
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 2, JUNE 2010 131

The 2009 Simulated Car Racing Championship
Daniele Loiacono, Pier Luca Lanzi, Julian Togelius, Enrique Onieva, David A. Pelta, Martin V. Butz,

Thies D. Lönneker, Luigi Cardamone, Diego Perez, Yago Sáez, Mike Preuss, and Jan Quadflieg

Abstract—In this paper, we overview the 2009 Simulated Car
Racing Championship—an event comprising three competitions
held in association with the 2009 IEEE Congress on Evolutionary
Computation (CEC), the 2009 ACM Genetic and Evolutionary
Computation Conference (GECCO), and the 2009 IEEE Sympo-
sium on Computational Intelligence and Games (CIG). First, we
describe the competition regulations and the software framework.
Then, the five best teams describe the methods of computational
intelligence they used to develop their drivers and the lessons they
learned from the participation in the championship. The orga-
nizers provide short summaries of the other competitors. Finally,
we summarize the championship results, followed by a discussion
about what the organizers learned about 1) the development of
high-performing car racing controllers and 2) the organization of
scientific competitions.

Index Terms—Car racing, competitions.

Manuscript received December 11, 2009; revised February 25, 2010;
accepted April 26, 2010. Date of publication May 18, 2010; date of current
version June 16, 2010. This work was supported in part by the IEEE Compu-
tational Intelligence Society (IEEE CIS) and the ACM Special Interest Group
on Genetic and Evolutionary Computation (ACM SIGEVO). The simulated car
racing competition of the 2009 ACM Genetic and Evolutionary Computation
Conference (GECCO) was supported by E. Orlotti and NVIDIA. The work
of D. Perez and Y. Saez was supported in part by the Spanish MCyT project
MSTAR, Ref:TIN2008-06491-C04-03. The work of D. Pelta was supported by
the Spanish Ministry of Science and Innovation under Project TIN2008-01948
and the Andalusian Government under Project P07-TIC- 02970.

D. Loiacono, P. L. Lanzi, and L. Cardamone are with the Dipartimento di
Elettronica e Informazione, Politecnico di Milano, Milan 20133, Italy (e-mail:
loiacono@elet.polimi.it; lanzi@elet.polimi.it; cardamone@elet.polimi.it).

J. Togelius is with the IT University of Copenhagen, 2300 Copenhagen S,
Denmark (e-mail: julian@togelius.com).

E. Onieva is with the Industrial Computer Science Department, Centro de
Automática y Robótica (UPM-CSIC), Arganda del Rey, 28500 Madrid, Spain
(e-mail: enrique.onieva@car.upm-csic.es).

D. A. Pelta is with the Computer Science and Artificial Intelligence Depart-
ment, Universidad de Granada, 18071 Granada, Spain (e-mail: dpelta@decsai.
ugr.es).

M. V. Butz and T. D. Lönneker are with the Department of Cognitive
Psychology, University of Würzburg, Würzburg 97070, Germany (e-mail:
butz@psychohologie.uni-wuerzburg.de; thies.loenneker@stud-mail.uni-
wuerzburg.de).

D. Perez was with the University Carlos III of Madrid, Leganes, CP 28911
Madrid, Spain. He is now with the National Digital Research Center, The Digital
Hub, Dublin 8, Ireland (e-mail: diego.perez.liebana@gmail.com).

Y. Sáez is with the University Carlos III of Madrid, Leganes, CP 28911
Madrid, Spain (e-mail: yago.saez@uc3m.es).

M. Preuss and J. Quadflieg are with the Chair of Algorithm Engineering,
Computational Intelligence Group, Department of Computer Science,
Technische Universität Dortmund, Dortmund 44227, Germany (e-mail:
mike.preuss@cs.uni-dortmund.de; jan.quadflieg@cs.uni-dortmund.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2010.2050590

I. INTRODUCTION

D URING the last three years, several simulated car racing
competitions have been organized in conjunction with

leading international conferences. Researchers from around
the world submitted car controllers for a racing game; the
controllers were evaluated by racing against each other on
a set of unknown tracks; the one achieving the best results
won. In 2009, the first simulated car racing championship was
organized as a joined event of three conferences: 2009 IEEE
Congress on Evolutionary Computation (CEC, Trondheim,
Norway), the 2009 ACM Genetic and Evolutionary Compu-
tation Conference (GECCO, Montréal, QC, Canada), and the
2009 IEEE Symposium on Computational Intelligence and
Games (CIG, Milan, Italy). The championship consisted of
nine races on nine different tracks divided into three legs, one
for each conference, involving three Grand Prix competitions
each. Competitors were allowed to update their drivers during
the championship by submitting a different driver to each
leg. Each Grand Prix competition consisted of two stages: the
qualifying stage and the main race. In the qualifying stage, each
driver raced alone for a fixed amount of time. The eight drivers
that performed best during the qualifying stage moved to the
main race event, which consisted of five laps. At the end of
each race event, drivers were scored using the Formula 1 (F1)1

point system. Winners were awarded based on their scores in
each conference competition. At the end, the team that scored
the most points over all three legs won the championship.

In this paper, we overview the 2009 Simulated Car Racing
Championship. In Section II, we describe the background of the
competition and previous competitions related to it. Then, we
describe the software framework developed for the competition
in Section III, while in Section IV, we describe the competition
rules. In Section V, the authors of the five best controllers de-
scribe their own work while the organizers briefly describe the
other competitors. In Section VI, we report the results of the
competition, and in Section VII, we discuss what we learned
from the competitions regarding both 1) the design of competi-
tive car racing controllers and 2) the organization of a scientific
competition involving artificial intelligence in a game context.
Finally, in Section VIII, we discuss the future of the competi-
tion.

II. BACKGROUND

A. Previous Work on Simulated Car Racing

This series of competitions did not arise out of a vacuum; for
the last six years, a substantial number of papers have been pub-
lished about applying computational intelligence techniques to

1http://www.formula1.com/

1943-068X/$26.00 © 2010 IEEE

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

132 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 2, JUNE 2010

simulated car racing in one form or another. Many, but not all,
of these papers are due to the organizers and participants in this
competition. In what is probably the first paper on the topic,
neural networks were evolved to drive a single car on a single
track as fast as possible in a simple homemade racing game
[1]. The paper also established the approach of using simulated
rangefinder sensors as primary inputs to the controller, which
has been adopted in most subsequent papers and in this com-
petition. A number of papers using versions of the same exper-
imental setup investigated, for example, the learning of racing
skills on multiple tracks, competitive coevolution of controllers,
imitation of human driving styles, and evolution of new racing
tracks to suit human driving styles; summaries of these develop-
ments are available in [2] and [3]. Later papers have investigated
different approaches to imitating human driving styles [4], [5],
generating interesting driving [6], and online learning [7].

B. Previous Game-Related Competitions

The simulated car racing competitions are part of a larger
group of competitions that have been organized over the last
few years in association with the IEEE CEC and the IEEE CIG
in particular. These competitions are based on popular board
games (such as Go and Othello) or video games (such as Pac-
Man, Super Mario Bros, and Unreal Tournament). In most of
these competitions, competitors submit controllers in some pro-
gramming language, which interfaces to an application program
interface (API) built by the organizers of the competition. The
winner of the competition usually is the person or the team that
submitted the controller that played the game best, either on
its own (for single-player games such as Pac-Man) or against
others (in adversarial games such as Go). Usually, prizes of a
few hundred U.S. dollars are associated with each competition
and a certificate is always awarded. Usually, there is no require-
ment that the submitted controllers exploit methods of compu-
tational intelligence algorithms but in many cases the winners
turn out to include such computational intelligence methods in
some form or another. Some of these competitions have been
very popular with both conference attendants and the media, in-
cluding coverage in mainstream news channels such as New Sci-
entist and Le Monde. The submitting teams tend to comprise stu-
dents, faculty members, and persons not currently in academia
(e.g., working as software developers).

A number of guidelines for how to hold successful competi-
tions of these sorts have gradually emerged from the experience
of running these competitions. These include having a simple
interface that anyone can get started within a few minutes’ time,
being platform and programming language independent when-
ever possible, and open-sourcing both competition software and
submitted controllers.

There are several reasons for holding such competitions as
part of the regular events organized by the computational in-
telligence community. A main motivation is to improve bench-
marking of learning algorithms. Benchmarking is frequently
done using very simple testbed problems, which may capture
some aspects of the complexity of real-world problems. When
researchers report results on more complex problems, the tech-
nical complexities of accessing, running, and interfacing to the
benchmarking software might prevent independent validation of

and comparison with the published results. Here, competitions
have the role of providing software, interfaces, and scoring pro-
cedures to fairly and independently evaluate competing algo-
rithms and development methodologies.

Another strong incentive for running these competitions is
the stimulation of particular research directions. Existing algo-
rithms get applied to new areas and the effort needed to par-
ticipate in a competition is (or at least should be) less than it
takes to come up with the results for a new problem, writing
a completely new paper. Competitions might even bring new
researchers into the computational intelligence fields, both aca-
demics and nonacademics. Another admittedly big reason for
the stimulating effect, especially for game-related competitions,
is that it simply looks cool and often produces admirable videos.

In 2007, simulated car racing competitions were organized
as part of the IEEE CEC and the IEEE CIG. These competi-
tions used a graphically and mechanically simpler game. Partly
because of the simplicity of the software, these competitions
enjoyed a good degree of participation. The organization, sub-
mitted entries, and results of these competitions were subse-
quently published in [8].

In 2008, simulated car racing competitions were again held
as part of the same two conferences, as well as of the ACM
GECCO conference. Those competitions were similar to those
of the year before in their overall idea and execution, but there
were several important differences. The main difference was
that the event was built around a much more complex car racing
game, the open-source racing game The Open Racing Car Sim-
ulator (TORCS). While the main reason for using this game was
that the more complex car simulations (especially the possibility
for having many cars on the track at the same time with be-
lievable collision handling) poses new challenges for the con-
trollers to overcome, other reasons included the possibility of
convincing, e.g., the game industry that computational intelli-
gence algorithms can handle “real” games and not only academ-
ically conceived benchmarks and the increased attention that a
more sophisticated graphical depiction of the competition gen-
erates (see Fig. 1).

The 2009 championship was technically very similar to the
2008 competitions, using the same game and a slightly updated
version of the competition software package. Our efforts went
into simplifying the installation and usage of the software,
sorting out bugs and clarifying rules rather than adding new
features. The real evolution has been in the submitted con-
trollers, the best of which have improved considerably and,
as can be seen from the descriptions below, now constitute
state-of-the-art applications of computational intelligence (CI)
techniques for delivering high-performing solutions to a prac-
tical problem.

III. THE COMPETITION SOFTWARE

In this section, we briefly describe the competition software
we developed for the championship as an extension of the
TORCS game, which we first adopted for the 2008 World Con-
gress on Computational Intelligence (WCCI) and the 2008 CIG
simulated car racing competitions. In particular, we overview
TORCS and illustrate the modifications we did to introduce an

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

LOIACONO et al.: THE 2009 SIMULATED CAR RACING CHAMPIONSHIP 133

Fig. 1. Screenshot from a TORCS race.

unified sensor model, real-time interactions, and independence
from a specific programming language.

A. The TORCS Game

TORCS [9] is a state-of-the-art open-source car racing simu-
lator. It falls somewhere between being an advanced simulator,
like recent commercial car racing games, and a fully customiz-
able environment, like the ones typically used by researchers
in computational intelligence for benchmarking purposes. On
the one hand, TORCS is the best free alternative to commercial
racing games in that:

i) it features a sophisticated physics engine, which takes into
account many aspects of the racing car (e.g., collisions,
traction, aerodynamics, fuel consumption, etc.);

ii) it provides a rather sophisticated 3-D graphics engine for
the visualization (Fig. 1);

iii) it also provides a lot of game content (i.e., several tracks,
car models, controllers, etc.), resulting in a countless
number of possible game situations.

On the other hand, TORCS has been specifically devised to allow
the users to develop their own car controllers, their own bots, as
separate C++ modules, which can be easily compiled and added
to the game. At each control step (game tick), a bot can access

the current game state, which includes information about the
car and the track as well as the other cars on the track; a bot
can control the car using the gas/brake pedals, the gear stick,
and the steering wheel. The game distribution includes many
programmed bots, which can be easily customized or extended
to build new bots. TORCS users developed several bots, which
often compete in international competitions such as the driver
championship2 or those organized by the TORCS racing board.3

B. Extending TORCS for the Championship

TORCS comes as a standalone application in which the bots
are C++ programs, compiled as separate modules, which are
loaded into main memory when a race takes place. This struc-
ture has three major drawbacks with respect to the organization
of a scientific competition. First, races are not in real time since
bots’ execution is blocking: if a bot takes a long time to de-
cide what to do it simply blocks the game execution. This was
an issue also afflicting the software used in earlier car racing
competitions (e.g., the one organized at the 2007 IEEE CEC).
Second, since there is no separation between the bots and the

2http://speedy.chonchon.free.fr/tdc/
3http://www.berniw.org/trb/

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

134 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 2, JUNE 2010

Fig. 2. Architecture of the API developed for the competition.

simulation engine, the bots have full access to all the data struc-
tures defining the track and the current status of the race. As
a consequence, each bot can use different information for its
driving strategy. Furthermore, bots can analyze the complete
state of the race (e.g., the track structure, the opponents position,
speed, etc.) to plan their actions. Accordingly, a fair comparison
among methods of computational intelligence, using the orig-
inal TORCS platform, would be difficult since different methods
might access different pieces of information. Last but not least,
TORCS restricts the choice of the programming language to
C/C++ since the bots must be compiled as loadable modules
of the main TORCS application, which is written in C++.

The software for the 2009 Simulated Car Racing Cham-
pionship extends the original TORCS architecture in three
respects. First, it structures TORCS as a client–server appli-
cations: the bots run as external processes connected to the
race server through UDP connections. Second, it adds real
time: every game tick (which roughly corresponds to 20 ms of
simulated time), the server sends the current sensory inputs to
each bot and waits for 10 ms (of real time) to receive an action
from the bot. If no action arrives, the simulation continues
and the last performed action is used. Finally, the competition
software creates a physical separation between the driver code
and the race server, building an abstraction layer, that is, a
sensors and actuators model, which 1) gives complete freedom
of choice regarding the programming language used for bots
and 2) restricts the access to the information provided by the
designer.

The architecture of the competition software is shown in
Fig. 2. The game engine is the same as the original TORCS;
the main modification is the new server bot, which manages
the connection between the game and a client bot using UDP.
A race involves one server bot for each client; each server bot
listens on a separate port of the race server. At the beginning,
each client bot identifies itself with a corresponding server bot
establishing a connection. As the race starts, each server bot
sends the current sensory information to its client and awaits
an action until 10 ms (of real time) have passed. Every game
tick, which corresponds to 20 ms of simulated time, the server
updates the state of the race. A client can also request special
actions (e.g., a race restart) by sending a message to the server.

Fig. 3. Details of four sensors: (a) angle and track sensors; (b) trackPos and
four of the 36 opponent sensors.

Each controller perceives the racing environment through a
number of sensor readings, which reflect both the surrounding
environment (the tracks and the opponents) and the current
game state. A controller can invoke basic driving commands
to control the car. Table I reports the list of available sen-
sors; Table II reports all available control actions (see [10]
for additional details); Fig. 3 shows the four sensors in detail
(angle, track and trackPos and four of the 36 opponent sensors).
Controllers had to act quickly on the basis of the most recent
sensory information to properly control the car; a slow con-
troller would be inherently penalized since it would be working
on lagged information.

To further facilitate the participation in the competition, a
client with simple APIs as well as a sample programmed con-
troller were provided for C++ and Java languages and for Win-
dows, Mac, and Linux operating systems.

IV. RULES AND REGULATIONS

The 2009 Simulated Car Racing Championship was a joined
event comprising three competitions held at 1) the 2009 IEEE
CEC, 2) the 2009 ACM GECCO, and 3) the 2009 IEEE CIG.
The championship consisted of nine races on nine different
tracks divided into three legs, one for each conference, in-
volving three Grand Prix competitions each. Teams were
allowed to update their driver during the championship by
submitting a different driver to each leg. Each leg consisted
of two stages: the qualifying and the actual Grand Prix races.
During the qualifying stage, each driver raced alone for 10 000
game ticks, which corresponds to approximately 3 min and 20

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

LOIACONO et al.: THE 2009 SIMULATED CAR RACING CHAMPIONSHIP 135

TABLE I
DESCRIPTION OF AVAILABLE SENSORS

TABLE II
DESCRIPTION OF AVAILABLE EFFECTORS

s of the actual game time. The eight drivers that covered the
largest distances qualified for the actual Grand Prix races. The
actual races took place on the same three tracks used during
the qualifying stage. The goal of each race was to complete
five laps finishing in first place. At the end of each race, the

drivers were scored using the F1 system: ten points to the
first controller that completed the five laps, eight points to the
second one, six to the third one, five to the fourth one, four to
the fifth one, three to the sixth one, two to the seventh one, and
one to the eighth one. In addition, the driver performing the
fastest lap in the race and the driver completing the race with
the smallest amount of damage received two additional points
each. Winners were awarded based on their scoring in each
conference competition. At the end, the winner of the 2009
Simulated Car Racing Championship was the team who scored
the most points summed over all three legs.

V. THE COMPETITORS

Thirteen teams participated in the championship. Five teams
updated their drivers between competitions; all the other seven
teams submitted one driver; two of these teams participated only
in the last leg held at the 2009 IEEE CIG. In this section, the best
five teams describe their controllers at length highlighting: 1)
what methods of computational intelligence they used for on-
line and offline training, 2) how the development of the con-
troller was structured, 3) the main challenges they faced, 4) their
main successes of the approach they followed, and 5) the main
strength and weaknesses of their controller with respect to the
other competitors. At the end of this section, we also give brief
descriptions of the other seven competitors.

A. Enrique Onieva and David A. Pelta

The idea behind this bot is to have a driving architecture based
on a set of simple controllers. Each controller is implemented
as an independent module in charge of a basic driving action;
each module is rather simple and intuitive so that it is very easy
to modify and tune. In particular, the architecture consists of
six modules for 1) gear control, 2) target speed, 3) speed con-
trol, 4) steering control, 5) learning, and 6) opponents man-
agement. Gear control shifts between gears and also interacts
with a “car stuck” detector, by applying the reverse gear. Target
speed determines the maximum allowed speed on a track seg-
ment. Speed control uses the throttle and brake pedals to achieve
the speed determined by the target speed module. It also im-
plements a traction control system (TCS) and an antilock brake
system (ABS) to avoid slipping, by modifying actions over the
throttle and the brake. Steering control acts over the steering
wheel. The learning module detects the segments of the circuit
where the target speed can be increased or reduced; these are
typically long straight segments or segments near bends with a
small curvature radius. Opponents management applies changes
over the steering, gas, and brake outputs to adapt the driving ac-
tions when opponents are close.

1) Development: The first architecture submitted was im-
proved after the 2009 IEEE CEC competition [11] with the ad-
dition of the learning and the opponents management modules.

The learning module became necessary after observing that
the car systematically went off track in the same points every
lap. In particular, the TCS was added because when the car went
off of the track axis, it occasionally slipped and lost control
(possibly getting stuck). We also made several simple modifi-
cations to the other modules to improve the performance. The
overall improvement due to these modifications was impressive

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

136 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 2, JUNE 2010

as the recovery from an off-track position turned out to be much
costlier than the slowing down to keep the car on track. After
few initial tests, we also realized the importance of keeping an
adequate speed in each track segment, which allows the bot to
drive as fast as possible while staying within the track limits.
Instead of defining a priori target speed values, we computed
these values using a fuzzy-logic-based Mamdani controller
[12]. This module is implemented as a fuzzy-rule-based system
using a computational model of the ORdenador Borroso EX-
perimental (Fuzzy Experimental Computer; ORBEX) fuzzy
coprocessor [13]. ORBEX implements fuzzy systems with
trapezoidal shapes for input variables and singleton shapes
for output variables. These models provide a simplification
in the operations necessary to carry out the fuzzy inference
[14], which makes them a good choice to deal with the low re-
sponse times required by autonomous driving tasks [15]–[17].
A simple handmade fuzzy controller with seven rules was
implemented. Results showed a good performance as well as a
very simple and interpretable structure. The results for racing
without opponents were very encouraging when compared with
those obtained by the controllers of the competitions held at
the 2008 IEEE CEC and the 2008 IEEE CIG. The performance
in many of the tracks provided by the TORCS engine was
also evaluated, to assess the correct behavior in critical curve
combinations. We also tried to improve the parameters of the
fuzzy system using a genetic algorithm [18]–[20] but at the end
no clear benefits were achieved.

Also the opponents management module turned out to be crit-
ical, as racing involves many known and unknown factors. For
example, as the strategy of an opponent is unknown, the deci-
sion for braking or overtaking might be a matter of “good luck.”
In the first races involving opponents, the bots provided in the
TORCS distribution were very fast in comparison to our con-
troller; accordingly, our controller was usually overtaken early,
and then it would race alone for the remainder of the race. Later,
to study different racing situations, we conducted an in-depth
analysis of the behavior of our bot when up to 20 opponents were
present. In all the experiments, our bot would always start in the
last position of the grid and we monitored the position achieved
at the end of the race, the damage suffered, and the time per lap
for all the racers. As a result, we implemented a basic racing
strategy involving behaviors to overtake opponents, avoid colli-
sions by a sudden steering movement, and speed reduction be-
fore an imminent collision. At the end, it was observed that just
one or two of the opponents (implemented by TORCS’ bots)
were able to achieve a performance comparable to our architec-
ture.

2) Strengths and Weaknesses: The main strength of our pro-
posal lies in its simplicity and in its highly parametric design,
which allows for further improvements by tuning procedures
based on soft computing methods. In addition, the architecture
of the opponents management module makes it possible to per-
form multiple overtakes while suffering little damage and allows
for the addition of new behaviors (e.g., a behavior to obstruct
being overtaken). Finally, the introduction of a basic learning
module reduces the chances to repeat previous mistakes so as to
significantly improve the lap time during subsequent laps. As for
the weaknesses, our bot currently does not have a global “race

strategy” to, for example, be cautious in the initial laps and ag-
gressive in later ones, or to increase the target speed when it is in
the bottom positions during the race. In our opinion, the design
of such a strategy can lead to a faster and more efficient driver.

B. Martin V. Butz and Thies D. Lönneker—COBOSTAR

The COgnitive BOdySpaces for TORCS-based Adaptive
Racing (COBOSTAR) racer combines the idea of intelligent
sensory-to-motor couplings [21] with the principle of anticipa-
tory behavior [22]. It translates maximally predictive sensory
information into the current target speed and the desired driving
direction. The differences between current and target speeds
and desired and current driving directions then determine the
appropriate control commands.

Adhering to the principle of anticipatory behavior and down-
scaling the sensory space, the basic behavioral control on track
considers only the distance and the angle of the longest dis-
tance-to-track sensor (cf., the “track” sensor in Table I) that is
pointing forward. Off track, where this information is not avail-
able, control is based on the angle-to-track axis information and
the distance from the track (cf., “angle” and “trackPos” sensors
in Table I). Both mappings were optimized by means of com-
putational intelligence techniques. Moreover, various other fea-
tures were added before and after the optimization process, in-
cluding the antislip regulation (ASR), the ABS, the stuck mon-
itor with backup control, the jump controller, the crash detector
for online learning, and the adaptive opponent avoidance mech-
anism.

1) Computational Intelligence for Offline Learning: The
mapping was optimized by means of the covariance matrix
adaptation (CMA) evolution strategy [23]. A complex function
mapped the used sensory information onto the target angle and
the target speed [24]. The fitness of a controller was the distance
raced when executing 10 000 game ticks. The on- and off-track
mapping functions were optimized in separate evolutionary
runs.

Various evaluations showed that the resulting optimized pa-
rameter values were not globally optimal and sometimes not
even optimal for the optimized track. Thus, it was necessary
to do a final evaluation stage in which the most general param-
eter set was determined. We chose those parameter values as the
final control values that yielded the longest covered distance av-
eraged over all available tracks in the TORCS simulator.

2) Computational Intelligence for Online Learning: Besides
the offline optimization of the basic sensory-to-motor mapping,
we also developed several online adaptation techniques to im-
prove the driving behavior while driving multiple laps with op-
ponents.

Seeing the available information, it is generally possible to
adjust behavior in the second lap based on the experience gath-
ered in the first lap. In fact, theoretically, it is possible to scan the
track in the first lap and thus reach a near-optimal behavior in
the second lap. Our approach, however, was slightly more cog-
nitively inspired with the aim of adapting a behavior in subse-
quent laps given a severe crash in a previous lap. Dependent on
the severity of the crash and the controller behavior in the steps
before the crash, the target speed in subsequent laps was lowered

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

LOIACONO et al.: THE 2009 SIMULATED CAR RACING CHAMPIONSHIP 137

before the crash point. Adjustment parameters were hand-tuned
in this case.

Moreover, we employed an opponent monitor mechanism in
order to keep track of the relative velocities of the surrounding
cars. To do so, the distance sensors to opponents had to be
tracked over time and had to be assigned to fictional car objects.
The resulting relative velocity information was then essential
to employ effective opponent avoidance. Treating opponents
essentially as moving obstacles, we projected the estimated
time until a crash occurs onto the distance-to-track sensors, if
this time was smaller than the time until a crash into the cor-
responding track edge. Using these adjusted distance-to-track
sensor values, the steering angle and the target speed were
determined as usual. The result was an emergent opponent
avoidance behavior, which proved to be relatively robust and
effective.

3) Development: The general controller development started
with the design of the sensory-to-motor mapping functions.
Next, CMA optimization was completed for the on-track map-
ping using a rudimentary off-track control strategy. With the
evolved parameters, we then optimized the off-track mapping
and finally did another round of on-track optimization. At this
last stage, we also cross evaluated the evolved parameter sets
on other tracks and chose the most generally successful setting
for the submissions to the competition. While we left the
general sensory-to-motor mappings untouched over the three
competitions in 2009, we improved various other behavioral
aspects.

4) Challenges and Successes: After COBOSTAR’s success
at the 2009 IEEE CEC, we mainly worked on further param-
eter optimization, which however did not yield any real per-
formance improvements. Meanwhile, we overlooked the im-
portance of opponent avoidance, especially because the racers
available in the TORCS simulator itself all drive rather well so
that serious crashes due to opponent interactions were very rare.
The third place at the 2009 ACM GECCO competition con-
vinced us that opponent avoidance must be the crucial factor
(especially also seeing that COBOSTAR was first in the quali-
fying stage) for success in the final competition during the 2009
IEEE CIG. The idea of an opponent monitor and the subsequent
projection of the opponents onto the distance-to-track sensors
yielded a solution that required the least other modifications of
the controller. Additionally, though, we added or improved sev-
eral other strategy aspects including jump detection, stuck re-
covery, off-track speed reduction, and crash adaptation in sub-
sequent laps. The success at the 2009 IEEE CIG proved that the
modifications were worthwhile.

5) Strengths and Weaknesses: The strength of our controller
lies in its simplicity and the use of the most informative sensory
information. For control, anticipatory information is clearly
most effective—and in the TORCS simulation, this is the
distance-to-track sensory information. Moreover, the indirect
mapping from sensors to target speeds and then to the actual
throttle or break application proved effective, yielding smooth
and effective vehicle behaviors. While a strength might also be
seen only in taking the maximum distance sensor information
into account, a weakness certainly is that no additional infor-
mation was considered. For example, the distance sensors next

to the farthest may contain additional information about the
exact radius of the curve ahead. Our biggest competitor [11]
did use this additional information, which may be the reason
why we were partially beaten by their controller. Nonetheless,
also their controller used indirect distance-to-track-based sen-
sory-to-motor mappings and thus generally the same control
principle. The robustness additions we added to our controller
and especially the adaptive opponent avoidance made our con-
troller marginally superior in the final leg of the competition.

C. Luigi Cardamone

This controller is a slightly modified version of the winner
of the 2008 IEEE CIG simulated car racing competition [25],
[26]. The idea behind our approach is to develop a competitive
driver from scratch using as little domain knowledge as possible.
Our architecture consists of an evolved neural network imple-
menting a basic driving behavior, coupled with scripted behav-
iors for the start, the crash–recovery, the gear change, and the
overtaking.

In neuroevolution, the choice of the network inputs and out-
puts plays a key role. In our case, we selected the inputs which
provide information directly correlated to driving actions, that
is, the speed and the rangefinder inputs. We selected two out-
puts: one to control the steering wheel and one to control both
the accelerator and the brake. When the car is on a straight
stretch, the accelerator/brake output is ignored and the car is
forced to accelerate as much as possible. This design forces the
controller to drive as fast as possible right from the beginning
and prevents the evolutionary search from wasting time on safe
but slow controllers.

Opponent management, including overtaking, is a crucial fea-
ture of a competitive driver. In our case, we decided to adopt a
hand-coded policy which adjusts the network outputs when op-
ponents are close. On a straight stretch, our policy always tries to
overtake. When facing a bend, our policy always brakes to avoid
collisions if opponents are too close. This simple policy gave
very good results during the race. In fact, our driver performed
better than faster controllers with less reliable overtaking poli-
cies.

Gear shifting and crash recovery are also managed by two
scripted policies, borrowed from bots available in the TORCS
distribution.

Our first controller was not equipped with a policy for the race
start. In the first leg, at the 2009 IEEE CEC, we realized that the
start was crucial in that 1) several crashes usually occur, which
can severely damage cars, and 2) several overtakes are possible,
which can lead to a dramatic improvement of the final result.
Accordingly, since the 2009 ACM GECCO, we introduced a
very simple hand-coded strategy for the race start that basically
tries to overtake all the other cars, as soon as possible by moving
on one side of the track.

1) Computational Intelligence for Offline Learning: To
evolve the neural network for our controller, we applied
neuroevolution of augmenting topologies (NEAT) [27], one
of the most successful and widely applied methods of neu-
roevolution. NEAT [27] works as the typical population-based
selecto-recombinative evolutionary algorithm: first, the fitness
of the individuals in the population is evaluated; then selection,

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

138 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 2, JUNE 2010

recombination, and mutation operators are applied; this cycle
is repeated until a termination condition is met. NEAT starts
from the simplest topology possible (i.e., a network with all
the inputs connected to all the outputs) and evolves both the
network weights and structure.

In our approach, each network is evaluated by testing it for
one lap. The fitness is a function of the distance raced, the av-
erage speed, and the number of game ticks the car spent outside
the track [25], [26]. The learning was performed just on one
track, namely, Wheel 1 [9], which presents most of the inter-
esting features available in the tracks distributed with TORCS.

2) Strengths and Weaknesses: In our opinion, the major
strength of our approach is that it required just a little domain
knowledge to produce a competitive driver. In fact, even the
hand-coded policies we used can be evolved from scratch with
very little effort (see, for instance, [28]). Our approach also
seems to provide a high degree of generalization in that it
performed reasonably well even if training was carried out on
one track only.

The main weakness of our approach is that it tends to evolve
too careful controllers, which drive at the center of the track
most of the time. Accordingly, our approach cannot produce
drivers following the optimal track trajectory. Another weak-
ness is the lack of any form of online adaptation: once the best
controller is deployed, no further learning takes place. However,
we are currently working toward adding some sort of online
learning at different stages [7].

D. Diego Perez and Yago Saez

The main idea behind our controller is to design an au-
tonomous vehicle guidance system that can tackle a wide
variety of situations. To deal with such a difficult goal, the
driver’s logic has been organized in three modules: 1) a finite
state machine (FSM), 2) a fuzzy logic module, and 3) a clas-
sifier module.

The FSM module is intended to provide the controller with a
sense of state; thus, once the controller has been appropriately
trained, it can remember whether it is preparing for tasks such
as taking a turn, overtaking another car, or veering off the track.
This approach allows the designers to code appropriate behav-
iors inside the states.

The fuzzy logic module retrieves information from the sen-
sors and utilizes it to move between the states of the FSM.
Fuzzy logic systems are well-known and widely used methods
for building controllers [29]. The one developed here works as
the one presented in [30].

The classifier module selects a subset of the input sensors and
tries to predict the type of track stretch the car is in, such as a
bend, a straight, or the approach to or departure from a turn. The
predicted class is used to guide state transitions in the FSM.

1) Computational Intelligence for Offline Learning: Two
methods of computational intelligence were applied offline to
build the controller. The J48 decision tree builder [31] was used
for the classifier module using as inputs the angle between the
car and the track and the distances to the edges. The decision
tree outputs a class value which indicates whether the car is on
a straight stretch, on a bend, or close to a bend. In addition, the

shapes of the fuzzy sets and some internal parameters of the
FSM were tuned offline using a multiobjective genetic algo-
rithm (more precisely, nondominated sorting genetic algorithm
II (NSGA-II) [32]). The evolutionary algorithm was applied to
minimize both the lap time and also the number of mistakes
made while driving (e.g., the damage suffered, the time spent
off track, etc.).

2) Computational Intelligence for Online Learning: The
proposed architecture is not designed for online learning and
thus no method of computational intelligence was applied while
driving.

3) Development: The fundamental assumption underlying
the development of this controller is that if the driver knows
1) what type of stretch is facing and 2) what the car is doing
(e.g., taking a turn, recovering from an off-track position, etc.),
then the driver can take the most appropriate driving decisions.
Accordingly, one of the first tasks we addressed was the identi-
fication of the track shape. For this purpose, we gathered a large
amount of training data by capturing all the input sensors using
several tracks for which the different stretches were manually
identified. We tested several sets of attributes and several classi-
fiers (e.g., PART, J48, neural networks, -means, etc. [33]); at
the end, we selected a decision tree built by J48, which achieved
an overall accuracy of the 97% using just the data regarding the
car’s angle and distance to track edges. Then, we built a set of
fuzzy rules to interpret the other sensory data. Fuzzy sets were
used to determine several race situations such as being outside,
running very fast, being oriented to the left, or having an edge
very close. The shape of this set was initially defined by hand
and eventually tuned using an evolutionary algorithm.

When all the input data have been transformed into fuzzy sets
and classes, we developed an FSM with four states: run, prepare
turn, turn, and backtotrack. The transitions among these states
are triggered by the discretized inputs obtained in the previous
stage. In addition, the current state is updated during each game
tick and generates the values to update the actuators (i.e., throttle
and steering). Finally, the offline training process is performed
by applying NSGA-II to optimize the system parameters so as to
minimize both the lap time and the number of mistakes. For this
purpose, we used four tracks with a wide variety of characteris-
tics. At the end of the optimization process, as all the controllers
from the Pareto front were optimal, we had them competing and
selected the best one to participate in the actual competition.

4) Challenges and Successes: A major challenge we faced
during the development of our controller was the generation of
the data set to build the classifier. For this purpose, we created a
basic controller to collect racing data affected by as little noise
as possible. Since the controller would collect a huge amount of
information, the attribute selection process was crucial to this
phase. Notwithstanding the several challenges, at the end, we
obtained a classifier with an impressive 97% accuracy, which
we consider a great success. As the development also included
a reliability system to ignore possible noise, the resulting classes
were accurately obtained for almost all classifications.

5) Strengths and Weaknesses: The main strength of our ap-
proach is that the controller, at each cycle, has information about
its state (i.e., about what it is doing) and where it is. This sort of
self-consciousness allows it to recover easily from an incident,

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

LOIACONO et al.: THE 2009 SIMULATED CAR RACING CHAMPIONSHIP 139

to come back on the track if the car is outside, or to prepare for
a turn that is coming ahead.

The main weakness is that it was initially designed for
autonomous vehicle guidance. Consequently, it performs quite
well with safe driving on almost all the tracks we tested. How-
ever, it is rather careful for a race car competition which usually
needs to brake or accelerate fully. Due to the fuzzy system
developed here, it is almost impossible to find full-braking or
full-acceleration outputs. This is an important problem when
racing against opponents. To deal with this issue, we plan to
design specific sets of rules to modify the fuzzy system in the
next versions of our driver.

E. Jan Quadflieg and Mike Preuss—Mr. Racer

This controller comprises different modules tackling specific
driving aspects. Some of the modules implement simple hand-
coded heuristics, e.g., the module activating the recovering be-
havior, the steering module that keeps the car on the track, and
the opponent avoidance module. The controller simply focuses
on driving as fast as possible and does not pay attention to the
opponents, as long as they are not too close. The main idea un-
derlying the development of this controller is that to be com-
petitive a driver must be able 1) to detect the type of track
stretch that the car is immediately heading to and then 2) to
approach the forthcoming track segment with an appropriate
speed. We implemented these two features as independent com-
ponents: one bend-detection heuristic which classifies track seg-
ments and a speed matching component learned offline. The
interface between the two components has been deliberately
chosen to be human interpretable and consists of six types of
track segments: straight, straight approaching turn, full speed
turn, medium speed turn, slow turn, and hairpin turn.

The bend-detection classifier works as follows. At first, the
19 forward track sensors are converted to vectors that have the
car as origin. Then, the longest vector on the right-hand side and
the longest vector on the left-hand side are selected by scanning
from the outermost vector inward. When the car is on a straight
stretch that is not too wide, the same vector is selected twice.
When approaching a turn, the vectors are different. The angles
of all the vectors on the right-hand side and the left-hand side up
to the selected longest vectors are added up. The result is a value
which we map onto the discrete track segment classes using a
hand-coded rule. The steering heuristic has been borrowed from
Kinnaird–Heether (described in [34]) and slightly modified by
tripling the steering angle for in hairpin bends while doubling it
in slow bends.

1) Computational Intelligence for Offline Learning: Once
the class of the approaching track segment is reliably detected
by the bend-detection classifier, it has to be matched with an ap-
propriate speed. We applied a simple evolution strategy
for adapting a speed table on a given track. The table consists of
six rows for the segment types and five columns of speed values
spread over the range of feasible values, namely, 34, 102, 170,
238, and 306 km/h. Each entry contains a real variable bound
between meaning full brake and standing for full accel-
eration. For driving according to the table, we look up the two
entries corresponding to the two speed values best matching our
current speed and interpolate the reaction linearly. Starting from

a rather conservative setting with a full acceleration only set for
low speeds, the table is evolved by driving a fixed time (around
one to three laps, depending on the speed) for each newly gen-
erated individual and measuring the distance covered.

While experimenting, we noted that the most robust con-
trollers are evolved when a track with a wide variety of fea-
tures (e.g., possibly including all different track segment types)
is chosen for learning.

2) Computational Intelligence for Online Learning: On-
line learning is not incorporated into this controller yet. This
is deemed as a future project when the potentials of offline
learning are fully explored.

3) Development: The modular design of our controller stems
from the two principle assumptions that 1) to simplify develop-
ment, not too many different tasks should be treated at once; and
2) APIs should be human interpretable to enable programmers
to check whether a specific behavior is coherent and comparable
to the actions of a human driver.

4) Challenges and Successes: We faced two major chal-
lenges which we successfully solved 1) to come up with a good
heuristic to recognize the type of the approaching track segment
and 2) to define a good encoding for the offline learning of the
speed control.

5) Strengths and Weaknesses: Mr. Racer is very good at de-
tecting the different types of bends and at staying on track. How-
ever, it still drives too slowly from time to time and it is not fully
capable of dealing with opponents.

F. The Other Competitors

In addition to the five best competitors, seven additional
teams entered the championship at various stages.

1) Chung-Cheng Chiu, Academia Sinica, Taipei, Taiwan,
submitted a hand-coded and hand-tuned controller. The
steering works by minimizing the angle between the direc-
tion of the car and the direction of the track sensor which
returns the largest distance to the edge. Thus, the steering
moves the car toward the wider surrounding empty space.
The speed control and the stuck detection are adapted
from the ones of the example controller included in the
competition software package.

2) Jorge Munoz, Carlos III University of Madrid, Madrid,
Spain, submitted a hand-coded controller with 29 parame-
ters which were tuned by an evolutionary algorithm. Each
set of parameters was evaluated by using it to drive on ten
different tracks for 10 000 game ticks each. The fitness was
computed as a function of the distance raced and the top
speed and more precisely as (distRaced/10 000) (top-
Speed/400). The controller is an updated version of the one
described in [35].

3) Dana Vrajitoru and Charles Guse, Indiana University
South Bend, South Bend, submitted a hand-coded con-
troller. The desired speed is computed with a basic
approach that scales the speed based on the distance to the
next bend. The desired steering is computed based on the
type of the next bend: a hand-tuned heuristic is applied to
identify sharp bends using the track sensors.

4) Paolo Bernardi, Davide Ciambelli, Paolo Fiocchetti, An-
drea Manfucci, and Simone Pizzo, University of Perugia,

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

140 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 2, JUNE 2010

TABLE III
RESULTS OF THE SECOND EVALUATION STAGE OF THE 2009 IEEE CEC LEG; SCORES ARE COMPUTED AS THE MEDIAN OVER SIX RACES

Perugia, Italy, submitted a reactive rule-based controller
constructed partly through the imitation of human driving
styles. An array of sensors including speed, track angle,
and edge distances was discretized, leading to a total of
685 900 possible sensor states. Logs of human gameplay
were then used to infer rules from each sensor state to the
appropriate actions. This rule set was subsequently manu-
ally tuned.

5) Ka Chun Wong, the Chinese University of Hong Kong,
Hong Kong, submitted a hand-coded controller, called sim-
plicity, that implements a relatively straightforward mecha-
nism to compute the desired speed and the desired direction
using both track edge and opponent sensors. The controller
also deals with special cases (e.g., when the car is outside
the asphalt or it is stuck) and includes an ABS filter for
braking. Interestingly, the controller memorizes the points
along the track where crashes occurred by storing a list of
the distFromStartLine values for each crash; in subsequent
laps, the controller slows down when approaching one of
such points.

6) Witold Szymaniak, Poznań University of Technology,
Poznań, Poland, submitted a reactive controller repre-
sented as a directed acyclic graph, which was evolved with
Cartesian genetic programming [36] implemented using
the evolutionary computation in Java (ECJ) package [37].
The set of inputs is restricted to angle to track, front track
sensor, speed, lateral speed, and distRaced) and two com-
posite inputs relating to track curvature; most rangefinder
sensors are never used directly. The function nodes imple-
ment standard arithmetic, trigonometric, and conditional
functions. Outputs are interpreted as the desired speed and
angle. The gear shifting was taken from the example Java
controller and was coupled with a custom crash recovery
mechanism and ABS. The fitness used during evolution
was rather complicated and took into account the distance
raced (relative to an example reference controller), the
damage taken, and the difficulty of the track segment.

7) Marc Ebner and Thorsten Tiede, Eberhard Karls Univer-
sität of Tübingen, Tübingen, Germany, submitted a con-
troller evolved with genetic programming using the ECJ
package [37]. The controller consists of two evolved trees:
one controlling the steering angle and one controlling ac-

celeration and deceleration. The controller inputs were de-
fined as a subset of the sensors provided by the competition
software. The fitness function was computed as the average
performance on a set of five different tracks. The detailed
description of the controller is provided in [38].

8) Wolf-Dieter Beelitz, BHR Engineering, Pforzheim, Ger-
many, submitted a rather sophisticated hand-coded con-
troller. This was developed by adapting one of the best con-
trollers, Simplix,4 available in the TORCS community [9]
to the setup of the Simulated Car Racing Competition.

VI. RESULTS OF THE COMPETITION

The championship was organized in three legs, each one
held at a major conference: the 2009 IEEE CEC, the 2009
ACM GECCO, and the 2009 IEEE CIG. Each leg involved
three Grand Prix competitions on three previously unknown
tracks; each Grand Prix competition consisted of two stages:
the qualifying stage and the actual race.

In the first qualifying stage, each controller raced alone in
each of the three tracks and its performance was measured as
the distance covered in 10 000 game ticks (approximately, 3 min
and 20 s of the actual game time). For each track, the controllers
were ranked according to the distance covered (the higher the
covered distance, the better the rank) and then scored using the
F1 point system.5

The eight controllers which received the highest total score
during the qualifying stage moved to the next stage and raced
together in each one of the three tracks. Each race consisted
of five laps. Controllers were scored using the F1 point system
based on their arrival order. In addition, two bonus points were
awarded both 1) to the controller that achieved the fastest lap
during the race and 2) to the controller that suffered the least
amount of damage during the race. To obtain a reliable evalua-
tion, for each track, we performed eight races using eight dif-
ferent starting grids. The first starting grid was based on the
scores achieved by the controllers during the qualifying. In the
next seven races, the starting grid was generated by shifting the
previous grid as follows: the drivers in the first seven positions
were moved backward by one position, while the driver in the

4http://www.wdbee.gotdns.org:8086/SIMPLIX/SimplixDefault.aspx
5http://www.formula1.com/

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

LOIACONO et al.: THE 2009 SIMULATED CAR RACING CHAMPIONSHIP 141

TABLE IV
RESULTS OF THE QUALIFYING STAGE AT THE 2009 IEEE CEC LEG;

STATISTICS ARE MEDIANS OVER TEN RUNS

last position was moved to the first position. As a result, every
driver had the chance to start the race in every position of the
grid. For each track, the final score of a driver was computed as
the median of its scores over the eight races performed on the
same track. Note that only this score was considered for the pur-
pose of the championship.

A. Results of the First Leg (The 2009 IEEE CEC)

The first leg of the championship was part of the competition
program of the 2009 IEEE CEC, chaired by Simon Lucas.
It involved two tracks taken from the TORCS distribution
(Michigan Speedway and Alpine 2) and one track (Corkscrew)
available from the Speed Dreams website,6 a fork of the TORCS
project. We received five submissions respectively from 1) En-
rique Onieva and David A. Pelta (Section V-A), 2) Martin V.
Butz and Thies D. Lönneker (Section V-B), 3) Diego Perez and
Yago Saez (Section V-D), 4) Jan Quadflieg and Mike Preuss
(Section V-E), and 5) Chung-Cheng Chiu (Section V-F). To
compare the new submissions with the previous editions, we
also included the champion of the previous competition by
Luigi Cardamone (Section V-C) to the pool.

Table IV reports the results of the qualifying stage and in-
cludes (as a reference) the performance of the example driver
(SimpleDriver) distributed with the competition software and
the best hand-coded controller provided in TORCS (Berniw). All
the submitted controllers outperformed the driver provided with
the competition software. This result per se represents an im-
provement with respect to the previous competitions [34] where
only few entries performed better than the simple controller.
More importantly, for the first time, a competitor (i.e., the driver
by Butz and Lönneker) was able to outperform one of the fastest
bots with full information access (Berniw) in two tracks out
of three. The same driver was also clearly the best performing
among the six entries, whereas there was no clear difference
among the other drivers. However, there was an overall improve-
ment with respect to the previous edition in that the previous
champion scored worse than all the competitors except for Perez
and Saez (see Table IV).

6http://speed-dreams.sourceforge.net/

The second stage of the evaluation process was performed
including all the submitted entries, as they are fewer than the
eight available slots. Accordingly, for each track, we ran only six
races instead of the eight planned. Table IV reports the scores of
all the entries in each track. The winner of the qualifying stage is
also the winner of this second stage: in fact, the entry of Butz and
Lönneker achieved overall the highest score winning the first leg
of the championship. However, as can be noted, the differences
among the drivers are now dramatically reduced and, except for
the first two positions, the results in Table IV do not confirm the
results of the qualifying (Table IV).

B. Results of the Second Leg (The 2009 ACM GECCO)

The second leg was organized in conjunction with the 2009
ACM GECCO. It involved three tracks available in the TORCS
distribution (Dirt 3, Alpine 2, and E-Road) and, for the first time,
a rather challenging dirt track was included. We received five ad-
ditional submissions (see Section V-F) from 1) Paolo Bernardi
and colleagues, 2) Dana Vrajitoru and Charles Guse, 3) Ka Chun
Wong, 4) Witold Szymaniak, and 5) Jorge Munoz. In addition,
we received updates from four teams: 1) Butz and Lönneker, 2)
Perez and Saez, 3) Cardamone, and 4) Onieva and Pelta.

Table V reports the results of the qualifying stage. When com-
pared to the results of the first leg, the performance of the top
controllers is now much closer, whereas the difference between
the top controllers and the other ones is more evident. The top
controllers are still very competitive with respect to Berniw, one
of the best programmed controllers available in TORCS. In fact,
the driver by Butz and Lönneker outperforms Berniw on the
E-Road track and the driver by Onieva and Pelta has a very sim-
ilar performance on the Dirt 3 track. Furthermore, all the sub-
mitted controllers except two outperformed the SimpleDriver
(the only exceptions being the Chiu’s and the Szymaniak’s con-
trollers in the Dirt 3 track). Unfortunately, during the qualifying
stage, the driver by Quadflieg and Preuss was not able to com-
plete the evaluation process in the E-Road track because the con-
troller software crashed repeatedly during the process. Accord-
ingly, this controller did not qualify for the second evaluation
stage.

Table VI reports the outcome of the second stage. Sur-
prisingly, the results did not confirm the outcome of the first
stage completely in that the fastest controller (Butz and Lön-
neker) was outperformed by slower controllers. The analysis
of the videos from the races suggests that slower controllers
implemented a better opponent and crash management than
COBOSTAR and they could deal more effectively with com-
plex situations (for instance, during the race start). As a result,
the second leg was won by Onieva and Pelta, who achieved the
highest score over the three races.

C. Results of the Third Leg (The 2009 IEEE CIG)

The final leg was held during the 2009 IEEE CIG. It involved
one track (Forza) from the TORCS distribution and two tracks

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

142 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 2, JUNE 2010

TABLE V
RESULTS OF THE QUALIFYING OF THE 2009 GECCO LEG; STATISTICS ARE MEDIANS OVER TEN RUNS

TABLE VI
RESULTS OF THE SECOND STAGE OF THE 2009 GECCO LEG;

SCORES ARE MEDIANS OVER EIGHT RACES

(Buzzard Raceway and Migrants) from the Speed Dreams web-
site.7 We received two additional submissions from 1) Marc
Ebner and Thorsten Thiede, and 2) Wolf-Dieter Beelitz. We also
received updates from 1) Butz and Lönneker, 2) Perez and Saez,
3) Onieva and Pelta, 4) Munoz, and 5) Quadflieg and Preuss.

Table VII reports the results from the qualifying rounds. As
can be noted, the results are similar to the ones of the second leg
held at the 2009 GECCO (Table V). However, the gap between
the best controllers and the other ones is now significantly re-
duced. Most importantly, all the drivers outperformed the Sim-
pleDriver in all the tracks and the top controllers performed sim-
ilarly or even better than Berniw (e.g., in the Migrants track).
Table VI reports the results from the actual races. Interestingly,
the results of the races are coherent with the results of the qual-
ifying rounds. In particular, the driver by Butz and Lönneker

7http://speed-dreams.sourceforge.net/

and the driver by Onieva and Pelta confirmed to be the best con-
trollers: the final leg was won by Butz and Lönneker, who scored
just one point more than Onieva and Pelta.

D. Final Standings

Table IX reports the scores of the three legs and the final
score achieved during the three legs of the championship in the
final standings of the championship. Enrique Onieva and David
Pelta won the 2009 Simulated Car Racing Championship. CO-
BOSTAR, by Butz and Lönneker, which won the first and third
leg, was the runner up. The winner of the previous competition
held at the 2008 IEEE CIG, by Luigi Cardamone, finished in
third place, followed by all the other drivers that entered the
championship from the beginning.

E. Discussion

The quality of the controllers submitted to the championship
is encouraging. All the controllers performed significantly
better than the participants of the previous editions. The best
competitors performed similarly to Berniw, one of the best
controllers distributed with TORCS. Interestingly, most of the
competitors significantly improved their performance along the
championship. In particular, the best performing drivers in the
championship were also the ones that improved their opponents
and crash management capabilities the most.

VII. LESSONS LEARNED

In this section, the organizers would like to share what they
believe they have learned from the organization of the 2009 Sim-
ulated Car Racing Championship.

A. On the Development Process

Since the 2008 WCCI, the simulated car racing competition
has been based on TORCS and used the same API so that all the
controllers submitted so far could be compared directly. This al-
lowed the competitors to evolve and tune their approaches over

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

LOIACONO et al.: THE 2009 SIMULATED CAR RACING CHAMPIONSHIP 143

TABLE VII
RESULTS OF THE QUALIFYING OF THE 2009 CIG LEG; STATISTICS ARE COMPUTED AS THE MEDIAN OVER TEN RUNS

TABLE VIII
RESULTS OF THE SECOND EVALUATION STAGE OF THE 2009 CIG LEG;

SCORES ARE COMPUTED AS THE MEDIAN OVER EIGHT RACES

a long timespan and to compare their controllers with the com-
petitors of the previous editions. As a result, the performance of
the submissions improved significantly over time: the winners
of the 2009 championship outperform the winners of the 2008
competitions with a good margin, and are competitive with one
of the best controllers provided with TORCS (Berniw) despite
the fact that they have access to less information. In fact, while
our competitors have access to a rather simple sensory model
(Section IV), the controllers provided with TORCS have access
to accurate and complete knowledge about the whole track ge-
ometry, about the physics of the car (e.g., the friction of the tires,

TABLE IX
FINAL STANDINGS OF THE 2009 SIMULATED CAR RACING CHAMPIONSHIP

the weight of the car, the power of the brakes, etc.), and about
position and speed of the opponents.

The results of the championship showed significant improve-
ments of the controllers submitted in terms of reliability and
overtaking/opponent management. While early controllers fre-
quently crashed and sometimes failed to get back on track (espe-
cially when faced with tracks dissimilar to those they had been
trained on), the best controllers now rarely crash and always get
back on track quickly. In addition, while early controllers often
slammed straight into their opponents, the best controllers now
keep a safe distance from opponents and choose better opportu-
nities for overtaking. Drawing on the body of work submitted to
the simulated car racing competitions and the results obtained,
we make the following observations.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

144 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 2, JUNE 2010

1) Offline optimization works: All the best drivers had their
parameters tuned using an evolutionary algorithms (e.g.,
to evolve the weights of a neural network or to tune the
parameters of a hand-coded controller) while hand-tuned
controllers were mainly found at the bottom of the league
table (Table IX).

2) Online learning works: Several competitors included some
simple form of online learning to remember previous crash
situations so as to adapt their driving style (e.g., by slowing
down) in subsequent laps. These mechanisms were usually
built on top of an existing controller and worked according
to a subsumption-like mechanism. Whether a more sophis-
ticated mechanism of online learning might be practical is
still an open issue, as none of the competitors took such
type of approach.

3) Imitation still needs work: Some competitors tried to de-
velop drivers by imitating human players using forms of
supervised learning. However, the performance was lim-
ited and the approach has been abandoned by most of the
participants. This is coherent with the published works
which show that, in car racing, imitation-based learning
generally fails to produce competitive controllers (e.g., [4],
[35], and [5]).

B. On the Organization

The championship has been a success both in quantitative
terms (for the number of submitted controllers, of attendees at
the competition sessions, of mentions in the media, etc.) and
in qualitative terms (the scientific quality of the controllers was
rather high as demonstrated by the several related publications
[35], [30], [24], [11]). Based on their three years experience with
car racing competitions, the organizers would like to draw the
following considerations.

1) It takes time: To begin with, organizing a competition takes
time. The competition software needs to be debugged, op-
timized, and streamlined.

2) Make it worthwhile: Competitions are typically run as
standalone events. When faced with the announcement of
a new competition, researchers have to decide whether the
investment is worth and ask themselves several questions.
Do they have a chance to win? Will they publish from
it? Will there be another edition? Will they find enough
information and support?
We believe that successful competitions need to be run as
a series, evolving gradually. Competitors need time to de-
velop and tune their contributions. New competitors, who
have not taken part in previous editions will get enticed by
seeing and reading about a competition and join a later edi-
tion, bringing fresh ideas. Later editions of a competition
will thus almost always have more and better contributions.
The competition software should be as backwards compat-
ible as possible, so that contributions to earlier editions can
easily be entered in new editions of a competition. A com-
plete break with tradition (rules and/or API) should only
be made when there is a very compelling reason, such as
the problem being essentially solved and not much further
improvement can be expected.

3) It is about simplicity and being open: The competition
software must provide a very simple interface (API) to at-
tract as many competitors as possible. It must also provide
simple examples of controllers and training algorithms,
so that it should take little effort to get started with the
competition. The competition software should be open to
any programming language and to any operative system.
In fact, some of the best controllers of this championship
were written in C++, others in Java (in an earlier edition of
the competition, one competitor used Perl), while our com-
petitors developed both on Linux and Windows (unfortu-
nately, we were not able to provide a Mac environment due
to some compiling issues with TORCS). Finally, competi-
tion software should be open. In fact, there are no down-
sides to having the competition software be open source,
only upsides, as competitors can help out with debugging
the package, and can get an understanding of how it works
faster and without asking the organizers (less effort for the
latter). Accordingly, submissions should also be manda-
tory open sourced, as being able to inspect the winning
entries increases the value of the competition for the sci-
entific community, and also works as an extra safeguard
against the unlikely possibility of cheating.

4) It is about the Students: In our experience, game-related
competitions make for excellent student assignments, at
all levels. Most of the best submissions we received in-
volved Ph.D. students. In addition, we have been told that
the single competitions have also been used as student as-
signments in several courses at the undergraduate and grad-
uate levels.

5) It is about learning: Finally, the organizers would like to
point out that this competition, in its current form, is not
meant to (and cannot) measure the performance of learning
algorithms. Nevertheless, it still gives researchers a good
chance to prove that learning algorithms are effective, as it
is in principle possible for a nonlearning algorithm to win
the competition.

VIII. OUTLOOK

The simulated car racing competitions will continue, given
that there is suitable interest from the academic community. Our
aim is to take the simulated car racing competition a step further,
but, at the same time, to keep the API and the rules as similar as
possible to the ones used in previous editions. This will allow
previous competitors to enter the new competition with almost
no additional effort. In particular, we plan to extend the current
setup of the competition as follows. First, we will provide a more
modular implementation of the sample controller to simplify
as much as possible the development of an entry based on it.
Second, we will extend the sensory inputs, adding also noise.
Third, the effectors will be extended to include the control of the
clutch. In addition, we will increase the number of laps of the
race so that damage control will become a much more relevant
factor. Finally, we will introduce a warm-up stage, where the
controllers will race alone on the track before being evaluated.
The aim of the warm-up stage is to encourage the application
of online learning techniques that may allow the optimization

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

LOIACONO et al.: THE 2009 SIMULATED CAR RACING CHAMPIONSHIP 145

of the controllers for the track before the actual evaluation takes
place.

Besides the main simulated car racing competition, we think
that other forms of simulated car racing competition might be
interesting. In particular, specific competition tracks might focus
on the game content generation, on developing an adaptive AI,
and on improving the user game experience.

ACKNOWLEDGMENT

The organizers of the championship, D. Loiacono, P. L.
Lanzi, and J. Togelius, would like to thank all the competitors,
without whom there would be no competition or championship
at all.

REFERENCES

[1] J. Togelius and S. M. Lucas, “Evolving controllers for simulated car
racing,” in Proc. Congr. Evol. Comput., 2005, pp. 1906–1913.

[2] J. Togelius, S. M. Lucas, and R. De Nardi, “Computational intelli-
gence in racing games,” in Advanced Intelligent Paradigms in Com-
puter Games, N. Baba, L. C. Jain, and H. Handa, Eds. New York:
Springer-Verlag, 2007.

[3] J. Togelius, “Optimization, imitation and innovation: Computational
intelligence and games,” Ph.D. dissertation, Dept. Comput. Electron.
Syst., Univ. Essex, Colchester, U.K., 2007.

[4] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Learning drivers for
TORCS through imitation using supervised methods,” in Proc. IEEE
Symp. Comput. Intell. Games, Sep. 2009, pp. 148–155.

[5] N. van Hoorn, J. Togelius, D. Wierstra, and J. Schmidhuber, “Robust
player imitation using multiobjective evolution,” in Proc. IEEE Congr.
Evol. Comput., May 2009, pp. 652–659.

[6] A. Agapitos, J. Togelius, S. Lucas, J. Schmidhuber, and A. Konstan-
tinidis, “Generating diverse opponents with multiobjective evolution,”
in Proc. IEEE Symp. Comput. Intell. Games, Dec. 2008, pp. 135–142.

[7] L. Cardamone, D. Loiacono, and P. Lanzi, “On-line neuroevolution
applied to the open racing car simulator,” in Proc. IEEE Congr. Evol.
Comput., May 2009, pp. 2622–2629.

[8] J. Togelius, S. M. Lucas, H. D. Thang, J. M. Garibaldi, T.
Nakashima, C. H. Tan, I. Elhanany, S. Berant, P. Hingston, R.
M. MacCallum, T. Haferlach, A. Gowrisankar, and P. Burrow,
“The 2007 IEEE CEC simulated car racing competition,” Ge-
netic Programm. Evolvable Mach. 2008 [Online]. Available:
http://dx.doi.org/10.1007/s10710-008-9063-0

[9] The Open Racing Car Simulator, [Online]. Available: http://torcs.
sourceforge.net/

[10] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Simulated Car Racing
Championship 2009: Competition software manual,” Dipartimento di
Elettronica e Informazione, Politecnico di Milano, Milan, Italy, Tech.
Rep. 2009.04, 2009.

[11] E. Onieva, D. Pelta, J. Alonso, V. Milanés, and J. Pérez, “A modular
parametric architecture for the TORCS racing engine,” in Proc. IEEE
Symp. Comput. Intell. Games, 2009, pp. 256–262.

[12] L. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, pp. 338–353, 1965.
[13] R. Garcia and T. de Pedro, “Modeling a fuzzy coprocessor and its

programming language,” Mathware Soft Comput., vol. 5, no. 2–3, pp.
167–174, 1998.

[14] M. Sugeno, “On stability of fuzzy systems expressed by fuzzy rules
expressed with singletons consequents,” IEEE Trans. Fuzzy Syst., vol.
7, no. 2, pp. 201–224, Apr. 1999.

[15] E. Onieva, V. Milanés, J. Perez, J. Alonso, and T. de Pedro, “Soft com-
puting techniques for autonomous driving,” Mathware Soft Comput.,
vol. 16, no. 1, pp. 45–58, 2009.

[16] J. Alonso, N. Serrano, T. de Pedro, C. González, and R. Garcia, “Opti-
mization of an autonomous car fuzzy control system via genetic algo-
rithms,” in Proc. Int. Workshop Genetic Fuzzy Syst., 2005, pp. 101–106.

[17] V. Milanés, J. E. Naranjo, C. González, J. Alonso, and T. de Pedro,
“Autonomous vehicle based in cooperative GPS and inertial systems,”
ROBOTICA, vol. 26, pp. 627–633, 2008.

[18] F. Herrera, M. Lozano, and J. Verdegay, “Tuning fuzzy logic con-
trollers by genetic algorithms,” Int. J. Approximate Reason., vol. 12,
pp. 299–315, 1995.

[19] A. Homaifar and E. McCormick, “Simultaneous design of membership
functions and rule sets for fuzzy controller using genetic algorithms,”
IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 129–139, Apr. 1995.

[20] E. Onieva, J. Alonso, J. Perez, V. Milanes, and T. de Pedro, “Au-
tonomous car fuzzy control modeled by iterative genetic algorithms,”
in Proc. IEEE Int. Conf. Fuzzy Syst., Aug. 2009, pp. 1615–1620.

[21] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology.
Cambridge, MA: MIT Press, 1984.

[22] M. V. Butz, O. Sigaud, and P. Gérard, “Anticipatory behavior: Ex-
ploiting knowledge about the future to improve current behavior,” in
Anticipatory Behavior in Adaptive Learning Systems: Foundations,
Theories, and Systems, ser. Lecture Notes in Computer Science,
M. V. Butz, O. Sigaud, and P. Gérard, Eds. Berlin, Germany:
Springer-Verlag, 2003, pp. 1–10.

[23] N. Hansen and A. Ostermeier, “Completely derandomized self-adapta-
tion in evolution strategies,” Evol. Comput., vol. 9, pp. 159–195, 2001.

[24] M. V. Butz and T. Lönneker, “Optimized sensory-motor couplings plus
strategy extensions for the TORCS car racing challenge,” in Proc. IEEE
Symp. Comput. Intell. Games, 2009, pp. 317–324.

[25] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Evolving competitive
car controllers for racing games with neuroevolution,” in Proc. 11th
Annu. Conf. Genetic Evol. Comput., New York, 2009, pp. 1179–1186.

[26] L. Cardamone, “On-line and off-line learning of driving tasks for
the open racing car simulator (TORCS) using neuroevolution,” M.S.
thesis, Dipartimento di Elettronica e Informazione, Politecnico di
Milano, Milan, Italy, 2008.

[27] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, pp. 99–127, 2002.

[28] M. Verzola, “Neuroevolution of augmenting topologies applied to the
open racing car simulator,” M.S. thesis, Dipartimento di Elettronica e
Informazione, Politecnico di Milano, Milan, Italy, 2007, supervisor:
Prof. P. L. Lanzi; co-supervisor: Dr. D. Loiacono.

[29] L. Zadeh, “A new direction in AI—Toward a computational theory of
perceptions,” AI Mag., vol. 22, no. 1, pp. 73–84, 2001.

[30] D. Perez, G. Recio, Y. Saez, and P. Isasi, “Evolving a fuzzy controller
for a car racing competition,” in Proc. IEEE Symp. Comput. Intell.
Games, Sept. 2009, pp. 263–270.

[31] J. Quinlan, C4.5: Programs for Machine Learning, ser. Machine
Learning, 1st ed. San Mateo, CA: Morgan Kaufmann, Jan. 1993.

[32] S. A. K. Deb, A. Pratap, and T. Meyarivan, “A fast and elitist multi-
objective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2000.

[33] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, ser. Data Management Systems, 2nd ed. San
Mateo: Morgan Kaufmann, Jun. 2005.

[34] D. Loiacono, J. Togelius, P. Lanzi, L. Kinnaird-Heether, S. Lucas, M.
Simmerson, D. Perez, R. Reynolds, and Y. Saez, “The WCCI 2008
Simulated Car Racing Competition,” in Proc. IEEE Symp. Comput. In-
tell. Games, Dec. 2008, pp. 119–126.

[35] J. Munoz, G. Gutierrez, and A. Sanchis, “Controller for TORCS created
by imitation,” in Proc. IEEE Symp. Comput. Intell. Games, Sep. 2009,
pp. 271–278.

[36] J. F. Miller and S. L. Harding, “Cartesian genetic programming,” in
Proc. Conf. Companion Genetic Evol. Comput., New York, 2008, pp.
2701–2726.

[37] A Java-Based Evolutionary Computation Research System, [Online].
Available: http://cs.gmu.edu/eclab/projects/ecj/

[38] M. Ebner and T. Tiede, “Evolving driving controllers using genetic
programming,” in Proc. IEEE Symp. Comput. Intell. Games, Sep. 2009,
pp. 279–286.

Daniele Loiacono was born in Lecco, Italy, in 1980.
He graduated cum laude in computer engineering
from Politecnico di Milano, Milan, Italy, in 2004 and
received the Ph.D. in computer engineering from
the Department of Electronics and Information of
Politecnico di Milano in 2008.

Currently, he is a Postdoctoral Researcher at
the Department of Electronics and Information,
Politecnico di Milano. His main research interests
include machine learning, evolutionary computation,
and computational intelligence in games.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

146 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 2, JUNE 2010

Pier Luca Lanzi was born in Turin, Italy, in 1967.
He received the Laurea degree in computer science
from the Università degli Studi di Udine, Udine, Italy,
in 1994 and the Ph.D. degree in computer and au-
tomation engineering from the Politecnico di Milano,
Milan, Italy, in 1999.

Currently, he is an Associate Professor at the De-
partment of Electronics and Information, Politecnico
di Milano. His research areas include evolutionary
computation, reinforcement learning, and machine
learning. He is interested in applications to data

mining and computer games.
Dr. Lanzi is a member of the editorial board of the Evolutionary Computation

Journal, the IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI
IN GAMES, and Evolutionary Intelligence. He is also the Editor-in-Chief of the
SIGEVOlution, the newsletter of the ACM Special Interest Group on Genetic
and Evolutionary Computation.

Julian Togelius received the B.A. degree in phi-
losophy from Lund University, Lund, Sweden, in
2002, the M.Sc. degree in evolutionary and adaptive
systems from University of Sussex, Sussex, U.K., in
2003, and the Ph.D. degree in computer science from
the University of Essex, Colchester, U.K., in 2007.

Currently, he is an Assistant Professor at the
IT University of Copenhagen (ITU), Copenhagen,
Denmark. Before joining ITU, he was a Postdoctoral
Researcher at the Dalle Molle Institute for Arti-
ficial Intelligence (IDSIA), Lugano, Switzerland.

His research interests include applications of computational intelligence in
games, procedural content generation, automatic game design, evolutionary
computation, and reinforcement learning.

Dr. Togelius is an Associate Editor of the IEEE TRANSACTIONS ON

COMPUTATIONAL INTELLIGENCE AND AI IN GAMES and a Vice Chair of the
IEEE Computational Intelligence Society Games Technical Committee.

Enrique Onieva received the B.E. degree in com-
puter science engineering and the M.E. degree in soft
computing and intelligent systems from the Univer-
sity of Granada, Granada, Spain, in 2006, and 2008,
respectively.

Since 2007, he has been with the Industrial Com-
puter Science Department, Industrial Automation
Institute, Spanish Council for Scientific Research,
Madrid, Spain.

David A. Pelta received a computer science degree
from the National University of La Plata, La Plata,
Argentina, in 1998 and the Ph.D. degree in computer
science from the University of Granada, Granada,
Spain, in 2002.

Currently, he is a Professor at the Department of
Computer Science and AI, University of Granada.
Among his research interests are soft computing
techniques, cooperative strategies for optimization,
adversarial reasoning, and self-adaptive systems.
He is a member of the Models of Decision and

Optimization Research Group. He is involved in research projects funded by
the Spanish Government and the European Community. He has published
several journal papers, coedited three books and five special issues on relevant
journals.

Dr. Pelta serves on the editorial board of the Memetic Computing journal and
acts as reviewer for many journals, including Bioinformatics, Soft Computing,
Swarm Intelligence, etc.

Martin V. Butz received the Ph.D. degree in
computer science from the University of Illinois
at Urbana-Champaign, Urbana, in 2004. His dis-
sertation “Rule-based evolutionary online learning
systems” puts forward a modular, facet-wise system
analysis for learning classifier systems (LCSs) and
analyzes and enhances the XCS classifier system.

He has been working at the Department of
Cognitive Psychology III, University of Würzburg,
Würzburg, Germany, on various interdisciplinary
cognitive modeling projects. In October 2007, he

founded his own cognitive systems laboratory: Cognitive Bodyspaces: Learning
and Behavior (COBOSLAB), funded by the German research foundation under
the Emmy Noether framework. His participation in the racing car competition
shows that anticipatory behavior principles are also applicable to other areas of
artificial intelligence, including computational intelligence in games.

Thies D. Lönnecker started studying computer
science and engineering at the Hamburg University
of Technology, Hamburg, Germany, in 2001 and
switched to the University of Würzburg, Würzburg,
Germany, in 2005, for studying computer science
and linguistics.

He has been working as a tutor at the Department
of German Studies in 2007 and 2008. Due to his
knowledge in the field of cognitive systems and as
part of the preparation for his diploma with the focus
on artificial intelligence, he designed a controller for

the “2009 Simulated Car Racing Championship” at COBOSLAB.

Luigi Cardamone was born in Ispica (RG), Italy, in
1984. He received the first level degree cum laude
and the second level degree cum laude in computer
engineering from the Politecnico di Milano, Milan,
Italy, in 2006 and 2008, respectively. Currently, he is
working towards the Ph.D. degree in computer engi-
neering at the Department of Electronics and Infor-
mation, Politecnico di Milano.

His research area is in computational intelligence
and games.

Diego Perez was born in Madrid, Spain, in 1983. He
graduated in 2007 in computer science and received
the M.S. degree in the same field from Carlos III Uni-
versity, Madrid, Spain, in 2008.

His research is centered in the application of evolu-
tionary computation to games, focusing on problems
of classification, optimization, and machine learning,
and participating in several game competitions held
at the IEEE Congress on Evolutionary Computation.
He has experience in the videogame industry and is
currently working at the National Digital Research

Center, Dublin, Ireland, developing artificial intelligence tools that can be ap-
plied to the latest industry videogames.

Yago Sáez received the computer engineering de-
gree from the Universidad Pontificia de Salamanca,
Salamanca, Spain, in 1999 and the Ph.D. degree in
computer science from the Universidad Politecnica
de Madrid, Madrid, Spain, in 2005.

Currently, he is Vice-Head of the Computer Sci-
ence Department, Carlos III University of Madrid,
Madrid, Spain, where he is an Associate Pro-
fessor. He is part of the Evolutionary Computation,
Neural Networks and Artificial Intelligence group
(EVANNAI) and member of the IEEE Computa-

tional Finance and Economics Technical Committee. His main research area
encompasses the evolutionary computation, the computational economic and
finance applications, and the optimization by means of metaheuristics.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

LOIACONO et al.: THE 2009 SIMULATED CAR RACING CHAMPIONSHIP 147

Mike Preuss was born in Ahlen/Westfalen, Ger-
many, in 1969. He received the Diploma degree in
computer science from the Technische Universität
Dortmund (TU Dortmund), Dortmund, Germany, in
1998.

Currently, he is a Research Associate at the
Computer Science Department, TU Dortmund (since
2000). His research interests focus on the field
of evolutionary algorithms (EA) for real-valued
problems, namely on multimodal and multiobjective
niching. His mission is to further develop the experi-

mental methodology for nondeterministic optimization algorithms by means
of tuning, adaptability measures, and other experimental analysis techniques.
These are essential for the design of specific EA-based algorithms for industrial
optimization in various engineering domains, e.g., thermodynamics and ship
propulsion technology. As Chair of the IEEE Computational Intelligence So-
ciety task force on real-time strategy games, he is active in designing authentic
AI components for believable opponents and increased player satisfaction.

Jan Quadflieg was born in Schwelm, Germany, in
1980. In 2000, he began to study computer science
at the Technische Universität Dortmund (TU Dort-
mund), Dortmund, Germany, where he will receive
the Diploma degree in 2010.

From 2006 to 2007, he was a Student Assistant at
the research group Innovative Factory Systems (IFS),
German Research Center for Artificial Intelligence,
Kaiserslautern, Germany. His research interests
include computer games, especially real-time 3-D
graphics and the application of computational

intelligence methods, and the visualization of high-dimensional data sets.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on July 13,2010 at 12:21:48 UTC from IEEE Xplore. Restrictions apply.

