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Abstract—It is often the case that games have continuous
dynamics and allow for continuous actions, possibly with with
some added noise. For larger games with complicated dynamics,
having agents learn offline behaviours in such a setting is a
daunting task. On the other hand, provided a generative model
is available, one might try to spread the cost of search/learning
in a rolling horizon fashion (e.g. as in Monte Carlo Tree Search).
In this paper we compare T-HOLOP (Truncated Hierarchical
Open Loop Planning), an open loop planning algorithm at least
partially inspired by MCTS, with a version of evolutionary
planning that uses CMA-ES (which we call EVO-P) in two
planning benchmark problems (Inverted Pendulum and the
Double Integrator) and in Lunar Lander, a classic arcade game.
We show that EVO-P outperforms T-HOLOP in the classic
benchmarks, while T-HOLOP is unable to find a solution using
the same heuristics. We conclude that off-the-shelf evolutionary
algorithms can be used successfully in a rolling horizon setting,
and that a different type of heuristics might be needed under
different optimisation algorithms.

I. INTRODUCTION

One of the most common uses of function optimisation is
solving control problems. If an agent has access to a generative
model of the world (i.e. a simulator) in which it is going to
act, a control problem becomes a search/optimisation problem,
usually referred to as “simulation based planning”. Recently,
a family of algorithms, mostly known as Monte Carlo Tree
Search (MCTS) [1], has been applied to planning problems
of discrete states and actions with considerable success. The
focus of these algorithms is to attack extremely large state
spaces of perfect information games, where one can sample
rewards from the state space easily (e.g. Computer Go [2]).
With access to a generative model (from which one can
easily sample) and perfect sensor information, the following
procedure works well: the agent receives sensor information,
formulates a plan of action, performs the first action of that
plan, receives a new state, re-formulates a plan, acts again
(using the first action of its plan), ad infinitum.

The most important reason for continuous re-planning is
the fact that most planning algorithms’ computational com-
plexity is linear (or worse) in the number of states, whereas
the number of states increases exponentially at each time
step. One thus hopes to perform an action that looks good
now, act, and replan, effectively creating a smaller problem
or a “closer to action” horizon. This kind of behaviour is
known as rolling horizon, sample based or model predictive
control/planning [3]. Most of these algorithms are not exact;
at each time step, due to the large state space, planning
takes place in a Monte Carlo fashion, with random “rollouts”
(i.e. simulations) guiding the algorithm in a best first search

manner. All this planning and replanning is computationally
intensive, thus very efficient use of samples should be made.
In the case of discrete state and actions, bandit algorithms [4]
provided a formidable solution to this problem. An example of
exploiting this efficient sampling can be found in Samothrakis
et al. [5] where a high-performance MCTS Pac-Man agent
was developed using only 50 − 300 simulations per action
(the game simulator requested an action from the controller
every 40ms).

Recently, algorithms stemming from, or at least partially in-
spired by, MCTS aiming at solving planning problems involv-
ing continuous states and actions have come to light. A typical
such algorithm is Hierarchical Optimistic Open Loop Planing
(HOLOP) [6]. HOLOP is based partially on a strong [7] real-
valued optimisation algorithm called HOO (for “Hierarchical
Optimistic Optimisation”). In this paper two contributions
are made. The first contribution is the comparison of two
versions of a very popular and strong evolutionary strategy:
EVO-P, the open loop planning algorithm using Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) [8] and
a version of HOLOP, which stands for Hierarchical Open
Loop Optimistic Planning [7] on two standard benchmark
problems, the double integrator and the reverse pendulum.
For speed purposes, we use T-HOO (Truncated Hierarchical
Optimistic Optimisation), a faster version of HOO [7], as the
engine of HOLOP, hence we name the algorithm T-HOLOP.
Our second contribution is the use of these algorithms in
Lunar Lander, a popular arcade game, coupled with a strong
two-stage heuristic. We show that while EVO-P performs
reasonably well, T-HOLOP struggles.

While evolution is commonly used to evolve a reactive
neural network controller (in a process commonly called
neuro-evolution) for these and other RL problems, it should
be noted that evolution is being applied in a very different
way here. In this paper, evolution is applied to perform each
action given the current state. This approach can only be
applied when a generative model is available, but has the
advantage of offering immediate good performance without
any prior learning. The disadvantage, compared to neuro-
evolution, is that every action performed requires CPU time
for the simulations. This is described in more detail in Section
III and in line with what was done in Perez et al. [9], although
this time in a continuous setting.

The rest of this paper is structured as follows. Section
II discusses (briefly and epigrammatically) the relevant base
algorithms that are going to be used in this paper, ((Trun-
cated) Hierarchical Online Optimisation [7] and CMA-ES [8]).
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Section III explains why and how the above algorithms can
be used in the context of planning (and thus transformed
into T-HOLOP and EVO-P respectively). In Section IV the
experimental setup is described. In Section V a number
of experiments are portrayed and analysed. These form the
bulk of this paper’s contribution. We conclude with a short
discussion in Section VI.

II. ALGORITHMS FOR CONTINUOUS FUNCTION
OPTIMISATION

This is the first background section of this paper and aims to
introduce the two core optimisation algorithms on which our
contributions are based. We will present both algorithms from
an implementer’s viewpoint, without explicitly justifying the
design and mathematical choices behind them, nor going into
too much detail. Interested readers should look at the cited
bibliography for extensive discussions.

In general, the optimisation problem can be defined as:
Given a function f : X → Y , where X ∈ Rn, with n
being the length of vector X . The domain X is usually called
the search space. Our goal is to find a vector x0, for which
f(x) > f(x0) for all x (also known as “minimisation”) or
f(x) < f(x0) for all x (known as “maximisation”). There are
an enormous number of algorithms devoted to this problem,
but only two will be presented and compared here. Both of
these are considered state of the art in their respective fields
and do not require the calculation of a gradient. If one has an
analytic expression of the gradient or if the functions proposed
are smooth enough, it might be better to look elsewhere for
solutions (e.g. Conjugate Gradient Methods [10]).

A. CMA-ES

The Covariance Matrix Adaptation - Evolutionary Strat-
egy (CMA-ES) is an evolutionary algorithm designed for
continuous domains, specially suited for non-linear and non-
convex optimization problems [11]. In general, this algorithm
is applied to those problems that are not constrained and are
made of up to 100 dimensions.

A multivariate normal distribution (MND) is a general-
ization of the univariate normal distribution, which is a
probability distribution that has a bell-shaped probability
density function (Gaussian function). A multivariate vector
X = (x0, x1, . . . xN ), xi ∈ R is said to have an MND if
it satisfies that any linear combination from its components,
w0x0 + w1x1 + · · ·+ wNxN , is normally distributed.

CMA-ES creates a population of individuals by sampling
from an MND:N (m,C), which is uniquely defined by the dis-
tribution mean m ∈ Rn and its covariance matrix C ∈ Rn×n.
The top of the density function, which corresponds to m, also
determines the translation of the distribution. The covariance
matrix C, positive definite and symmetric, determines the
shape of the distribution and its graphical interpretation: it de-
fines an iso-density ellipsoid {xi ∈ R|(x−m)TC−1(x−m) =
1}. Through the classic evolutionary setup, and by making
clever use of population statistics, the algorithm proceeds from

generation to generation of sampling until some convergence
criteria has been reached.

B. T-HOO

Recently, a family of algorithms based on discretizing the
search domain has been proposed. Only one of these algo-
rithms is going to be discussed here, Truncated Hierarchical
Optimistic Optimisation (T-HOO) [7]. The T-HOO algorithm
was built from the ground up to perform optimisation of noisy
functions. It is an iterative, anytime algorithm, which is run for
n0 iterations. The algorithm is based on a number of compo-
nents. The first one is a data structure called a node and desig-
nated ν. The node includes the maximum and minimum values
of our search space, vectors xmax and xmin respectively. The
node also has a property called count , which initially is set to
zero and a property called sum , which, again, is initially set to
zero. An unvisited node (i.e. count = 0) is called a leaf node.
“Splitting” a node is the procedure of creating two children
C(ν) = {Cl(ν), Cr(ν)}. Both children are initialised xmax

and xmin to their parents’ node values when there are multiple
dimensions to choose from, at k according to some random
distribution. Thus, for child Cl(ν) , xCl

max ,k = xC
min,k +(

xC
min,k − xC

max ,k

)
/2. For the other child, xCr

min,k = xCl

max ,k .
In other words, the father node is split into two children
nodes, choosing which dimension to split uniform random
(or according to some other criterion). Each node also has
an associated value called B(ν), which is defined recursively
as: B(ν) = min{U(ν),max{B(Cl(ν)), B(Cr(ν))}}. Part of
this equation is the term U(ν), which is defined as in Equation
1:

U(ν) = S(ν)/N(ν) +
√

2lnn0/N(ν) + υ1ρ
h (1)

If a dissimilarity metric is defined between different values
of X as ‖x1 − x2‖α, one can set υ1 =

√
|A|/2)α and ρ =

2−α/|A|. In our experiments α = 2. If N(ν) = 0, B(ν) =
U(ν) = ∞, i.e. unvisited nodes have priority. If a node has
not been visited then it is called a leaf node. If a node is
a leaf node, one can “draw” a sample from it, by uniformly
randomly sampling between xmax and xmin .

The algorithm works by starting at the root node (the initial
node). Since the leaf node and the root node coincide, HOOT
samples from it and splits it. It can now proceed to the
second iteration, where the algorithm follows a route using
the maximum B-value of its children nodes, which it then
samples and splits. The process repeats until the maximum
number of iterations n0 is over. If a certain depth is exceeded
there is no point splitting nodes any more (given our iteration
budget n0).

III. PLANNING

In this section a formalised version of planing will be
presented and an explanation provided on how the algorithms
described in the previous section can be used to attack the
problem.



A. Markov Decision Processes

The main decision theoretic abstraction for planning/control
is the Markov Decision Process (MDP) [12]. Formally, an
MDP is a tuple 〈S,A, T,R, γ〉, where:
• S is a set of states, s ∈ S, with s′ being the next state

in time.
• A is a set of actions, each action named aj .
• T : S×S×A→ [0, 1] is the probability of moving from

state s to state s′ after action a ∈ A has taken place.
T (s′|s, a) denotes this probability.

• R : S → <, R(s) is a reward function at each state.
• γ, a discount factor.
The MDP defines a single agent environment, fully observ-

able to the agent. In an MDP, the Markov property holds
(hence the name), which means that all the information an
agent needs in order to act is embedded in the current state.
A possible route of action an agent might take is known as
the policy π. A policy is a probabilistic mapping between
state and actions, π : S × A → [0, 1], thus π(s, a) ∈ [0, 1],∑
a∈A

π(s, a) = 1. The set of all policies is denoted as Π. The

goal of an agent in an MDP environment is to maximise
its long term value. Note that, since we are dealing with
continuous actions and states here, sets A and S are metric
(and not countable). Also note that we are NOT dealing with
continuous time MDPs in this paper, although there is a notion
of time. An example of the effects of the discount factor on
rewards can be found in Figure 1.
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Fig. 1: Examples of how rewards are affected by γ. Split
probability reflects the probability of T-HOO splitting a node
into two, while action depth reflects look-ahead depth

B. Taxonomy of Planning Algorithms

The terminology of Chang [3] is followed when trying to
classify planning algorithms. If the policy π : S ×A→ [0, 1]
is followed, what is known as “closed loop” planning takes
place. The agent takes an action, senses its environment, takes
another action etc. An alternative to closed-loop planning,
“open-loop” planning, requires defining time. An agent sees a

“time” when it’s about to act instead of a state, i.e it doesn’t
have access to st, but just t. An open loop policy (or plan
or control) is when an agent learns a policy with the form
πo : A×T → [0, 1], where T is an ordered set of time steps.
Thus, an agent takes actions irrespective of the current state
it is in. Intuitively this means that a sequence of actions is
formed by the agent and the agent will take these actions in
sequence (e.g. (a1, a2, a3, a4, a5, a6, . . . , an)). Obviously this
is not optimal1, although sometimes is much easier to do.

Another point of interest is when planning happens. In open
loop planning (and what is usually termed “planning” without
any further qualifications), an agent forms a plan once and
follows it until the end.

If the agent replans at every step, discarding or augmenting
the plan received from previous steps, it is known as “rolling
horizon” planning. The idea here is that, if the agent can plan
as well as possible up to a certain point, it can perform an
action, move the planning horizon one step forward and replan.
For example, Monte Carlo Tree Search for infinite MDPs can
be seen as an approximate rolling horizon planning version
of TD(1)[13]. The term “Simulation based” is used when the
planning happens for an MDP that has a tree like structure
and rewards are only visible at the end of the tree, a situation
common in many games.

When learning how to act using a generative model (i.e. an
internal simulator of feature events conditioned on actions),
one can make a third distinction as to the type of sets
represented by A and S. In this paper the focus is on an
A and S that come from a metric space. This means that
both sets’ elements define a notion of distance and, for all
practical purposes, have an infinite amount of elements. More
specifically, both sets are drawn from a bounded set of real
numbers, <n.

Since an open loop policy is now a real-valued vector of
actions, algorithms like T-HOO and CMA-ES can be used
to find such a policy, hence the title of this paper. To the
best of our knowledge this is the first time evolution has been
used in such a setting. There are examples of closed loop
rolling horizon papers, but these are beyond the scope of this
article [14], [15].

IV. METHODOLOGY

Our methodology is simple, yet efficient. We test T-HOLOP
and EVO-P in two simple benchmark problems (see below for
more detail) and in Lunar Lander, a classic arcade game. EVO-
P is simply CMA-ES used in a rolling horizon setting, while
T-HOLOP is T-HOO used in the same manner.

A. Simple Planning Benchmarking Problems

For direct comparison with recent work on sample based
planning using trees, in particular Weinstein and Littman [6]
and Pazis and Lagoudakis [16], we used the same problems:

1Not optimal in the general case. It is optimal under the condition that
the MDP is deterministic, i.e. each action leads to one specific state with
probability one, and everything else has a probability zero



Algorithm 1 Rolling Horizon Open Loop Planning

define external function
FINDOPENLOOPPLAN(depth, T ′, S′) . Try to find
the optimal policy. You can use either evolution or T-HOO
here
procedure OOP

while !StoppingCondition do
a← FINDOPENLOOPPLAN(depth, T ′, S′)[0] .

Execute first action(s) of the policy - [0] gets the first action
s ∼ T (s′|s, a) . Stop only at an absorbing state,

sampling (∼) from the environment

double integrator and inverted pendulum. The basic experi-
mental setup followed Weinstein and Littman [6] and Pazis
and Lagoudakis [16] closely, except that they used a fixed
noise level for each experiment whereas we varied the noise
level to explore how performance was affected.

Both problems are modelled using continuous state discrete
time simulations. In each case the desired acceleration is cor-
rupted by additive uniform random noise before being limited
within the specified range. The noise levels are described in
the next section.

1) Double Integrator: The double integrator problem is to
control a mass along a single dimension. The state space is
2-dimensional, consisting of (p, v) where p is position and
v is velocity. The goal is to change the state from (1, 0) to
(0, 0). Both position and velocity are clamped to be within
the range −2 to +2. At each time step the controller selects
the desired acceleration a′, which then is noise corrupted and
range limited between −1.5N to +1.5N to yield the applied
acceleration a.

Euler integration is then used to update the position and
velocity, given the time step δt:

vt+δt = vt + aδt (2)
pt+δt = pt + vt+δtδt (3)

At each time step the reward r is:

r = −(p2 + a2) (4)

The problem becomes harder as the time interval δt that
is applied at each action, increases, and following Pazis and
Lagoudakis we set (δt = 0.5s).

2) Inverted Pendulum: The inverted pendulum problem is
also known as the pole balancing or cart-pole problem. The
goal is to keep the pendulum / pole as upright and as still
as possible. This is achieved by accelerating the cart which
affects the freely pivoted pendulum.

In this instance of the problem the controller only sees a
two dimensional state space, consisting of the angle θ that the
inverted pendulum deviates from the vertical, and the angular
velocity of the pendulum θ̇. The controller selects the desired
angular force F , which is then corrupted by additive uniform

random noise and limited in the range −50N to +50N so as
to yield the applied angular force u. The angular acceleration
θ̈ is then calculated as follows:

θ̈ =
gsin(θ)− αml(θ̇)2sin(2θ)/2− αcos(θ)u

4l/3− αmlcos2(θ)
(5)

where g is the acceleration due to gravity (g = 9.8ms−2),
m is the mass of the pendulum (m = 2kg), (α = 1/(m+M)),
M is the mass of the cart (M = 8kg) and l is the length of the
pendulum (l = 0.5m). The time interval δt was set to 0.1s:
i.e. the simulation is updated 10 times per second:

θ̇t+δt = θ̇t + θ̈δt (6)
θt+δt = θt + θ̇t+δtδt (7)

At each timestep the reward r punishes deviation from the
vertical, high speed, and high force:

r = −((2θ/π)2 + θ̇2 + (F/50)2) (8)

B. Lunar Lander

In this section we give a brief overview of a problem based
upon Lunar Lander, a popular arcade game. The goal in Lunar
Lander is to land a spaceship on a flat plateau on an otherwise
jagged landscape. In order to do this, the player must use a
supply of fuel to apply thrust to a spaceship, which has inertia.
The ship is able to rotate at no cost to fuel usage, but must
contend with rotational inertia.

1) Environmental Properties: The properties of the base
environment of Lunar Lander are that it is frictionless, and
that it is a two-dimensional plane with horizontal wrapping.
This can also be conceptualised as a cylinder. Anything that
passes from the left edge of the playing field moves to the right
instantaneously, and vice versa. The landscape is constructed
as a series of line segments, with each vertex being distributed
equally horizontally, and randomly vertically.

2) Spaceship Physics: The spaceship within this game
world is modelled as a circular mass with some physical
properties, such as a position within the game world s, a
velocity v, an orientation d, an angular velocity ω and a radius
of a bounding sphere r used for collision detection with the
landscape.

This collision detection method is based on the spaceship’s
bounding circle overlapping the corresponding point on the
landscape on the same vertical axis, as can be seen in Figure
2.

For the ship’s centre s, the left nearest landscape vertex pl

and the right nearest landscape vertex pr, the point of collision
pc against the landscape is calculated as

pcx = sxp
c
y = ply + v(pry − ply) (9)

where v is a value between 0 to 1 used for interpolation,
and can be calculated as follows.
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Fig. 3: Performance of both T-HOLOP and EVO-P in the Inverted Pendulum benchmark (error bars for the 95th percentile).
Higher scores are better.
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Fig. 4: Performance of all algorithms in the Double Integrator benchmark (error bars for the 95th percentile). Higher scores
are better.

Fig. 2: The point closest to the spaceship on the landscape lies
in between two of the defined vertices of the landscape, and
requires interpolation to calculate the y co-ordinate from the
x co-ordinate of the ship.

v =
sx − plx
prx − plx

(10)

Collision is then true if the following statement is true:

sy + r ≥ pcy (11)

The ship colliding with the landscape constitutes the end of
the Lunar Lander game. The conditions surrounding this col-
lision, including speed and orientation of the ship, constitute

whether the nature of the collision is a success or a failure.
In this experimental setup we accept a velocity of 5 and an
angle of < 0.1 radians as successful landing criteria.

An agent can modify the ship’s direction by applying linear
thrust aT and angular impulse aI . The controllers have to
identify a vector of real numbers A, with each element of the
set ai ∈ [0, 1]. Each even element of the vector represents
the linear thrust, whereas each odd element represents angular
velocity, actions that the agent can take. Each linear thrust
vector element is transformed by applying the following:

aI ← 5(aI − 0.5)aT ← 300aT (12)

Finally each linear thrust and angular impulse is repeated
for X = 7 actions, the effects of which we are going to explore
below.

3) Heuristic: Lunar Lander has a setup where an agent gets
rewards if and only if it manages to actually land the ship
on the pad. This creates the problem that rollouts (whether
used by EVO-P or T-HOLOP) will rarely see a reward. In
order to circumvent this, as it is a problem common to other
games as well, we use a heuristic for each state. The heuristic
was partially inspired by the two-stage approach found here :



http://www.cs.berkeley.edu/∼jrs/4/lunar.html[17]. Initially, we
need to define a number of vectors that portray ship directions:

du = [1, 0]

dl = [1, 2]

dr = [1,−2] (13)

The vectors defined in Equation 13 define three directions
for the ship. The first one, du, defines a ship standing upright,
the second one, dl, defines it tilting to the left, while the third
one dr tilting to the right. We make use of these vectors in
order to help align the ship in the right direction, depending
on where the landing point is.

f =

{
−
∑
arccos(dl · d/(‖dl‖‖d‖)) if npx < sx

−
∑
arccos(dr · d/(‖dr‖‖d‖)) otherwise

l = −
∑

arccos(du · d/(‖du‖‖d‖))− |vy − V maxy |

h =

{
|−(‖v‖ − C)− |sx − npx|| − f if ‖s− np‖ < D
l − |vx − Cl| otherwise

h← h+ p (14)

In the above Equation 14 the constant C denotes the
maximum magnitude of speed, which we set to C = 30.
D = 60 is the distance from the landing point np, where
this heuristic takes precedence. Intuitively, the upper part of
the heuristic h tries to get the ship above the landing point as
fast as possible while maintaining a certain speed. The second
part of the heuristic tries to minimise velocity on the x axis (as
the ship tries to land with maximum speed Cl = 2), maintain
a minimum landing speed on the y axis and get a certain angle
(the summation term f ) as close to vector du as possible, i.e.
help the ship stay upright through the duration of the rollout.
It’s worth noting that the main reason why we use a heuristic of
this kind (one that includes not only the final state, but makes
use of the path of the state as well) is that there is not enough
information to discern states if one only takes into account
ship direction. Without incorporating the angular velocity, the
ship might be spinning madly, but the end of the rollout might
find it in the correct direction. Finally, notice that the heuristic
h gets the value p = 10000 if the ship has crashed at any point
during the rollout.

V. RESULTS

We present the results of our experiments below.

A. Benchmark Problems

For the second set of experiments we have defined the
following variables. The first two involve running the experi-
ments with a fixed rollout depth of 50, i.e. each algorithm at
each step plans for 50 steps ahead. We set the noise levels
to 0.1(U(−0.5, 0.5))l uniform noise for the double integrator
experiment and 10(U(−0.5, 0.5))l for the Inverted Pendulum
(different noise levels for different problems come from the
fact that the problems have unequal features). The variable l
is the noise level which defines how noisy the environment

is. Initially, we performed two experiments, with a variable
number of iterations and a fixed noise level of one. In all
experiments the default CMA implementation is used 2.

The results of these experiments can be seen in graphs
3a and 4a. These are close to the original experiments of
Weinstein and Littman [6], only this time we varied the
number of iterations allowed for each algorithm. The original
experiment had given the algorithms 200 value iterations.
With this number of iterations, for the Inverted Pendulum
experiment the mean reported (using HOLOP) was −47.45.
We got a better mean using T-HOLOP 3 of −42.94.

EVO-P got a score of −41.69. It also seems to experience
a drop in performance as we increase function evaluations,
presumably because it converges to a false minima without
any uncertainty handling mechanism to stop this. This kind
of behaviour has been observed previously in Evolutionary
Algorithms [18] when having noisy function.

For the double integrator experiment, we had slightly dif-
ferent results. The Weinstein paper reports a mean of −2.72
for 200 iterations. Using T-HOLOP we got a better mean of
−2.62. A far better result of −1.74 was obtained by EVO-P.

Results for the variable noise levels l (Figures 3b, 3c, 4b, 4c)
closely mimic the performance of their constant noise coun-
terparts. For the inverted pendulum, using just 50 iterations
(Figure 3b) EVO-P is able to stabilise the pendulum with
50 iterations. This still applies if we increase the number of
function evaluations to 100 (Figure 4c). On the other hand, the
results start to get closer to the fixed noise level experiments if
we increase the number of iterations in the Inverted Pendulum
experiment to 100 (Figure 3b).

B. Lunar Lander

Map Name Success Mean Success CI Ticks Mean Tick CI
Map A 1 0 2925.9 ±184.437
Map B 1 0 2733 ±159.34
Map C 1 0 2293 ±123.917
Map D 0.9 ±0.226216 2421.6 ±682.893

TABLE I: EVO-P results for different Lunar Lander maps.

For Lunar Lander, we perform 10 runs for each map in
Figure 5, and the results for EVO-P can be seen in Table I.
The results include the mean number of successful landings
(Success Mean) and the mean time it took to land the ship
(Ticks Mean), alongside the confidence for the 95th interval.
For EVO-P we used the default CMA-ES population size, each
individual gene bound between [0, 1], each gene had a length
of 8 and each action pair (x[i], x[i+ 1]) was repeated 7 times
(where x[i] represents thrust and x[i+ 1] angular thrust). We
derived these numbers experimentally and did not optimise for
them (not even implicitly) to any serious degree.

There are a number of things to notice here. The first is
that only in Map D, where the ship starts the problem facing
a wall, do we get a failure to land, and this is due to a crash.

2https://www.lri.fr/∼hansen/cmaes java.tar.gz
3This was due to a minor difference between our implementation of HOLOP

and Weinstein’s.



(a) Map A, where the ship is lower than the pad. (b) Map B, an easy map where only the first heuristic is used.

(c) Map C, where the ship is close to the top of the screen. (d) Map D, where the ship is behind a wall.

Fig. 5: The four different maps used in our experiments. The maps capture different position/properties.

This has to do with the fact that even a minor thrust can push
you a bit forward and drive the ship to a position where there
is no longer the possibility of recovery from a crush (or the
combination of that recovery is extremely hard to find). The
second thing to observe is that we get there slowly, but this
is by design, as we he have made the flying speed of the
ship controllable. One can potentially tweak all the default
parameters we have used, plus the ones incorporated in CMA-
ES, as a kind of meta-heuristic search and achieve much better
results. Another thing to note is that EVO-P lands the ship (on
average) almost at the same time on MAPS B, C, D, although
map B has the same landscape as the other two but the ship is
much closer. This is due to the fact that the minimum landing
speed, set on one of our heuristics, is really low. The final thing
we would like to point out is that we have only included the
results for EVO-P because T-HOLOP failed to land the ship
using the same heuristic, and behaved badly. It’s worth noting
here that T-HOLOP requires rewards between certain bounds,
so they can be normalised around [0, 1] and this is not the case
with our heuristic. For completeness purposes, we did change
the UCB-like node selection policy of T-HOO to e-greedy, in
which case we did get the ship to behave reasonably, albeit

the failure to land was evident here as well. This, we think,
is important for a number of reasons. The first one is that it
shows that different Heuristics might be needed for different
algorithms. Although this might be self-evident, it shows that
one must design heuristics with a specific algorithm in mind.
The second is, but we can speculate only at this time, that T-
HOLOP spends too much effort trying to solve a hard problem
than the one at hand. It will converge eventually, but the the
Gaussian approximation of CMA-ES seems to outperform it
in the short term.

VI. CONCLUSION

We showed that it is doable to use evolution in a rolling
horizon setting, making it possible to create agents using
off-the-shelf evolutionary algorithms and a generative model.
We used an experimental setup that included both simple
benchmark problems and a popular arcade game, Lunar Lan-
der. Unfortunately, it seems that different algorithms require
different heuristics to work properly in the case that absorbing
states are not met during rollouts. Definite conclusions are
hard to draw about the quality and/or the suitability of each
method. There are a multitude of hyperparameters to optimise



and each method responds better to different heuristics. On top
of that, implementations of each method might have different
memory/speed requirements on different platforms - which
makes direct comparison even harder. If anything, such intrica-
cies require more specific set of experiments and a conscious
effort to understand which method behaves better under what
conditions. Overall however we think it might be possible
to incorporate simplifying assumptions into T-HOLOP priors,
thus making it easier to search harder distributions. In all cases
however, one might want to include sensible defaults in all
algorithms, and use them without too much hassle; CMA-ES
is probably as close to that as one can imagine for continuous
settings, so it might be worth considering it as a “first
option” in most settings (including the one we use here). In
future research we aim to improve MCTS-like algorithms for
continuous settings by including a learning module, possibly
in the form of actor-critic algorithms. This should automate
learning heuristics (after some training games) and help guide
the rollouts towards more sensible solutions, even in the case
where heuristics do not favour T-HOLOP.
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