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Abstract—Game Al literature has looked at applying various
enhancements to Rolling Horizon Evolutionary methods or cre-
ating hybrids with popular tree search methods for an improved
performance. However, these techniques have not been analyzed
in depth in a general setting under the same conditions and
restrictions. This paper proposes a fair juxtaposition of four en-
hancements applied to different parts of the evolutionary process:
bandit-based mutation, a statistical tree for action selection, a
shift buffer for population management and additional Monte
Carlo simulations at the end of an individual’s evaluation. These
methods are studied individually, as well as their hybrids, on a
representative subset of 20 games of the General Video Game Al
Framework and compared to the vanilla version of the Rolling
Horizon Evolutionary Algorithm, in addition to the dominating
Monte Carlo Tree Search. The results show that some of the
enhancements are able to produce impressive results, while others
fall short. Interesting hybrids also emerge, encouraging further
research into this problem.

I. INTRODUCTION

Academic interest for Artificial General Intelligence (AGI)
has spread across Game Al research during the last years. With
the objective of creating Al that can play multiple games,
rather than specifically tackling single problems one at a
time, researchers are trying to push the boundaries of AGI by
bringing new methods and testbeds. Examples are the Arcade
Learning Environment (ALE), where Deep Reinforcement
Learning techniques have been able to reach human level of
play [1], or the General Video Game Al (GVGAT") Framework
and Competition [2], [3]. GVGAI proposes a benchmark for
planning, learning and procedural content generation that has
attracted multiple authors within the last few years.

Rolling Horizon methods for planning have raised during
this time as an alternative to tree search for real-time control in
games, particularly in the domain of GVGAI. Although tree-
based search methods have been, in most cases, proclaimed
winners of different GVGALI tracks [2], recent research in
Rolling Horizon Evolutionary Algorithms (RHEA) has closed
the gap with the former ones [4], [5].

This paper aims to explore four enhancements to the vanilla
RHEA. Some of the enhancements presented here have been
seen in the literature before, either in a General Video Game
Playing (GVGP) setting, or in some other domains. However,
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they have been previously employed under different condi-
tions, heuristics and set of games, and sometimes combined
with other techniques. It is therefore very hard to deduct (if
not impossible) which ones of these approaches work well
in isolation, which ones do not produce improvements in
the vanilla form of the algorithms, if decoupled from some
heuristics properly used, and which ones could work better if
put together in combination.

The objective of this paper is to formalize and provide a
fair analysis on these enhancements. They are all tested in
isolation, but also combinations between them are drawn in
order to identify potentially good synergies. Furthermore, they
are evaluated under the same testing circumstances, provided
with a common heuristic to evaluate states visited during
search, and in 20 GVGAI games carefully selected to serve as
a good representative set of the whole GVGALI corpus.

The rest of this document is structured as follows. Section
IT gives an overview of recent works in this domain. An
explanation of the framework and the techniques behind the
agents employed in this study is given in Section III. Later,
Section IV looks at the enhancements proposed in this paper
for RHEA, while Section V describes the experimental ap-
proach. Section VI discusses the results obtained and, finally,
Section VII concludes the paper and outlines future work.

II. LITERATURE REVIEW

Rolling Horizon Evolutionary Algorithms (RHEA) were
compared by Perez et al. in [6] with Monte Carlo Tree Search
(MCTS), on a specific real-time game, the Physical Travelling
Salesman Problem (PTSP). They used simple macro actions
to more easily explore the large game space and analyze the
performance of the RHEA with three different mutation rates,
while fixing the population size and individual lengths. Their
results show that RHEA is a promising competitor to MCTS.
Additionally, Samothrakis et al. have compared algorithms
similar to these two methods on three continuous games in
[7] with satisfactory results in favor of evolution.

Recent Game Al literature looked at combining evolution
and tree search in interesting ways in order to make use of
the benefits of both methods. Lucas et al. [8] applied an
evolutionary process to guide the simulation step of MCTS
and improve upon the random default policy. They show
results on both the Mountain Car problem and a simple



version of Space Invaders, seeing a significant increase in
performance. A similar technique was later employed in the
General Video Game Al Framework (GVGAI) by Perez et
al. [9], together with a knowledge base aimed at maximizing
the information gain from the limited thinking time. The
algorithm’s performance is again observed to increase due to
the combination of the two techniques.

However, in this paper we are looking at the effects of
the reverse process, the integration of other systems into the
evolutionary algorithm instead. Gaina et al. [5] have looked
at the possibility of using MCTS in the initialization step
of RHEA. In this setting, MCTS would take half of the
budget to recommend a solution, which would then be used
by the main algorithm as the starting point for evolution. This
method produced good results, significantly out-performing
the vanilla version of RHEA and getting closer to the dominant
performance of MCTS.

Additionally, Perez et al. [10] keep a statistical tree along-
side the evolutionary process, in order to record statistics
about the actions while evaluating individuals and select the
action with the highest value averaged during the evolution.
Therefore, they make use of intermediate states and not only
look at the final population obtained. This method is most
effective in noisy environments as an alternative to resampling,
which would be more expensive. Furthermore, they keep the
tree from one game step to the next, by using the child selected
at the end of the evolution as the new root of the tree in the
following step. Their promising results motivated the use of
both of these methods in this study, by combining the stats tree
with a shift buffer for the same effect. However, it is worth
noting that the authors add a pheromone-based heuristic to
their algorithms which may impact their findings.

A compelling and novel addition to evolutionary algorithms
is that of multi-armed bandits applied as a mutation operator
to better balance between exploration and exploitation. There
is extensive literature on the multi-armed bandit problem [11]
and various solutions to it. One possibility is using an Upper
Confidence Bound (UCB) method. Powley et al. [12] look at
using UCB in Monte Carlo Tree Search as both the tree policy
and the simulation policy. When tested on three different
problems, two card games (“Dou Di Zhou” and “Hearts”) and
a board game (“Lord of the Rings: The Confrontation”), its
performance is shown to consistently be at a high level.

The RHEA variant presented in this paper employs a bandit-
based mutation system as described in [13], [14]. Liu et al.
compare this mutation method with the Random Mutation Hill
Climber (RMHC) on two simple problems and their results
suggest that bandit-based mutation is especially effective in
cases where individual evaluation is expensive, therefore ap-
plicable to the problems described in the present paper. This
work will also expand from the RMHC to a larger population
of individuals, in order to assess how this type of mutation is
affected by an increase in core parameter values.

Horn et al. [15] look at two different MCTS-RHEA hybrids.
In the first method (EAroll), Monte Carlo simulations are used
at the end of the evaluation of one RHEA individual with

a limited depth, the resulting value being averaged with the
genome evaluation to determine its fitness. The second variant
(EAaltActions) uses both RHEA and MCTS to individually
search for distinct solutions, the two final recommendations
being evaluated and the best one chosen for execution. They
analyse the performance of both algorithms on 20 games of
the GVGALI corpus (but a different 20 than in our work) and
EAroll appears to be significantly better than vanilla RHEA
and dominating the games used in their experiments.

III. BACKGROUND
A. The General Video Game Al Framework

The General Video Game Al Framework (GVGAI) was
used as the testbed for the experiments reported in this paper.
It comprises of a large number of real-time 2D grid games
(currently 100 single player and expanding to continuous
physics games with a new set of 10 games). Therefore, it is a
great environment for observing the performance of intelligent
agents on multiple highly-varied problems.

The types of games range from classic arcade (Aliens, a
version of Space Invaders), to puzzle (Sokoban), shooters
and many more. They differ in the way players are able to
interact with the environment (they may have different actions
available in certain games, such as movement and special
actions), the scoring system, the objects part of a game (NPCs,
resources etc.) or the end game conditions.

The information received by Al agents is limited to the
current game state, leaving it up to them to figure out the
rules. However, they also have access to a Forward Model
(FM), which can be used to look into possible future states and
access more knowledge about what may happen. As some of
the games are stochastic, the FM is not guaranteed to provide
a perfect representation of the next state.

Once all controllers have played on a given game, they are
sorted by average of victories first, followed by score and
average time they took to finish a game. According to their
position, the agents receive 25, 18, 15, 12, 10, 8, 6, 4, 2 and
1 points, from the first to the tenth ranked player, with the
rest receiving 0 points, as in a Formula-1 (F1) system. When
compared across different games, the winner is determined by
summing the points obtained in all of the games.

B. Evolutionary Algorithms

Evolutionary Algorithms (EA) are a large family of algo-
rithms inspired from biological sciences. They encode solu-
tions to problems as individuals, part of a population which
evolves over several generations, until a good enough solution,
as defined by the specific problem, is found or an execution
limit is reached. In the setting used in this study, individuals
are simply sequences of actions to be executed in the game.
The model adopted in this paper was that of Rolling Horizon
Evolutionary Algorithms (RHEA) [6], which begins at each
game tick with a new set of action plans and evolves them
through different techniques.

The simplest method for population initialization is random,
although others were analyzed by Gaina et al. [5] under the



same circumstances used in this study and in the same set of
games. At the end of the execution budget, the agent chooses
to play the first action from the best plan evolved. One plan
of actions is evaluated by making use of the FM offered in
GVGAI and simulating ahead through the actions, one at a
time. The game state reached at the end of the sequence is
evaluated with a heuristic function, this value becoming the
fitness of the individual.

C. Bandits

The multi-armed bandit problem [16] is a classic problem,
in which a gambler having access to multiple machines
needs to make a decision as to which machine’s lever they
should pull. Each machine produces a random reward from
a specific probability distribution. The goal of the gambler is
to maximize the sum of rewards obtained through subsequent
plays. Therefore they need to balance their exploration and
exploitation, in order to learn the different distributions, while
getting the maximum benefits from their plays.

One of the solutions to the problem and the method em-
ployed in this paper is using the UCB (Upper Confidence
Bound) equation (Equation 1). The first term (Q(s,a)) at-
tempts to maximize the value of the play (exploitation). The
second term favors levers which were pulled the least number
of times (exploration), N (s, a) indicating the number of times
lever a was pulled and N(s) the total number of plays. The
constant C is that which balances between the two terms and
it may be adjusted to fit specific problems.

In N(s)
N(s,a)} M

a® = arg max {Q(s, a)+C

a€A(s)

In GVGAL levers are represented by actions, therefore,
from one state, the UCB equation would ensure that good
actions are chosen, while exploring those not chosen as often
to analyse their effect and build up the knowledge base.

D. Monte Carlo Tree Search

The dominant techniques in GVGAI are mainly based on
Monte Carlo Tree Search (MCTS) [17]. The sample version
provided with the framework that many competition entries
are based on is an MCTS variant using four steps at each
iteration and UCB as the tree policy (Equation 1).

At each game step, the algorithm begins by creating a root
node to its search tree. Then each iteration consists of four
steps: selection, expansion, simulation and back-propagation.
MCTS first selects a non-terminal and not fully expanded node
using the tree policy. This node is then expanded by adding a
new child (by choosing an action to take, which would lead
to a new game state). From the newly added node, actions are
randomly selected to play through the game, using the FM to
simulate ahead. Finally, the state reached after the simulation
step is evaluated using a heuristic and its value is used to
update all of the nodes that have been visited during this
iteration, up to the root of the tree.

These iterations are repeated until an execution budget limit
is reached. The algorithm returns the child of the root node
that is considered the best (e.g. highest value or most visited).

As some of the games in the GVGAI Framework are
stochastic, an open loop approach is preferred, which only
stores statistics in the nodes of the tree and not the actual game
states. This is the variant inspiring one of the enhancements
presented in this paper and also that to which the RHEA
algorithms are compared to in Section VI-C.

IV. ROLLING HORIZON EVOLUTION ENHANCEMENTS

The baseline algorithm is Vanilla RHEA. The population
initialization is kept pseudo-random (each individual receiving
random actions for each gene, in the range 0— (N — 1), where
N 1is the number of legal actions in the current game state
(therefore each gene corresponds to one in-game action).

Breeding occurs P — F times in one generation, where
E represents elitism (the chosen method for promoting the
best individuals, unchanged, to the next generation. £ = 1
for all cases) and P population size. Each new individual in
a subsequent generation is the product of uniform crossover
between individuals from the previous generation, selected
through tournament (size 2), and mutation (random).

The heuristic used to evaluate game states and determine
individual fitness simply returns the game score, dynamically
normalized between 0 and 1, or a large reward for winning
(and a large penalty for losing, respectively). The process of
evaluating an individual is as described in Section III.

In the rest of this paper, the term “configurations” will
refer to population size (P) and individual length (L) values
and the term “variants” will refer to RHEA algorithms with
enhancements added to the vanilla version. If more than one
enhancement is used, the term “hybrid” may be used instead.

A. Bandit-based mutation

The first of the enhancements analyzed in this study is using
a bandit system for individual mutation, employing the UCB
technique with the constant C' = /2. This algorithm will be
referred to as EA-bandit.

In the RHEA variants with bandit mutation (identified in the
results discussion by having the term “bandit” in their name),
two levels of bandit systems are used.

The first system is at individual level, used to select which
gene to mutate. In the exploration term from the UCB equation
(Equation 1), N(s,a) is the number of times gene a was
mutated and N(s) is the total number of mutations. The
exploitation term is determined by maz(AR), the maximum
difference in rewards observed when mutating gene a. The
differences in rewards are updated after each mutation by
evaluating the new individual obtained. If the new AR is
negative (thus there was no improvement in the value of the
individual), the mutation is reverted. Therefore, the individuals
will never get worse with this mutation operator.

The second system is at gene level (therefore L bandits, one
for each gene). The information from all of the individuals in
the population is stored in the same set of L bandits as they all
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Figure 1: RHEA statistical tree steps.

aim to find the same optimal action plan. Therefore, a number
P — E values are used for updating the bandit information
each generation. In this case, the exploration term is made
up of the number of times gene X was changed (IN(s)) and
the number of times gene X received value a (N (s, a)). The
exploration term is the AR corresponding to the value a.

When combined with the statistical tree, this enhancement
remains unchanged. However, when combined with the shift
buffer, the gene-level bandits are shifted along with the pop-
ulation in the same manner. Additionally, all AR values are
discounted by a factor v = 0.99.

B. Statistical tree

This enhancement (EA-tree) keeps a statistical tree along-
side the population evolved by RHEA, similar to the work in
[10]. Every time an individual is evaluated, its actions are used
to traverse the tree (new nodes being added if new actions are
encountered). The fitness value is used to update the statistics
stored in each node that has been visited during the individual
evaluation. This process is depicted in Figure 1. (P — F) x L
nodes are updated at each generation.

This stats tree comes into play when choosing which move
to make at the end of the evolution. The vanilla version of the
algorithm returns the first action of the best individual found.
With this enhancement, the action returned is the child with the
highest UCB value (Equation 1), aiming for a better balance
between exploitation and exploration of the search space.

The RHEA variants with a stats tree are identified in the
results discussion by having the term “tree” in their name.

When combining this enhancement with bandit-based mu-
tation, the process remains unchanged. However, combining
it with the shift buffer results in the tree being trimmed and
carried forward instead, the best child selected becoming the
root of the tree in the next game step, while its siblings are
discarded, in a similar manner as in [10]. If the tree is kept, the
values stored in its nodes are discounted by a factor v = 0.99.

C. Shift buffer

The shift buffer enhancement (EA-shift) is a simple tech-
nique which aims at maximising the information gain in the
limited thinking time received by the algorithms, by keeping
information from one game tick to the next, instead of starting
from scratch, as is the case in the vanilla version.

Therefore, this method shifts the population of individuals
obtained at the end of one game tick to the left and adds a new
random action at the end of each individual in the population.
If the number of legal actions is reduced from one game step to
the next, then the genes surpassing the new maximum number
are replaced by new random legal actions.

The RHEA variants with a shift buffer are identified in the
results discussion by having the term “shift” in their name.

D. Rollouts

This enhancement (EA-roll) is inspired by Monte Carlo
simulations and the work described in [15]. Therefore, when
evaluating an individual, instead of stopping at the last action
in the sequence and valuing the state reached at that point, the
process continues with random selection of actions and game
simulations using the FM model (discounted from the total
budget). This final game state reached is evaluated instead,
with the same heuristic function, and its value becomes the
fitness of the individual.

The motivation behind the use of additional rollouts lies
in the fact that the algorithm receives a further look ahead,
without being restricted to only a specific set of actions (as it
is the case when the L parameter value is increased directly).

The length of the rollouts used in this study is L/2 in all
cases. This process may be repeated a number of times R =
{1,5,10} and the values obtained averaged over all repetitions.

The RHEA variants with rollouts are identified in the results
discussion by having the term “roll” in their name.

V. EXPERIMENTAL SETUP

Several variations of the vanilla RHEA algorithm were
analyzed on a set of 20 games (see Section V-A), playing
20 times on all 5 levels of each game (therefore 100 runs per
game per algorithm). Additionally, 4 different core parameter
configurations (P-L = {1-6, 2-8, 5-10, 10-14}) were used
for all algorithms, in order to observe the effect of the
enhancements across a range of parameter values, comparable
with the results presented in [4], [5].

The budget given to each algorithm was restricted to 900
FM calls (the average obtained by vanilla RHEA in the current
GVGALI corpus), so as to eliminate bias from variations in
the machine used to run the experiments. The maximum
configuration tested was 10-14 due to the fact that if it were
larger, by adding rollouts, the limited budget would not allow
for even one full population to be evaluated in one game tick.

There are two main parts to the experiments run for this
study, the second of which includes a comparison with MCTS.
The results presented in Section VI correspond to this setup.

The first part of the experiments explored the first three
enhancements described in Section IV (bandit-based mutation,
stats tree and shift buffer) in isolation, as well as combinations
of them, resulting in 8 variants. The best variants in all
configurations (4 in total) were kept for the next part.

The second part of experiments looked at the last enhance-
ment (rollouts, see Section IV-D), added to the 4 variants pro-
moted previously. Three different values for rollout repetitions



[ Tdx | Name [ Type ][ Idx | Name [ Type |
0 Aliens S 4 Bait D
13 Butterflies S 15 Camel Race D
18 Chase D 22 Chopper S
25 Crossfire S 29 Dig Dug S
36 Escape D 46 Hungry Birds D
49 Infection S 50 Intersection S
58 Lemmings D 60 Missile Command D
61 Modality D 67 Plaque Attack D
75 Roguelike S 77 Sea Quest S
84 Survive Zombies S 91 Wait for Breakfast D

Table I: Names, indexes and types of the 20 games from the
subset selected. Legend: S = Stochastic, D = Deterministic.

were considered: R = {1,5,10}. This resulted in 8 algorithms
(with and without rollouts) analyzed in this section for each
rollout length, therefore 24 per configuration.

Finally, the algorithms were compared with MCTS in order
to validate their quality on a larger scale in GVGAL

A. Game set

The game set employed in this study is a selection of
games from the GVGALI corpus, based on two different studies
which classified a large number of games according to the
performance of various algorithms. M. Nelson looked at 62
games and ranked them in relation to the performance of the
vanilla MCTS algorithm [18]. Bontrager et al. analyzed 49
games and used a clustering method to group them relatively
to the their perceived difficulty, as dictated by the results of
several competition entries [19].

The 20 games were uniformly sampled from both works.
Moreover, 10 of the games in the set are deterministic and 10
are stochastic (see Table I). The resulting game set is highly
diverse and offers a good range of problems.

VI. RESULTS

The results presented in this section are based on both rank-
ings following the Formula-1 point system (see Section III-A)
and a significance comparison in win rate or scores, using a
Mann-Whitney non-parametric U test, with p-value = 0.05.

A. Bandit, tree, shift

Overall, in the first part of experiments, the shift buffer
appears to offer the biggest improvement in performance,
while the bandit-based mutation is in many cases significantly
worse than all other algorithms. If all variants across all
configurations were to be compared and ranked according to
F1 points, EA-shift (5-10) would be in first place, with 213
points and 40.05% average win rate, while EA-bandit (1-6)
would be last, with 0 points and 29.65% win rate. The specific
results for configuration 5-10 are depicted in Table II.

The effect of increasing the population size and individual
length is noticed in most variants. Although the win rate
sees an overall increase proportional to parameter values, the
algorithm ranking does not remain consistent.

Figure 2 presents the significant wins of all variants in all
configurations, counting for each pair in how many games the

1-6 2-8

A i 7oA | NE
d | . s 8 L A
¢ || s ¢ | | [ | WE
d Ml . .
E 3 E B 3
i - 2 F B 2
G- -- 1 6 1
H- 0 H - - 0

A B C D E F G H A B C D E F G H

5-10 10-14

: mmm | 5 EE=|
e | | BB
c o M| - o Wl
0 HEN . - B || WE
. s = M
F ] F - - ]
o L . || Nl
H 0 H - - 0

A B C D E F G H A B C D E F G H

Figure 2: Win percentage for all configurations. The color bar
denotes in how many unique games row was significantly
better than column. Legend: A = Vanilla, B = EA-shift,
C = EA-tree, D = EA-tree-shift, E = EA-bandit, F = EA-
bandit-shift, G = EA-bandit-tree, H = EA-bandit-tree-shift

row algorithm was significantly better than the column one;
the darker the color, the higher the game count. A dark row
would therefore signify an algorithm better than the others in
most games, while a dark column would mean the algorithm
performed worse. It is worth observing how bandit hybrids
feature dark columns in most configurations, as well as how
EA-shift and EA-tree-shift rows stand out as the best.

An interesting game to look at in more detail is game 60
(Missile Command), where no significance can be observed in
low configurations, but in higher ones EA-shift is significantly
better than vanilla in win rates and all shift hybrids are better
than vanilla in scores; EA-bandit is significantly worse than
both shift and tree hybrids. In game 36 (Escape), all variants
are significantly better than vanilla in both win rates and
scores, except for tree hybrids, in low configurations, while no
significance is observed at the opposite end of the spectrum.

In most games, the shift enhancement is significantly better
across configurations, EA-shift (2-8 and higher) being able to
match and surpass the performance of the best Vanilla RHEA
(10-14). This is a critical finding of this study: the simple shift
buffer enhancement, which requires little extra computation
time, allows for much better performance without needing to
increase core parameter values.

The best 4 algorithms carried forward to the second part of
experiments are EA-shift, EA-tree-shift, EA-tree and Vanilla.

1) EA-bandit: The EA-bandit algorithm is one of the worst
variants tested in this study. In all configurations, it performed
worse than Vanilla and, in the smallest configuration (1-6),
it was out-performed by all of the bandit hybrids as well.
However, in higher configurations it increases its average
win rate significantly, from 29.65% to 38.50% and even
outperforms EA-tree in the largest configuration (10-14).

In game 67 (Plaque Attack), EA-bandit attains a signifi-
cantly better win rate than most algorithms, increasing from
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Table II: Configuration 5-10. Rankings table for part 1 algorithms across all games. In this order, the table shows the rank of
the algorithms, their name, total F1 points, average of victories and F1 points achieved on each game.

69% (Vanilla, 1-6) to 98% (10-14). However, in game 50
(Intersection), EA-bandit (1-6) is one of the only algorithms
achieving a win rate under 100% (only 89%, the others being
Vanilla, 91% and EA-bandit-shift, 99%).

The worst bandit hybrid is EA-bandit-shift, achieving only
32.05% win rate in even the best configuration tested. Bandit
mutation is generally most beneficial in larger configurations.

2) EA-tree: Across all games, EA-tree is better than Vanilla
in the lower half of the configurations tested. In an overall view
of all algorithms and configurations, the tree hybrids rank mid-
table, outperforming EA-bandit, but not EA-shift.

There are several games in which EA-tree is significantly
better than Vanilla in either wins or score, although this
effect is mostly observed in low configurations, such as game
25 (Crossfire), and game 13 (Butterflies). However, in game
36 (Escape) EA-tree is significantly worse than all other
algorithms in win rate, across all configurations.

The worst tree hybrids are EA-bandit-tree and EA-bandit-
tree-shift, both being very close in performance on configu-
ration 10-14, while EA-tree ranks second. The statistical tree
appears to be most beneficial in low configurations.

3) EA-shift: The shift buffer is the best enhancement an-
alyzed. It outperforms Vanilla in all configurations, ranking
first in all but 1-6, where tree hybrids are better. Overall, the
shift buffer hybrids are good at achieving significantly higher
scores than all others. As many games rely on this aspect, the
win rates also increase, although not as dramatically.

For example, in game 29 (Dig Dug), EA-shift (10-14) is
significantly better in score than all other algorithms in all
configurations. In game 49 (Infection), even though it is again
significantly better than all others in scores (10-14), its win
rate is significantly worse than most others. Nevertheless, in
games 91 (Wait for Breakfast, 10-14) and 0 (Aliens, 1-6), EA-
shift and its hybrids see a significant increase in both win rates
and scores (from 86% to 100% win rate in Aliens, p < 0.001).

The worst shift buffer hybrids are EA-bandit-shift and EA-
bandit-tree-shit, which achieve a much lower win rate. This
leads to the conclusion that combining bandit-mutation with a
shift buffer (possibly due to the old information stored by the
bandits) is not favorable in this setting.
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Figure 3: Win percentage for configuration 10-14. The color
bar denotes in how many unique games row was significantly
better than column. Legend: A = Vanilla, B = EA-roll, C = EA-
shift, D = EA-shift-roll, E = EA-tree, F = EA-tree-roll,
G = EA-tree-shift, H = EA-tree-shift-roll, I = MCTS

B. EA-roll and its hybrids

The overall results of the second part of experiments suggest
that the shift buffer enhancement is even better when combined
with rollouts, EA-shift-roll being the dominating algorithm,
while Vanilla and EA-roll rank the lowest in most settings. It
is interesting to observe the gradual increase in performance
of EA-shift in all R values, being last out of the shift hybrids
in 1-6, but moving up in the rankings with the increase in
core parameters. Rollouts seem most advantageous in low
configurations, as they become too expensive to compute in
the limited budget when individual length grows.

EA-tree-roll performs the worst out of the tree hybrids in all
configurations and R values, indicating that the deeper look
into the future provided by the rollouts does not have a positive
impact on the tree statistics. The best tree hybrid is EA-tree-
shift-roll, surpassing the variant without rollouts.

Figure 3 presents the significant wins of all variants in con-
figuration 10-14, with the different repetitions R = {1, 5, 10}.
MCTS is included for comparison as the last row/column. It



Best By Win Rate ‘

Confi R Best By F1 Points I
s | Algorithm [ Avg. Wins || Algorithm [ Avg. Wins |

1 EA-shift-roll | 38.35 (2.31) EA-tree-shift-roll | 38.60 (2.55)
1-6 5 EA-shift-roll | 40.10 (2.51) EA-shift-roll 40.10 (2.51)
10 EA-shift-roll | 39.35 (2.64) EA-shift-roll 39.35 (2.64)
1 EA-shift-roll | 40.35 (2.63) EA-shift-roll 40.35 (2.63)
2-8 5 EA-shift-roll | 40.75 (2.46) EA-shift-roll 40.75 (2.46)
10 EA-shift-roll | 40.20 (2.30) EA-shift-roll 40.20 (2.30)
1 EA-shift-roll | 43.20 (2.43) EA-shift-roll 43.20 (2.43)
5-10 5 EA-shift 40.05 (2.50) EA-shift-roll 41.85 (2.42)
10 EA-shift 40.05 (2.50) EA-shift 40.05 (2.50)
1 EA-shift 39.75 (2.54) EA-shift-roll 42.80 (2.44)
10-14 5 EA-shift-roll | 42.05 (2.48) EA-tree-shift-roll | 42.70 (2.41)
10 EA-shift-roll | 42.35 (2.53) EA-shift-roll 42.35 (2.53)

Table III: The best algorithms (by Formula-1 points and
win rate) in all configurations and rollout repetitions (R), as
compared against the other variants in the same configuration
and the same R value (includes variants without rollouts).

is interesting to note that EA-shift-roll is significantly better
than most other algorithms in all R values, matching the
performance of MCTS, but the most in R = 5, then decreasing
in R = 10. This suggests that the ideal value peaks in the
vicinity of 5. EA-tree and EA-tree-roll also stand out as the
worst algorithms in all R variations tested.

The good performance of EA-shift-roll is also highlighted
in Table III, which summarizes the best algorithm in each
configuration and R value by both Formula-1 points and
win rate. The specific amount of points are not presented
due to their high dependence on the other algorithms in the
rankings and point distribution, therefore not being comparable
independently. EA-shift-roll stands out as dominating most
settings by both F1 points and win rate, with few exceptions.

One of the interesting games to look at in more detail
is game 22 (Chopper), EA-shift-roll is significantly better in
both win rate and scores than most other algorithms in all
configurations and R values, the highest win rate being 54%
in 1-6, R = 5, compared to 35% maximum for EA-roll (10-14,
R = 10). The high improvement in low configurations is of
specific interest, as it allows more thinking time in other parts
of the evolutionary process for more complex computations.

C. Comparison with MCTS

Finally, we carried out a comparison with MCTS, the
dominant technique in GVGAIL Overall, only few of the
RHEA variants succeed in significantly outperforming MCTS.
However, Table IV shows the direct contrast between the best
RHEA variant found during these experiments in terms of
generality (thus highest F1 points in individual juxtaposition
against the other algorithms), EA-shift-roll (10-14, R = 5) and
MCTS (with a comparable rollout length of 14). Highlighted
are the games in which one algorithm is better than the other
(even if the difference is not significant).

EA-shift-roll matches the generality of MCTS, achieving the
same amount of F1 points, but a higher win rate. When looking
at individual games, it becomes clear that this RHEA variant
is significantly better than MCTS in 5 games for win rate and
6 games for scores, while being significantly worse in 3 and 6

games, respectively. For example, in game 4, MCTS achieves
a win rate of 6%, while EA-shift-roll obtains 19% (p = 0.003).

Table V shows the comparison between the RHEA variant
considered most similar to MCTS (EA-tree-roll with R = 1) in
its best configuration, 10-14, and MCTS (with a rollout length
of 14). The fact that the tree is updated passively alongside
the RHEA population and it is only used at the end of the
evolutionary process to select which action to play leads to a
lower significantly lower performance than MCTS in 5 games
for win rate and 11 games for score.

However, there are several games where EA-tree-roll is
significantly better in terms of win rate: game 36 (p = 0.012),
a game in which EAs traditionally do better than tree search,
and game 91 (p < 0.001).

VII. CONCLUSIONS AND FUTURE WORK

This paper studied the effects of four different enhancements
applied to the vanilla version of the Rolling Horizon Evolu-
tionary Algorithm (RHEA), aiming to provide a fair compari-
son between the methods and identify possible synergies. They
were analyzed in four different parameter configurations, with
the same general heuristic and in the same set of 20 games of
the General Video Game Al (GVGAI) corpus.

The experiments were divided into two parts due to the
large scale of the analysis. First, three of the enhancements
were tested individually and in all combinations, resulting in
8 algorithms. A bandit system was used to guide mutation
(EA-bandit); a statistical tree was kept alongside evolution
employed in selecting actions at the end of the evolution (EA-
tree); and a population shifting method was used to carry
forward information from one game step to the next (EA-shift).
Combinations of these methods resulted in interesting hybrids.

The results indicate that the uni-variate bandit system does
not work well in this setting where individuals are sequences
of actions. This is thought to be due to epistasis: changing one
gene in an individual impacts all the subsequent genes as well,
therefore the statistics used by the bandits are much less useful.
This leads to a line of future work in employing an N-tuple
bandit mutation [20] in order to account for the connections
between genes. The bandit systems do work better in high
configurations, due to fewer evolution iterations, therefore the
effect is less pronounced. EA-shift and EA-tree-shift stood out
as the best algorithms in this first part, followed shortly by EA-
tree. It was observed that the stats tree was more beneficial in
small configurations, due to information in small individuals
being more accurate than in longer ones. Whereas the shift
buffer enhancement led to a significant increase in score gain,
as well as raising the win rates in small configurations so as
to be similar to those of the vanilla version with large core
parameter values. The shift buffer worked so well because
reusing information from previous game steps means learning
more about the environment in the limited budget available.

The second part of the experiments took the 4 best algo-
rithms found, and added the fourth enhancement (Monte Carlo
type rollouts at the end of the individual evaluation, repeated
R ={1,5,10} times) to create 4 new variants (named EA-roll
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Table IV: Configuration 10-14, R = 5. Best algorithm found compared with MCTS. In this order, the table shows the rank of
the algorithms, their name, total F1 points, average of victories and F1 points achieved on each game.
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Table V: Configuration 10-14, R = 1. Algorithm most similar to MCTS compared with MCTS. In this order, the table shows
the rank of the algorithms, their name, total F1 points, average of victories and F1 points achieved on each game.

for the vanilla version). No significant difference was observed
across the configurations, except for EA-shift, which saw an
increase in performance proportional to the individual length,
surpassing its rollout counterpart. Therefore, the longer the
individual, the less beneficial the rollouts become.

EA-shift and EA-tree-shift-roll showed a promising perfor-
mance, but the best algorithm emerging was EA-shift-roll
(using a shift buffer and rollouts repeated R = 5 times, con-
figuration 10-14). This method was compared to Monte Carlo
Tree Search (MCTS) for validation and it outperformed MCTS
significantly in several games. The algorithm considered most
similar to MCTS (EA-tree-roll, employing the stats tree and
rollouts repeated R = 1 times), in its best configuration (10-
14), was not as good as initially estimated, and worse than
most other RHEA variants in this second part of experiments.

Another line of future work will be expanding this study
to a wider range of games, as 20 remains a relatively small
sample and possibly not indicative of the true potential of
these methods. Additionally, determining the characteristics
of the specific games that lead to changes in the performance
of particular methods would be an interesting study in itself,
which would open the possibility of dynamically tuning and
turning this features on or off in order to gain the maximum
benefit from each one, depending on the problem at hand.
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