board game, as an AI environment and competition,
with its main challenge being a large action space: players
need to manage several units across a large board and coor-
dinate their actions for success. Later, “Pandemic” was ex-
plored as a complex AI challenge by Chacon et al. (2019)
and Sfikas et al. (2020): this cooperative board game com-
bines different types of components (a large board, cards and
tokens), with the challenge of managing and coordinating
resources between players under time pressure. We consider
“Pandemic” to be most similar to the problem domain pro-
posed here; yet, “Terraforming Mars” includes a larger state
space, more noise in AI simulations, many players compet-
ing for similar goals, and (with some exceptions) a larger
action space.

We see applications of search methods which have domi-
nated other domains such as General Game Playing (Gene-
sereth, Love, and Pell 2005) in several board games as
well. Monte Carlo Tree Search (Browne and others 2012)
was successfully applied in “Carcassonne” (Heyden 2009),
achieving good performance and beating an intermediate be-
ginner human player, but not advanced players; “Settlers of
Catan” (Szita, Chaslot, and Spronck 2009), outperforming
baseline AI players, but falling short in tests against human
players; and “7 Wonders” (Robilliard, Fonlupt, and Tey-
taud 2014), winning against baseline AI and human players.
These games are all diverse and present different challenges,
yet we note in particular results of in-depth parameter anal-
ysis in “7 Wonders”: the authors find that MCTS theory,
results and best parameters established in classical abstract
games hold true in their test domain as well. Although “Ter-
raforming Mars” presents different challenges to AI players



Table 1: Features of latest TAG games. Average values re-
ported for 100 runs with 2 random players. Speed in mil-
liseconds, for calls to the next (N) and copy (C) functions
of the FM. AS = action space size, HI = hidden information
(percentage of game components hidden from the player),
SS = state space size (total number of game components),
Length = total number of decisions per game.

Feature Diamant Dominion Terraforming
Mars

#Players 3-8 2-4 1-5
Speed(N) 0.09 2.50 26.8
Speed(C) 0.19 4.99 125

AS 2 5.04 7.10
HI 0.83 0.51 0.42
SS 35 65 400

Length 19.3 237 460

and a setting which is not completely adversarial or zero-
sum, we take these findings forward and apply MCTS in our
work.

Eger and Martens (2019) use AI players using a system
based on Dynamic Epistemic Logic, with different strate-
gies, to reason about and play “Ultimate Werewolf” against
human players, yet found their method to not be regarded
as very skillful by the humans. Strategies are evaluated and
analysed in-depth in “Ticket to Ride” as well, where de
Mesentier Silva et al. (2017) use a series of AI players with
different play-styles to test variants of the game with dif-
ferent maps, rules or number of players. Their results show
that although preferred play-styles differ per game setting,
some cities remain consistently more desirable as the fo-
cus of play. Further, the automatic players are able to find
game states not covered by the game rules, suggesting au-
tomatic play-testing of tabletop games as a ripe area for re-
search. Later, Witter and Lyford (2020) use probabilistic and
graph theory concepts to recommend simpler ways of win-
ning “Ticket to Ride” than one might expect. We adopt here
a similar manner of breaking down the game analysis and
presenting a first analysis of game strategies in “Terraform-
ing Mars”.

“Terraforming Mars” was implemented within the Table-
top Games framework (TAG) (Gaina et al. 2020b)2, which
aims to study general AI for modern complex tabletop
games, and offers a variety of ready-made game compo-
nents, actions, and rules, as well as analysis and visualisa-
tion tools to aid in implementing digital version of tabletop
games, as well as AI players to play them. The framework
includes 10 other games at the time of writing, ranging from
simple abstract domains such as “Tic Tac Toe” to complex
environments such as “Pandemic”, “Colt Express” or “Do-
minion”. We show in Table 1 (full details on Github3) a sum-

2https://gaigresearch.github.io/projects/TAG
3https://github.com/GAIGResearch/TabletopGames/wiki/

Game-Statistics. We note that there may be differences to the
physical board games, due to implementation simplifications for
the digital versions in TAG.

mary comparison of our implementation to the most recent
games added into the framework. We highlight a larger av-
erage action space, which increases throughout the game;
a similar level of hidden information to ‘Dominion’, and a
much larger state space size (due to the hundreds of cards
included with the game) and game length. “Terraforming
Mars” is slower, due to the large state space and complex
mechanics split over different game phases. Additionally,
this is the first game in the framework which allows for solo
play, to test the abilities of an AI game-player individually,
without external influences.

We summarise our contributions as follows: we present
and analyse in-depth both the problem domain and the re-
sults of 3 AI players compared to publicly available human
game statistics, to gain insights into successful strategies and
behaviours in this environment.

2 Terraforming Mars
This description of the game refers to the base game only,
disregarding components, actions and rules added by expan-
sions. Full game rules can be found online4.

2.1 Rules Overview
The goal of the game is to terraform Mars, by increasing
each of the 3 Global Parameters (Oceans, Temperature and
Oxygen) to maximum. The game ends when the goal is
achieved, and the player with the highest number of points
wins. Points are all summed up at the end of the game
and belong to 6 different categories: Terraforming Rating
(TR, obtained by increasing Global Parameters or by play-
ing certain cards), board points (obtained by placing City
and Greenery tiles on a hexagonal board), milestones (ob-
tained by meeting a certain condition first), awards (obtained
by having the highest amount of a certain game component),
and cards (obtained by playing cards which award points).
The game is played over several Generations, each split into
3 phases: Research, Actions and Production. In the Produc-
tion phase, each player earns resources according to the cor-
responding production level (with two exception: Energy re-
sources turn into Heat just before production happens; and
TR adds up to the Mega Credit production); the Research
and Actions phases are described below.

The game has many expansions which add new compo-
nents or new mechanics, and several variants for the base
game as well: Corporate Era includes new project and cor-
poration cards, and enforces all starting resource production
to 0, instead of 1. The 1-player (solo) variant becomes a race
against time: the player begins with 14 TR instead of 20, and
must finish terraforming Mars by the end of generation 14.

2.2 Components
The game is played on a hexagonal board, where tiles of
different types can be placed. Several counters keep track
of the state of the 3 Global Parameters and each player’s
TR. Each player has 12 more counters which keep track of

4https://www.fryxgames.se/TerraformingMars/
TMRULESFINAL.pdf



Figure 1: Resources (top) and production (bottom), from left
to right: Mega Credit, Steel, Titanium, Plant, Energy, Heat.

their resources, and their production (or income) of each
resource (see Figure 1).

There are 12 Corporation Cards. Players choose 1 out of
a random selection of 2 at the start of the game, which offers
them starting resources and, possibly, persisting effects, or
new actions that player can perform (see Figure 2 left).

There are 208 total Project Cards (see Figure 2 right), out
of which players get dealt 4 each in the Research phase of
each Generation (with the exception of the first generation,
when each player receives 10 cards instead). Cards have a
cost, usually paid with Mega Credit resources (top-left cor-
ner), requirements (top-middle; conditions for the card to
be playable, if any), tags (top-right corner), a name (top
banner), effects applied when played (middle), and points
(bottom-right corner). There are 3 types of cards: Automated
(immediate effects and tags only), Active (tags, persisting
effects and/or unlocking new actions) and Event (immediate
effects only; tags only count when the card is played, but not
for any other subsequent effects referring to tags played).

2.3 Actions
In the Research phase, players may buy cards to their hand
from a random selection, using Mega Credit resources.

In the Actions phase, players take turns performing 1 or 2
actions, with the following options: Play a card from hand.
Actions from their Corporation or Active cards in play. Buy
one of 6 Standard Projects (e.g. pay 25 Mega Credits to place
a City tile on the board and increase Mega Credit production
by 1). Claim a Milestone. Fund an Award. Trade 8 Plant re-
sources for a Greenery tile, or 8 Heat resources to increase
the Temperature Global Parameter. Pass (can no longer per-
form actions this phase; when all players pass, the Actions
phase is over).

Terraforming Mars in TAG The version implemented in
the TAG framework includes the base game and Corporate
Era components, as described above. Expansions are de-
signed in a modular way, such that they can be added in
to enable the bonus mechanics, setup or game components
they bring. The expansions Hellas, Elysium (which add new
boards, milestones and awards) and Venus (which adds a
new global parameter, standard project and cards) are imple-
mented as well, but not fully parsed at the time of writing.
Most actions on the cards are fully implemented and func-
tional, with the exception of 4 cards featuring:

1. Temporary effects (e.g. discount for next card played).

2. Conditional alternative effects (e.g. “receive X plant pro-
duction, or Y plant production instead if you have at least
Z plant tags in play”).

Figure 2: Example cards. Left: Corporation Card (Phoblog);
the player starts with 10 Titanium and 23 Mega Credit, and,
as an effect, Titanium resources are worth 1 extra Mega
Credit (4 instead of 3). Right: Project Card (Methane from
Titan); it is Automated, costs 28, has Space and Jovian tags,
requires Oxygen to be minimum 2, increases Heat and Plant
production by 2 each, and gives 2 points at the end.

Actions are highly parameterised and implemented using
a sequential model, to avoid extremely large combinatorial
action spaces (e.g. a “Play a card” action could be followed
by decisions on which resources to use to pay for the card
and how to apply the card’s effects, before the action is
fully executed). We make use of the new IExtendedSequence
framework included in TAG for this functionality. What this
means for AI players is that there is a delay between exe-
cuting an action and observing its full effect, which intro-
duces additional uncertainty depending on the player’s hori-
zon (how long the simulated action sequences are).

The modular implementation allows for new cards or full
expansions to easily be defined and parsed from JSON,
or new action classes created to add new mechanics. The
game’s parameters are fully exposed as well, with a total of
30 high-level adjustable options, such as the base exchange
rate for Steel and Titanium resources to Mega Credits.

API AI players have access to the complete list of ac-
tions currently available and legal, as well as those that are
not legal due to lack of resources or missing requirements,
through the Forward Model object provided. This distinction
is made in this game as other actions may become playable
depending on a player’s decisions, thus having access to the
full list of possibilities (which would also be available to hu-
man players in this environment) allows for more informed
decision-making.

The Game State object received every time a decision
is needed encapsulates the entirety of the state that can be
observed by the player, including all components (cards,
boards, Milestones and Awards, resource counters, Global
Parameter counters, etc.) and other game information (cur-
rent generation, player active effects and actions). The hid-
den information in this game is the face-down draw decks
and the opponent hands (all of which are randomly shuffled
in the observation received by the player).

3 Challenges and Opportunities
Overall, the game presents players with a large, dynamic and
diverse action space. We highlight the difference to other do-



Figure 3: Graphical User Interface for Terraforming Mars in TAG: a mid-game game state between MCTS and a human player.

mains with large action spaces, where most actions are of the
same type (e.g. move left/right, up/down; play a card; place
a token on a board) and many actions may result in similar
effects with slight variations. Here, the game state is made
up of hundreds of components, and each action will have a
vastly different effect on one or more of these components.
Further, once an action is selected, more may become avail-
able, while others would turn illegal. Table 1 shows the av-
erage action space size in ‘Terraforming Mars’ to be 7.10,
although the maximum observed in 2-player random games
reached 46. With expert players, the action space becomes
even larger as the game progresses, with the order of actions
important as well in key moments in the game (e.g. when
to claim Milestones or fund Awards; to claim bonuses from
Global Parameters etc.).

Further, the game presents diverse and dynamic strategies
which can be used to win. These can be used in isolation,
combined or changed throughout the game depending on re-
sources available, in order to maximise performance, with
no one strategy identified as dominant. We identify the fol-
lowing large categories of strategies: resource card engine,
action card engine (focus on increasing action space), au-
tomated card engine (focus on points and resource produc-
tion), effect card engine (focus on active cards with persist-
ing effects, such as discounts), building engine (focus on
populating the board), and terraforming (focus on finishing
the game quickly). Although a lot of the knowledge and ex-
pertise in the game can be expressed as general advice, the
actual game situation heavily influences one’s decisions (in
particular, which cards and which actions are actually avail-
able to the player), making it a very difficult challenge to

encode this knowledge in automatic players.
Lastly, given the sheer amount of cards available, future

game states are very difficult to approximate, making AI
simulations extremely noisy. As this is also the key in pre-
dicting the quality of each decision made, with every game
and best strategy to adopt heavily influenced by the order of
cards in the deck, we consider the hidden information here
another of the biggest challenges the environment proposes
for AI players.

4 Experiments
We use the publicly-available dataset by ssimeonoff 5 to
study the game and compare AI players to human play-
ers. At the time of writing, there are a total of 9364 games
recorded for human players. However, only 93 match the
setting tested for this paper (using base game only, Corpo-
rate Era, and playing on the base map Tharsis, with base
milestones and awards), split as follows: 63 2-player, 26 3-
player, 2 4-player and 2 5-player. Given this low number, we
acknowledge that human averages are not statistically mean-
ingful (even more so due to the lack of information on the
players, we do not know their level of experience with the
game), but we keep them as a baseline of comparison.

We run 3 automatic players on the game in their default
configuration in TAG: random (randomly chooses 1 legal ac-
tion), One Step Look Ahead (OSLA; greedily chooses the
legal action which leads to the next best state) and Monte
Carlo Tree Search (MCTS; iteratively builds a statistical

5https://ssimeonoff.github.io/



Table 2: Average final generation reached and score for human, random, OSLA and MCTS players in 2-5-player mirrored
games. Average rounded to nearest integer, standard error in brackets.

Generation Score
#players Human Random OSLA MCTS Human Random OSLA MCTS

2 14 (2.48) 20 (0.21) 22 (0.21) 18 (0.35) 106 (2.48) 93 (1.44) 114 (1.46) 115 (2.77)
3 12 (0.26) 18 (0.18) 17 (0.19) 15 (1.17) 84 (1.80) 69 (0.85) 88 (0.99) 95 (4.74)
4 10 (1.00) 15 (0.19) 15 (0.13) 12 (0.85) 67 (4.87) 62 (0.75) 78 (0.72) 84 (2.59)
5 12 (0.00) 13 (0.17) 13 (0.12) 10 (0.33) 62 (4.75) 52 (0.48) 70 (0.54) 76 (3.00)

Figure 4: Generation where each Global Parameter was ter-
raformed (normalized based on final generation) for MCTS,
OSLA and random in mirrored 2-player games.

tree by simulating several steps into the future and choos-
ing the best action at the end; for more details on the algo-
rithm, the reader is referred to (Browne and others 2012),
and to (Gaina et al. 2020a) for details on its implementa-
tion in TAG). MCTS uses a rollout depth of 10, a UCT K
constant of

√
2, and 1000 calls to the Forward Model next()

and copy() functions as its budget. Both MCTS and OSLA
use the same heuristic function to evaluate game states: the
number of points they would get if the game were to end in
that game state.

We refer to games in which all players are copies of
the same agent as mirrored games. Each test configura-
tion was run 100 times: mirrored games for all AI players
with 1-5 players, and 2-player match-ups of all AI player
pairs (MCTS-random, MCTS-OSLA and OSLA-random).
We use the logging system available in the framework to
record statistics on all games played in line with those
recorded for human players in our dataset, along with ad-
ditional information that we can extract for more in-depth
analysis of the game and the performance of the AI players.
Examples are the generation when the game finished and
the score at each generation (including final score), broken
down into each category: TR, milestones and awards, board
and cards, the game result (winning player), milestones and
awards in play and player corporations.

5 Discussion
In Table 2 we show the average generation and average fi-
nal score obtained by each of the players under test, includ-
ing a summary of the human data available, for each con-
figuration of 2, 3, 4 and 5 players. Overall we observe a
trend where the numbers of generations required to finish the

game is inversely proportional with the number of players,
for both humans and AI. Since more players can contribute
to the terraforming process, it makes sense that this would
be achieved in less generations.MCTS achieves a number
of generations closest to human players, while random and
OSLA are comparable. In Figure 4 we show more detailed
information on the AI players regarding how fast each of the
parameters are terraformed, information which is not avail-
able for human players. We notice here that there is a large
difference in OSLA’s preference to terraform the Tempera-
ture parameter in the first half of the game. We hypothesize
that this is due to the standard project (which is always avail-
able and can be repeated in a generation) immediately earn-
ing a point, and being cheap enough to repeatedly appear in
the list of legal actions. OSLA’s short-sightedness considers
this action highly beneficial as a result. MCTS and random
show a fairly even split across the 3 Parameters. On average,
the Ocean parameter is terraformed last, even though it has
the smallest amount of steps required; the standard project
that places Oceans is more expensive, and only rewards 1
point, whereas the standard project that places Greenery tiles
(and therefore raising Oxygen levels) gives a minimum of 2
points, as Greenery tiles are counted separately at the end.

We observe a similar trend for score, with more points be-
ing obtained in games with less players, for much the same
reasons as mentioned above (similar number of points will
be available each game, to be split between more players).
Interestingly, we observe both OSLA and MCTS to obtain
higher points than human players, with MCTS gaining the
most (despite its shorter games shown by lower generation
numbers). We note that this is not a direct comparison (but
rather a comparison of humans playing against other hu-
mans, and MCTS against a copy of itself). Random play-
ers do score below humans, showing that even the simple
heuristic of maximising points, with no other knowledge of
strategies, is quite effective. This finding opens the door for
studies on more advanced heuristics. Figure 5 shows the
score progression on each generation for MCTS mirrored
2-player games, broken down into the different categories.
We observe that cards and board points are fairly similar be-
tween the winning and the losing player, and the biggest dif-
ference is made by TR and Milestones and Awards: in these
categories, the winning player takes the lead early on. In hu-
man games, board and card points can often skew the TR or
Milestone and Award imbalance: however, the AI players in
these experiments do not have policies for placing tiles cor-
rectly on the board or choosing and playing the right cards
- we hypothesize that heuristic functions focusing on these



(a) Total (b) TR (c) Milestones + Awards (d) Board (e) Cards

Figure 5: Average score per generation obtained by the winning and losing player, respectively (MCTS 2-player mirrored
games). Showing percentage of the final winning score in each category for a normalized view of the score differences. Gener-
ation on the X-axis and score percentage on the Y-axis.

(a) Random (b) OSLA (c) MCTS

Figure 6: Final production obtained in 2-player mirrored games. Resources on the X-axis, average amount on the Y-axis (in-
cluding standard error). Production, in order: MegaCredit, Titanium, Plant, Energy, Steel, Heat.

aspects in particular will see a large boost in performance.
We can extract further interesting statistics from the

games played by AIs. In Figure 6 we show the final re-
source production obtained by each of the players in 2-
player mirrored games. We notice that all players favour
MegaCredit production, and that the winning player had the
highest overall production in all resources. From the ran-
dom player’s performance we can deduce that MegaCredit
production (and Energy second, both available through stan-
dard projects, unlike the others) is one of the easiest to in-
crease. However, MCTS, the best AI player, ends up with
overall lower production in most resources than the other
agents, and a focus on Plant and Heat productions, both of
which allow for executing more of the basic resource ac-
tions and therefore earning more points; Steel and Titanium
resources are beneficial for playing cards (and Energy pro-
duction often a requirement), showing the agent’s lack of
focus on strategies involving card engine building. On the
one hand, this could suggest that the best way to play the
game is to choose the simplest way of gaining points. How-
ever, this is yet to be tested against more complex heuristics,
which we aim to explore in future work.

MCTS players do show the advantage in long-term plan-
ning through award funding, where the player who funded
the award ends up winning the points over 70% of the time,
as opposed to OSLA and random that see a success rate of
50% or, often, lower. Further, when tested head-to-head in 2-
player games, MCTS wins 75% (0.42) of its games against
OSLA and 98% (0.01) against random, while OSLA wins

91% (0.03) of its games against random. Overall, these tests
suggest MCTS to be the strongest agent.

The ssimeonoff database includes 5705 solo games that
match the setting used in this study, seeing humans obtain
an average score of 75(0.50), with uncertainty of the win-
ning percentage. However, no AI player is able to beat the
solo mode of the game, and they obtain a much lower score:
58(0.44) for MCTS, 39(0.40) for OSLA, 30(0.43) for ran-
dom. This is not surprising given the long games observed,
most over the limit of 14 generations imposed in the solo
mode, yet it remains an interesting open challenge: how can
AI players be taught to efficiently terraform Mars?

6 Conclusions
This paper describes a new game environment for AI meth-
ods based on the game “Terraforming Mars” and initial ex-
periments to analyse the game itself, as well as the perfor-
mance of baseline players included in the Tabletop Games
framework (TAG): random, One Step Look Ahead (greedy
short-sighted search) and Monte Carlo Tree Search (MCTS).
We test these agents against publicly available data recorded
from human games. Overall we observe the MCTS player
to be on par with human performance, or even better - how-
ever, this is not a direct comparison (but rather a comparison
of humans playing against other humans, and MCTS against
a copy of itself). With the inclusion of “Terraforming Mars”
in TAG with an intuitive graphical user interface, we hope to
encourage humans to play against the AI directly, to also be
able to record more in-depth data about the games and better



analyse the AI performance.
Moreover, the parameters used for the MCTS player were

as default in the TAG framework; given the multiple deci-
sions which may need to be taken in order to fully play
out an action, it is likely that the algorithm could perform
much better if given a longer search horizon. The framework
includes a more advanced version of MCTS, with many
tunable parameters; modifying these so that the algorithm
achieves its full potential in the game could paint a clearer
picture of its playstyle, as well as its true strength when com-
pared with human players.

In our work we maintained a simple generic heuristic
function regardless of game phase. However, strategies for
specific game moments are considered in “Risk” by Gib-
son et al. (2010), who use MCTS for drafting territories,
with a heuristic function learned via linear regression from
a set of manually-defined features; this is shown to signif-
icantly improve the performance of AI players against the
strongest techniques previously tried in the game. We con-
sider this work important for future development of AI play-
ers in games with several different phases, such as “Ter-
raforming Mars”.

We can further dive into other topics as well, such as game
balance, or categorisation of specific corporation and project
cards: with such a vast amount of content as is available
in “Terraforming Mars” (even disregarding the multitude of
fan-made content), it is a given that every single card is not
fully play-tested and ensured to be balanced. The implemen-
tation of the game within the TAG framework can offer ex-
actly this missing aspect, allowing for use of TAG tools to
analyse and balance the game and its components to max-
imise player enjoyment. Further, procedural content genera-
tion techniques can easily be applied to the structured data
included in the game, to create new components or rules for
“Terraforming Mars”, building on work by de Mensentier
Silva et al. (2018) in “Ticket to Ride” for map generation, or
Summerville and Mateas (2016) in “Magic the Gathering”
for full card generation from partial specifications.
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