
STRATEGA - A General Strategy Games Framework

Alexander Dockhorn, Jorge Hurtado-Grueso, Dominik Jeurissen, Diego Perez-Liebana
School of Electronic Engineering and Computer Science

Queen Mary University of London, UK

Abstract

Strategy games are complex environments often used in AI-
research to evaluate new algorithms. Despite the common-
alities of most strategy games, often research is focused on
one game only, which may lead to bias or overfitting to a par-
ticular environment. In this paper, we motivate and present
STRATEGA - a general strategy games framework for playing
n-player turn-based and real-time strategy games. The plat-
form currently implements turn-based games, which can be
configured via YAML-files. It exposes an API with access to a
forward model to facilitate research on statistical forward plan-
ning agents. The framework and agents can log information
during games for analysing and debugging algorithms. We
also present some sample rule-based agents, as well as search-
based agents like Monte Carlo Tree Search and Rolling Hori-
zon Evolution, and quantitatively analyse their performance
to demonstrate the use of the framework. Results, although
purely illustrative, show the known problems that traditional
search-based agents have when dealing with high branching
factors in these games. STRATEGA can be downloaded at:

https://github.research.its.qmul.ac.uk/eecsgameai/Stratega

1 Introduction
Since Michael Buro motivated AI research in strategy
games (Buro 2003), multiple games and frameworks have
been proposed and used by investigators in the field. These
games, although different in themes, rules and goals, share
certain characteristics that make them interesting for Game
AI research. Most of the work done in this area pertains to
the sub-genre of real-time strategy games (and, in particular,
to Starcraft (Ontanón, Synnaeve, and others 2013)), but it
is possible to find abundant research in other real-time and
turn-based strategy games in the literature (see Section 2).

The complexity of these problems is often addressed by
incorporating game domain knowledge into the agents, ei-
ther by providing the AI with programmed game specific
information or training it with game replays. Despite the con-
tributions made this way can be significant, and in some cases
it is possible to transfer algorithms and architectures from

Copyright c© 2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

one game to another, we believe the time is right to introduce
general AI into this domain. The objective of this paper is to
present a new framework for general AI research in strategy
games, which tackles the fundamental problems of this type
of domains without focusing on an individual game at a time:
resource management, decision making under uncertainty,
spatial and temporal reasoning, competition and collabora-
tion in multiple-player settings, partial observability, large
action spaces and opponent modelling, among others.

In a similar way to General Game Playing (GGP) (Gene-
sereth, Love, and Pell 2005) and General Video Game Play-
ing (Perez-Liebana, Lucas, and others 2019), this paper pro-
poses a general multi-agent, multi-action strategy games
framework for AI research. Section 3 presents the vision for
this framework, while Section 4 describes the current imple-
mentation. Our main interest when proposing this framework
is to foster research into the complexity of the action decision
process without a dependency on a concrete strategy game.
The following list summarises the main characteristics of this
platform:

• Games and levels are defined via text files in YAML format.
These files include definitions for games (rules, duration,
winning conditions, terrain types and effects), units (skills,
actions per turn, movement and combat features) and their
actions (strength, range and targets).

• STRATEGA incorporates a Forward Model (FM) that per-
mits rolling any game state forward by supplying an action
during the agent’s thinking time. The FM is used by the
Statistical Forward Planning (SFP) within the framework:
One Step Look Ahead, Monte Carlo Tree Search (MCTS)
and Rolling Horizon Evolutionary Algorithm (RHEA).

• A common API for all agents that provides access to the
FM and a copy of the current game state, which supplies
information about the state of the game and entities. This
copy of the state can be modified by the agent, so what-if
scenarios can be built for planning. This is particularly
relevant to tackle partial observability in RTS games.

• The framework includes functionality for profiling the
agent’s decision-making process, in particular regarding
FM usage. This facilitates analysis of the impact, in the
execution of the game, of methods that use these models

(such as the ones included in the benchmark) by providing
the footprint in time and memory of FM usage.

• Functionality for game and agent logging, in order to un-
derstand the complexity of the action-decision process
faced by the agents and easily analyse experimental results.
This information includes data at the game end (outcome
and duration), turn (score, leading player, state size, actions
executed) and action (action space) levels.

The aim of this framework is not only to provide a general
benchmark for research on game playing AI performance on
strategy games, but also to shed some light on how decisions
are made and the complexity of the games. A common API
for games and agents allows to build new scenarios and to
compare different AI approaches in them. In fact, the second
contribution of this paper is to showcase the use of the current
framework. To this end, Section 5 presents baseline results for
the agents and games already implemented in this benchmark.

2 Related Work
STRATEGA incorporates many features of well-known strat-
egy games and GGP frameworks, described in this section.

2.1 Strategy Games
There is a relevant proliferation of multi-action and multi-unit
games in the literature of games research in the last couple of
decades, ranging from situational and tactical environments
to fully-fledged strategy games. An example of the former
is HeroAIcademy (Justesen, Mahlmann, and others 2017),
where the authors present a turn-based game where each
player controls a series of different units in a small board.
Each turn, players distribute 5 action points across these units
with the objective of destroying the opponent’s base. The
authors used this framework to introduce Online Evolution-
ary Planning, outperforming tree search methods with more
efficient management of the game’s large branching factor.

Later on, (Justesen et al. 2019) introduced the Fantasy
Football AI (FFAI) framework and its accompanying Bot
Bowl competition. This is a fully-observable, stochastic, turn-
based game with a grid-based game board. Due to a large
number of actions per unit and the possibility to move each
unit several times per turn, the branching factor is enormous,
reportedly the largest in the literature of turn-based board
games. Its gym interface provides access to several environ-
ments each offering a vector-based state observation. While
those environments differ in the size of the game-board, the
rules of the underlying game cannot be adjusted.

Recently, (Perez-Liebana et al. 2020b) provided an open-
source implementation of the multi-player turn-based strategy
and award-winning game The Battle of Polytopia (Midjiwan
AB 2016). In this game, players need to deal with resource
management and production, technology trees, terrain types,
partial observability and control multiple units of different
types. The action space is very large, with averages of more
than 50 possible actions per move, and an estimated branch-
ing factor per state of 1015. The framework includes support
for SFP agents, including MCTS and RHEA, which in base-
line experiments seem to be at a similar level to rule-based
agents, but inferior to a human level of play.

The most complete turn-based strategy games framework
to date is arguably Freeciv (Prochaska and others 1996), in-
spired by Sid Meier’s Civilization series (Firaxis 1995 2020).
It incorporates most of the complexities and dynamics of
the original game, allowing the interactions between poten-
tially hundreds of players. Due to its complexity, most re-
searchers have used it to tackle certain aspects of strategy
games, like level exploration and city placement (Jones and
Goel 2004) (Arnold, Horvat, and Sacks 2004).

Regarding real-time strategy games, microRTS (Ontañón
et al. 2018) is a framework and competition developed to
foster research in this genre, which generally has a high entry
threshold due to the complexity of the game to be learned
(e.g. Starcraft using BWAPI(Team 2020)). In comparison
to other frameworks, players can issue commands at the
same time and each action takes a fixed time to complete.
The framework implements various unit and building types
that act on the player’s command. The framework supports
both fully and partially observable states. Recently, AlphaS-
tar (Vinyals et al. 2019) shows the great proficiency of deep
supervised and reinforcement learning (RL) methods in Star-
craft II. With the use of an important amount of computational
resources, their system is able to beat professional human
players consistently by learning first from human replays and
then training multiple versions of their agent in the so-called
AlphaStar League. This example show that even for complex
RTS games it is possible to develop agents of high proficiency
which so far remain limited to play a single game.

2.2 General Game Playing (GGP)

As previously mentioned, the goal of STRATEGA is to support
research on general strategy game playing, which forms an
interesting sub-domain of general game playing. GGP has al-
ready been supported by numerous frameworks that focus on
its different aspects. The GGP framework (Genesereth, Love,
and Pell 2005) was introduced to study general board-games
and its game description language motivated the development
of the video game description language (Schaul 2013) and
its accompanying General Video Game AI (GVGAI) (Perez-
Liebana, Liu, and others 2019) framework. GVGAI focuses
on 2D tile-based arcade-like video games and supports a
small number of 2D physics-based games. In a similar fash-
ion, the Arcade Learning Environment (ALE) (Bellemare
et al. 2013) provides access to Atari 2600 games, offering
multiple ways in which game states can be perceived and is
tightly interconnected with Open AI Gym (Brockman et al.
2016).

Different styles of defining games have been presented by
the Ludii (Piette et al. 2019) and the Regular Boardgames
(RBG) (Kowalski et al. 2019) frameworks. While the former
uses high-level game-related concepts (ludemes) for game
definitions, the latter uses regular expressions. Both permit
defining turn-based games, but currently seem to lack meth-
ods for implementing real-time games. Finally, (Tian et al.
2017) propose the Extensive, Lightweight and Flexible (ELF)
platform that allows the execution of Atari, Board and Real-
time Strategy games. In particular, ELF incorporates Mini-
RTS, a fast RTS game with a similar scope to microRTS.

2.3 General Strategy Games
Some initial attempts have been made to provide platforms
to host multiple RTS games. In one of the most recent
works, (Andersen, Goodwin, and Granmo 2018) signified
the need for an RTS framework that can adjust the com-
plexity of its games and presented Deep RTS. This platform
focused on providing a research benchmark for (deep) Rein-
forcement Learning methods, supported games of different
complexity, ranging from low (such as those in microRTS) to
high (as Starcraft II). A similar but more flexible framework
is Stratagus (Ponsen et al. 2005), a platform that shares some
characteristics with our proposal. Different strategy games
can be configured via text files and LUA scripts can be used
to modify some game dynamics. Some statistics are also
gathered for all games, such as units killed and lost, and a
common API is provided for agents.

Our general strategy games platform goes beyond these
proposals in a two-fold manner. First, from the perspective
of the agents, we provide forward model functionality to
enable the use of statistical forward planning agents. Sec-
ondly, from the games perspective, our platform provides
higher customisation of the game mechanics, allowing the
specification of game goals, terrain features, unit and action
types, complemented with agent and game logging function-
ality. Furthermore, the STRATEGA framework makes use of
higher level concepts to ease development and customisation
of strategy games. While GPP frameworks may be able to
produce strategy games of similar complexity, they can re-
quire extensive effort to encode the games we are looking
at.

3 Platform for General Strategy Games
STRATEGA currently implements n-player turn-based strat-
egy games, where games use a 2D-tile representation of level
and units (Perez-Liebana et al. 2020a). During a single turn,
a player can issue one or more actions to each unit. While
the standard game-play lets all players fight until all but one
has lost all its units, the game’s rules can be modified to im-
plement custom winning conditions. At the game start, every
player receives a set of units, which can be moved along the
grid and attack other units to reduce their health. Further-
more, units can get assigned special abilities and differ in
their range, health points, damage and other variables.

The framework is written in C++. It can run headless or
with a graphical user interface (GUI) that provides informa-
tion on the current game state, run-time statistics, and allows
human players to play the game. The GUI, the game engine
and game playing agents are separated in multiple threads
to maximise the framework’s efficiency and the developer’s
control over the agents. Figure 2 shows a screenshot of the
current state of the framework. Isometric assets are included
in the platform to depict different types of units and terrains,
which can also be assigned via YAML configuration files.
Figure 1 shows the overall structure of the framework.

3.1 Creating Games
The definition of all game components such as units, abili-

ties, game modifiers, levels and tiles is done through YAML-

Figure 1: Overall structure of the framework.

Figure 2: Exemplary game state of STRATEGA and its GUI.

files. The excerpt of the Action YAML-file shown in Figure 3
shows the definition of an Attack action. Several properties
can be configured and even new properties can be added to
the framework. In the example, the attack action has a range
of 6 tiles, damage of 10 (that can affect friendly units) and
establishes if and how much score the attacker and attacked
players receive when the action is executed.

The unit definition in the Units YAML-file shown in Fig-
ure 3 follows a similar pattern, allowing for hierarchically
structured unit types. In our example, the LongRangeUnit is
an extension of the BasicUnit type, inheriting the properties
from its base. The entry defines basic properties for the unit:
range of vision, movement, base attack damage, health and
also the Path to its graphical asset. The actions available for
this unit, as defined in the units YAML file, are indicated
under the Actions heading. Two more attributes indicate the
number of actions that the unit can execute during a turn
(NumberActionExecutePerTurn) and if they can be executed
more than once. Finally, CanBeMoreThanOne determines if
this unit can be instantiated multiple times or is unique.

The Configuration YAML-file defines how a specific in-
stance of a game should be created and played. The game
rules section defines how many turns a game can have and
if players or agents have a limited time budget to execute
their turns. Game modifiers include (but are not limited to)
turning on/off the fog of war or changing winning conditions.
This eases the customisation by quickly modifying the game
without changing and compiling its code, allowing to reuse
the units and actions in different games. The Configuration
YAML-file also specifies the list of N ≥ 2 players and the
level to play in. This level is formed by the initial distribution
of the tiles and the definition of each terrain type. Figure 3

Actions:

- Attack:

Value: 10

Range: 6

GiveRewardAttacker: true

AttackerReward: 2

GiveRewardAttacked: false

AttackedReward: -1

CanExecutedToFriends: true

Units:

- BasicUnit:

NumberActionExecutePerTurn: 1

CanRepeatSameAction: false

Types:

- LongRangeUnit:

RangeVision: 6

RangeMovement: 4

RangeAction: 5

AttackDamage: 70

Health: 100

Path: LongRange.png

Actions:

- Move

- Attack

CanBeMoreThanOne: false

Game Configuration:

Game Rules:

TimeForEachTurn: 10

NumberOfMaxRounds: 100

Players:

- MCTS Player

- RHEA Player

Level: >

XXXXXXXXXXXXX

XX.........XX

X.....T.....X

XX.........XX

XXXXXXXXXXXXX

LevelNodes:

- Trap:

Character: T

Walkable: true

Cover: false

HealthEffect: true

EffectEntry: true

KillUnit: false

Figure 3: Excerpts of YAML files that define the game. From
top to bottom: actions, units, and general rules.

includes as an example the definition of a trap tile, which
indicates that is walkable (units can enter the tile), does not
offer any cover, deals 50 points of damage to the unit as soon
as it enters the tile, but does not kill the unit automatically.

3.2 Agent interface
We provide an API for agent development and offer access to
several sample agents (see Section 4.2). Agents must define a
constructor for initialising the player and a method to indicate
an action to execute in the current game tick. This method

receives a copy of the game state, which can be modified (i.e.
to incorporate game objects into the non-visible part of the
level due to fog of war) and rolled forward supplying actions.
This access to an FM facilitates the implementation of SFP
agents. Agents have also access to the properties of the game
state (positions of units, terrain tiles, game turn, score, etc.)
and a pathfinding feature to determine shortest paths.

On each turn, the game requests an action from the player
to be executed on the game. The agent receives information
about all possible actions that can be executed in the current
game state, for all the units present in the board. The agents
can choose to return one of these actions, or a special action
that indicates that the agent does not want to execute any
more actions during the present turn. The game requests an
action from the player as long as i) the agent does not return
an EndTurn action; ii) there are still actions available for the
player; and iii) the turn budget, if specified in the YAML
configuration files, is not consumed.

3.3 Debugging and Logging
One of the most important aspects of this framework is the ca-
pability of analysing and logging game states and executions.
Figure 2 shows live debug information by means of interac-
tive floating windows. This information includes game data
(current turn, number of actions executed by a player in a
turn, frames per second, score and leading player), profiling
(size - in bytes - of the game state and time - in microseconds
- needed to copy the game state, advance the forward model
by one action and the time taken by agents to provide a move
to play) and action and unit information, which indicates
the size of the action space in the current game state and the
accumulated action space during the present turn. The inter-
face also allows us to obtain more information and execute
those actions from the list on the floating window, as well as
obtaining information from the units in the game.

Once the game is over, a log file is also written in YAML
format, including per-turn information on decision-making
time, score, action space and actions executed, number of
units, player rankings and specific game information. The
framework includes simple scripts to analyse this data and
produce logging plots as the ones shown below in Figure 4.

4 A Turn-based Strategy Framework
This section describes the implementation of the agents and 3
turn-based strategy games defined currently in the platform.

4.1 Games: Kings, Healers and Pushers
In Kings, players receive a king unit and a random set of
additional units. Their task is to keep their king alive at all
costs while trying to defeat the opponent’s king. Similar
to chess, losing other units does not determine the end of
the game but effectively reduces the flexibility of a player.
Four types of units are defined in this game mode, archer,
warrior, healer, and the king. While the warrior moves slowly
and deals high damage, the archer moves quickly, has long-
range attacks, but its damage is reduced. In addition to its
movement speed, the archer can also see further than any
other unit in the game. The healer can restore other units’

health points. At last, the king can only move one square
at a time but deals the highest damage. All units can move
and attack once in the same turn. The game is played on a
map with different types of terrains, each type provides a
different cover-percentage for reducing incoming damage.
Additionally, the map contains traps, which kill a unit upon
entering. The map is covered in fog-of-war, with each unit
revealing parts of the map based on its vision radius.

In the game Healers, both players have access to warriors
and healers. The healer can move faster than the warrior but
cannot attack. In comparison to Kings, healers and warriors
have higher starting health points The twist in this game is
that all units receive damage at the end of each turn. The
goal of the players is to keep their units alive, while they can
attack the opponent’s units. The last player with units left
wins. The map contains plains and mountains, this time with
no tile providing coverage. Mountain act as a non-walkable
obstacle and fog-of-war is disabled on this game.

The game Pushers is fundamentally different from the
way the other games are played. Only 1 unit type is available,
the Pusher. They cannot attack other units but can push them
one tile back once per turn, to make the other player’s units
fall into the traps in the level. The agent’s winning condition
remains the same (survive the longest), but the game focuses
on tactical movement instead of aggressive unit actions.

4.2 Agents

This section describes the different agents implemented in
the framework and a heuristic used to evaluate game states.

Strength Difference Heuristic (SDH) SDH is a heuristic
to estimate the relative strength of a unit, which estimates
it as a linear sum of the unit’s attributes (maximum health,
attack damage, or movement range) divided by the maximum
value among all available unit types. If a unit cannot execute
an action, the corresponding attribute is 0. Note this heuristic
will not change during a game, dynamic attributes like a unit’s
current health are not considered in the strength-estimation.

To estimate the value of a state, we compute the difference
between the strength of the current player’s units and the
opponent’s units. Additionally, a unit’s strength is multiplied
with the percentage of remaining health to encourage attacks.

Rule-based Combat (RBC) Agent This agent focuses on
combat-oriented games like Kings or Healers. Its strategy
is to focus all attacks on a single enemy unit while keeping
its units out of danger. Every time the agent has to make a
decision, it first targets an enemy unit. It then tests for each
friendly unit if it can attack an opponent, heal an ally, or move
closer to the target. Once a valid action has been found, the
agent will execute it and repeat the process until no actions
are left. The target is chosen based on an isolation-score. A
unit’s allies contribute negatively to the isolation score, while
its enemies contribute positively. The contribution is equal to
the unit’s strength divided by the turns it takes for it to reach
the unit. To find a target, the agent searches for an enemy
with the highest isolation score. When attacking or healing a
unit, the agent prioritises units with high-strength.

Rule-based Push (RBP) Agent The Push-Agent is highly
specialised for games like Pushers. The agent’s strategy is to
push opponents into a direction that is closest to a death trap.
For each unit, the agent computes the shortest paths from the
unit to the adjacent tiles of the opponent’s units. Each path
then gets assigned a score equal to the length of the path, plus
an estimate of how long it would take to kill the opponent
from the tile. Starting from the path with the lowest score,
the agent checks if following the path for one turn would
result in a position that endangers the unit. If the path is not
dangerous it is assigned to the unit, otherwise, the agent will
try the next path. Once a unit was assigned a path, it will
either push the target opponent or follow the path. Once a
unit has moved or pushed, the agent will restart the process
until no unit can act safely any more.

One Step Look Ahead (OSLA) Agent The OSLA agent
uses the game’s forward model to predict the upcoming state
for each of the available actions. Resulting states are rated
according to the SDH heuristic function. A high positive
(resp. negative) score will be used in case the agent won
(lost) the game after applying an action. Finally, the agent
selects the action which yields the highest score.

Monte Carlo Tree Search (MCTS) Agent Over time,
many variants of MCTS have been proposed for various
problem domains (Browne et al. 2012). For the framework,
we implemented a basic version of MCTS using the Upper
Confidence Bounds (UCB) (Auer, Cesa-Bianchi, and Fischer
2002) selection criterion. The MCTS agent uses a tree node
structure to facilitate a search through the game’s state space.
Each node stores an associated game state, a list of available
actions, and a pointer to one child node per action. The tree
is initialised by creating a root node using the provided game
state. During each iteration of the search, the agent first se-
lects a node, then expands it by another child node, further
simulates a rollout, and ends with backpropagating its value
on the path to the root node. A node is selected for expansion
by step-wise going down the tree until a tree node which has
not been fully expanded yet has been found. Each step, the
child node with the highest UCB value is selected. The new
child-node is generated by applying the associated action to
the selected node’s game state. During the tree policy we do
not consider opponent turns, instead we skip them to avoid
the non-determinism of their action selection. The new child
node’s value is determined by applying random actions until
the end of the game or a predetermined depth. Its value is
backpropagated through the visited nodes of the tree until the
root. The search ends in case a maximum number of forward
model calls has been reached. Finally, we return the root’s
child node with the highest visit count.

Rolling Horizon Evolutionary Algorithm (RHEA) Agent
The Rolling Horizon Evolutionary Algorithm searches for
an optimal action sequence with a fixed length (the hori-
zon) (Perez-Liebana, Samothrakis, and others 2013). There-
fore, it first generates a pool of candidate action sequences
which is then continuously modified by an evolutionary al-
gorithm. Each individual is created by step-wise selecting an
action and applying it to the current game state. Afterwards,

the individual’s value is determined using a provided heuris-
tic. Similarly, to the MCTS agent, the RHEA agent skips
the opponent’s turn during rollouts since they introduced
too much non-determinism in the evaluation of an action
sequence. At the beginning of each iteration, tournament
selection is applied to select the best individuals among a
random subset of individuals. The generated pool is modified
by mutation and crossover operators. During mutation, we
iterate over an individuals action list and randomly choose
to replace an action with a random one. Remaining actions
are checked if they would still be feasible according to the
given game state and, if not, replaced by a random feasible
action. During crossover of two individuals, we randomly
select which parent provides the next action. If the action
is not applicable, it is replaced by a random feasible action.
Resulting individuals are reevaluated and added to the next
population. RHEA keeps iterating until a maximal number
of forward model calls has been reached. Thereafter, the first
action of the best-rated individual is returned.

5 Experimental Showcase
We tested the performance of the sample agents by running
a round-robin tournament for each of the three games. We
ran 50 games per match-up between the rule-based, RHEA,
MCTS, and OSLA agents. During these 50 games, we have
randomised 25 initial game states which were played twice,
each player alternating their starting positions. The search-
based agents were configured to use a budget of 2000 forward
model calls (number of times the state is rolled forward) per
selected action. For the RHEA agent, we used a population
size of 1, individuals of length 5, and a mutation rate of 0.1.
The MCTS agent was configured to use a rollout length of
3 and an exploration constant of

√
2. Both SFP agents skip

the opponent’s turn and only optimise the player’s action
sequence. OSLA, MCTS and RHEA use the Strength Differ-
ence Heuristic to evaluate game states. Games are run for a
maximum of 30 turns, ending in a tie if no winner has been
declared when reaching this number.

Table 1 summarises our results, reporting each agent’s win
rate per opponent and across all games. Results show that the
RBC agent is very proficient in playing the game-modes
Kings (avg. win-rate = 0.92) and Healers (0.82). While
MCTS and RHEA agents were able to beat the OSLA agent,
they were no match against the RBC agent. In contrast, the
RBP agent did perform quite well against OSLA (1.00) and
RHEA (0.74) but lost against the MCTS (0.46) agent.

The good performance of both rule-based agents shows
that there is much room for improvement in terms of the
performance of search-based agents. A great starting point
to understand their problems is to analyse the game’s com-
plexity. Figure 4 shows two plots with the average size of the
action-space over time and the number of actions executed
per turn of 50 MCTS vs RHEA games in Kings. Both agents
start with an average of 150 actions per move and execute
between 5 and 6 moves per turn. The large fluctuation of
the action-space size can be explained with the number of
units that are still active in the agent’s turn. After the unit
count has been reduced, the size of both action spaces gets

Agents RBC OSLA MCTS RHEA Average
Kings

RBC — 1.00 0.86 0.90 0.92
RHEA 0.10 0.98 0.60 — 0.56
MCTS 0.14 0.92 — 0.12 0.39
OSLA 0.00 — 0.02 0.00 0.01

Healers
RBC — 0.98 0.82 0.66 0.82
RHEA 0.34 1.00 0.70 — 0.68
MCTS 0.16 0.94 — 0.26 0.45
OSLA 0.02 — 0.06 0.00 0.03

Pushers
RBP — 1.00 0.46 0.74 0.73
MCTS 0.54 1.00 — 0.30 0.61
RHEA 0.26 0.94 0.40 — 0.53
OSLA 0.00 — 0.00 0.00 0.00

Table 1: Winning rate by row player against column agent.
Players sorted, per game, by overall higher winning average.

Figure 4: Logging: MCTS vs RHEA games in Kings.

gradually reduced, although RHEA’s is always a bit higher.
On the other hand, the number of actions executed per turn,
although it also decreases with the game, is higher in RHEA.
This shows that RHEA’s higher winning rate is correlated
with a more precise action selection that maintains a larger
action space through the game.

6 Opportunities and Future Work
The goal of this framework is to allow research in the many
different facets of Game AI research in strategical and tac-
tical games, either turn-based or real-time. These include
games that require a complex decision-making process, from
multi-unit management to resource gathering, technology
trees and long-term planning. Our aim is to provide a frame-
work for i) search (showcased in this paper with SFP agents)
and reinforcement learning agents; and ii) research in game
and level generation, and automatic game tuning, which is
made possible due to the definition of rules, mechanics, units
and action via YAML files. The framework implemented in
C++ aims to provide a much required high execution speed
and interfaces for different programming languages for the
implementation of agents and generators.

The current state of STRATEGA is fully functional for tac-
tical turn-based games and SFP agents, and provides logging
capabilities to analyse game results, as shown in this paper.
It has been, however, developed with a road-map in mind

to incorporate extra games and logging features. Regarding
the former, we plan to incorporate aspects of tactical role-
playing games (object pick-ups, inventories, buff/debuffs
etc.), technology and cultural trees, and resource and econ-
omy management, both for turn-based and real-time games.
Regarding the logging features, the API will be enhanced
so agents can log aspects of the internal representation of
their decision-making process, following the example laid
out in (Volz, Ashlock, and Colton 2015). This will provide a
deeper insight into this task and also facilitate research into
the explainability of the agent’s decision-making process.

Finally, the agent’s API and the highly customisable games
allow tackling research on strategy games from a general
game playing perspective, which is exemplified here by test-
ing several agents in three different games implemented
within the framework. Our intention is to propose this plat-
form as a new competition benchmark in the near future.

Acknowledgements
This work is supported by UK EPSRC research grant
EP/T008962/1.

References
Andersen, P.-A.; Goodwin, M.; and Granmo, O.-C. 2018.
Deep RTS: a Game Environment for Deep Reinforcement
Learning in Real-time Strategy Games. In 2018 IEEE confer-
ence on computational intelligence and games (CIG), 1–8.
Arnold, F.; Horvat, B.; and Sacks, A. 2004. Freeciv learner: a
machine learning project utilizing genetic algorithms. Geor-
gia Institute of Technology, Atlanta.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2/3):235–256.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: an evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47(1):253–279.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; et al. 2016. Openai gym.
Browne, C. B.; Powley, E.; Whitehouse, D.; et al. 2012. A
Survey of Monte Carlo Tree Search Methods. Transactions
on Computational Intelligence and AI in games 4(1):1–43.
Buro, M. 2003. Real-time Strategy Games: A new AI Re-
search Challenge. In IJCAI, volume 2003, 1534–1535.
Firaxis. 1995 – 2020. Civilization.
Genesereth, M.; Love, N.; and Pell, B. 2005. General Game
Playing: Overview of the AAAI Competition. AI magazine
26(2):62–62.
Jones, J., and Goel, A. 2004. Hierarchical judgement compo-
sition: Revisiting the structural credit assignment problem. In
Proceedings of the AAAI Workshop on Challenges in Game
AI, San Jose, CA, USA, 67–71.
Justesen, N.; Uth, L. M.; Jakobsen, C.; et al. 2019. Blood
Bowl: A new Board Game Challenge and Competition for
AI. In 2019 Conference on Games, 1–8. IEEE.

Justesen, N.; Mahlmann, T.; et al. 2017. Playing multiaction
adversarial games: Online evolutionary planning versus tree
search. IEEE Transactions on Games 10(3):281–291.
Kowalski, J.; Mika, M.; Sutowicz, J.; and Szykuła, M. 2019.
Regular Boardgames. Proceedings of the AAAI Conference
on Artificial Intelligence 33:1699–1706.
Midjiwan AB. 2016. The Battle of Polytopia.
Ontañón, S.; Barriga, N. A.; Silva, C. R.; Moraes, R. O.; and
Lelis, L. H. S. 2018. The first microRTS artificial intelligence
competition. AI Magazine 39(1):75–83.
Ontanón, S.; Synnaeve, G.; et al. 2013. A survey of real-
time strategy game AI research and competition in StarCraft.
Trans. on CI and AI in games 5(4):293–311.
Perez-Liebana, D.; Dockhorn, A.; Hurtado-Grueso, J.; and
Jeurissen, D. 2020a. The Design Of “Stratega”: A
General Strategy Games Framework. arXiv preprint
arXiv:2009.05643.
Perez-Liebana, D.; Hsu, Y.-J.; Emmanouilidis, S.; Khaleque,
B.; and Gaina, R. D. 2020b. Tribes: A New Turn-Based
Strategy Game for AI Research. In 2020 AAAI Advancement
for the Artificial Intelligence in Digital Entertainment, 1–8.
Perez-Liebana, D.; Liu, J.; et al. 2019. General Video Game
AI: A Multitrack Framework for Evaluating Agents, Games,
and Content Generation Algorithms. IEEE Transactions on
Games 11(3):195–214.
Perez-Liebana, D.; Lucas, S. M.; et al. 2019. General Video
Game Artificial Intelligence, volume 3. Morgan & Claypool
Publishers. https://gaigresearch.github.io/gvgaibook/.
Perez-Liebana, D.; Samothrakis, S.; et al. 2013. Rolling
horizon evolution versus tree search for navigation in single-
player real-time games. In Proceedings of GECCO, 351–358.
Piette, E.; Soemers, D. J.; Stephenson, M.; Sironi, C. F.;
Winands, M. H.; and Browne, C. 2019. Ludii–The Ludemic
General Game System. arXiv preprint arXiv:1905.05013.
Ponsen, M. J.; Lee-Urban, S.; Muñoz-Avila, H.; Aha, D. W.;
and Molineaux, M. 2005. Stratagus: An open-source game
engine for research in real-time strategy games. Reasoning,
Representation, and Learning in Computer Games 78.
Prochaska, C., et al. 1996. FreeCiv. http://www.freeciv.org/.
Schaul, T. 2013. A video game description language for
model-based or interactive learning. In 2013 IEEE Confer-
ence on Computational Inteligence in Games (CIG), 1–8.
Team, B. D. 2020. The Brood War API (BWAPI) 4.2.0.
https://github.com/bwapi/bwapi.
Tian, Y.; Gong, Q.; Shang, W.; Wu, Y.; and Zitnick, C. L.
2017. ELF: An Extensive, Lightweight and Flexible Research
Platform for Real-time Strategy Games. In Advances in
Neural Information Processing Systems, 2659–2669.
Vinyals, O.; Babuschkin, I.; Chung, J.; Mathieu, M.; Jader-
berg, M.; et al. 2019. Alphastar: Mastering the Real-time
Strategy Game Starcraft II. DeepMind blog 2.
Volz, V.; Ashlock, D.; and Colton, S. 2015. 4.18 Gameplay
Evaluation Measures. Dagstuhl Seminar on AI and CI in
Games: AI-Driven Game Design 122.

