
Rolling Horizon Coevolutionary Planning for
Two-Player Video Games

Jialin Liu
University of Essex

Colchester CO4 3SQ
United Kingdom

jialin.liu@essex.ac.uk

Diego Pérez-Liébana
University of Essex

Colchester CO4 3SQ
United Kingdom

dperez@essex.ac.uk

Simon M. Lucas
University of Essex

Colchester CO4 3SQ
United Kingdom
sml@essex.ac.uk

Abstract—This paper describes a new algorithm for decision
making in two-player real-time video games. As with Monte
Carlo Tree Search, the algorithm can be used without heuristics
and has been developed for use in general video game AI.

The approach is to extend recent work on rolling horizon
evolutionary planning, which has been shown to work well for
single-player games, to two (or in principle many) player games.
To select an action the algorithm co-evolves two (or in the general
case N) populations, one for each player, where each individual
is a sequence of actions for the respective player. The fitness of
each individual is evaluated by playing it against a selection of
action-sequences from the opposing population. When choosing
an action to take in the game, the first action is chosen from the
fittest member of the population for that player.

The new algorithm is compared with a number of general
video game AI algorithms on a two-player space battle game,
with promising results.

I. INTRODUCTION

Since the dawn of computing, games have provided an
excellent test bed for AI algorithms, and increasingly games
have also been a major AI application area. Over the last
decade progress in game AI has been significant, with Monte
Carlo Tree Search dominating many areas since 2006 [1]–[5],
and more recently deep reinforcement learning has provided
amazing results, both in stand-alone mode in video games,
and in combination with MCTS in the shape of AlphaGo [6],
which achieved one of the greatest steps forward in a mature
and competitive area of AI ever seen. AlphaGo not only beat
Lee Sedol, previous world Go champion, but also soundly
defeated all leading Computer Go bots, many of which had
been in development for more than a decade. Now AlphaGo
is listed at the second position among current strongest human
players1.

With all this recent progress a distant observer could be
forgiven for thinking that Game AI was starting to become a
solved problem, but with smart AI as a baseline the challenges
become more interesting, with ever greater opportunities to
develop games that depend on AI either at the design stage or
to provide compelling gameplay.

The problem addressed in this paper is the design of general
algorithms for two-player video games. As a possible solution,
we introduce a new algorithm: Rolling Horizon Coevolution

1http://www.goratings.org

Algorithm (RHCA). This only works for cases when the
forward model of the game is known and can be used to
conduct what-if simulations (roll-outs) much faster than real
time. In terms of the General Video Game AI (GVGAI)
competition2 series, this is known as the two-player planning
track [7]. However, this track was not available at the time of
writing this paper, so we were faced with the choice of using
an existing two-player video game, or developing our own. We
chose to develop our own simple battle game, bearing some
similarity to the original 1962 Spacewar game3 though lacking
the fuel limit and the central death star with the gravity field.
This approach provides direct control over all aspects of the
game and enables us to optimise it for fast simulations, and
also to experiment with parameters to test the generality of
the results.

The two-player planning track is interesting because it offers
the possibility of AI which can be instantly smart with no
prior training on a game, unlike Deep Q Learning (DQN)
approaches [8] which require extensive training before good
performance can be achieved. Hence the bots developed using
our planning methods can be used to provide instant feedback
to game designers on aspects of gameplay such as variability,
challenge and skill depth.

The most obvious choice for this type of AI is Monte Carlo
Tree Search (MCTS), but recent results have shown that for
single-player video games, Rolling Horizon Evolutionary Al-
gorithms (RHEA) are competitive. Rolling horizon evolution
works by evolving a population of action sequences, where the
length of each sequence equals the depth of simulation. This
is in contrast to MCTS where by default (and for reasons of
efficiency, and of having enough visits to a node to make the
statistics informative) the depth of tree is usually shallower
than the total depth of the rollout (from root to the final
evaluated state).

The use of action-sequences rather than trees as the core unit
of evaluation has strengths and weaknesses. Strengths include
simplicity and efficiency, but the main weakness is that the
individual sequence-based approach would by default ignore
the savings possible by recognising shared prefixes, though

2http://gvgai.net
3https://en.wikipedia.org/wiki/Spacewar (video game)

prefix-trees can be constructed for evaluation purposes if it
is more efficient to do so [9]. A further disadvantage is that
the system is not directly utilising tree statistics to make more
informed decisions, though given the limited simulation budget
typically available in a real-time video game, the value of these
statistics may be outweighed by the benefits of the rolling
horizon approach.

Given the success of RHEA on single-player games, the
question naturally arises of how to extend the algorithm to
two-player games (or in the general case N -player games),
with the follow-up question of how well such an extension
works. The main contributions of this paper are the algorithm,
RHCA, and the results of initial tests on our two-player battle
game. The results are promising, and suggest that RHCA could
be a natural addition to a game AI practitioner’s toolbox.

The rest of this paper is structured as follows: Section
II provides more background to the research, Section III
describes the battle game used for the experiments, Section IV
describes the controllers used in the experiments, Section V
presents the results and Section VI concludes.

II. BACKGROUND

A. Open Loop control

Open loop control refers to those techniques which ac-
tion decision mechanism is based on executing sequences
of actions determined independently from the states visited
during those sequences. Weber discusses the difference be-
tween closed and open loop in [10]. An open loop technique,
Open Loop Expectimax Tree Search (OLETS), developed by
Couëtoux, won the first GVGAI competition in 2014 [11],
an algorithm inspired by Hierarchical Open Loop Optimistic
Planning (HOLOP, [12]). Also in GVGAI, Perez et al. [9]
discussed three different open loop techniques, then trained
them on 28 games of the framework, and tested on 10 games.

The classic closed loop tree search is efficient when the
game is deterministic, i.e., given a state s, ∀a ∈ A(s) (A(s)
is the set of legal actions in s), the next state s′ ← S(a, s)
is unique. In the stochastic case, given a state s, ∀a ∈ A(s)
(A(s) is the set of legal actions in s), the state s′ ← S(a, s) is
drawn with a probability distribution from the set of possible
future states.

B. Rolling Horizon planning

Rolling Horizon planning, sometimes called Receding Hori-
zon Control or Model Predictive Control (MPC), is commonly
used in industries for making decisions in a dynamic stochastic
environment. In a state s, an optimal input trajectory is made
based on a forecast of the next th states, where th is the tactical
horizon. Only the first input of the trajectory is applied to
the problem. This procedure repeats periodically with updated
observations and forecasts.

A rolling horizon version of an Evolutionary Algorithm that
handles macro-actions was applied to the Physical Traveling
Salesman Problem (PTSP) as introduced in [13]. Then, RHEA
was firstly applied on general video game playing by Perez et

al. in [9] and was shown to be the most efficient evolutionary
technique on the GVGAI Competition framework.

III. BATTLE GAMES

Our two-player space battle game could be viewed as
derived from the original Spacewar (as mentioned above).
The agents are given full information about the game state
and make their actions simultaneously: the games are sym-
metric with perfect and incomplete information. Each game
commences with the agents in random symmetric positions to
provide varied conditions while maintaining fairness.

A. A simple battle game

First, a simple version without missiles is designed, referred
as G1. Each spaceship, either owned by the first (green) or
second (blue) player has the following properties:
• has a maximal speed equals to 3 units distance per game

tick;
• slows down over time;
• can make a clockwise or anticlockwise rotation, or to

thrust at each game tick.
Thus, the agents are in a fair situation.

1) End condition: A player wins the game if it faces to the
back of its opponent in a certain range before the total game
ticks are used up. Figure 1 illustrates how the winning range
is defined. If no one wins the game when the time is elapsed,
it’s a draw.

Fig. 1: The area in the bold black curves defines the ”winning”
range with dmin = 100 and cos(α/2) = 0.95. This is a win
for the green player.

dmin

2) Game state evaluation: Given a game state s, if a ship i
is located in the predefined winning range (Fig. 1), the player
gets a score DistScorei = HIGH V ALUE and the winner
is set to i; otherwise, DistScorei = 100

dot+100 (∈ (0, 1]), where
doti is the scalar product of the vector from the ship i’s
position to its opponent and the vector from its direction to
its opponent’s direction. The position and direction of both
players are taken into account to direct the trajectory.

B. Perfect and incomplete information

The battle game has perfect information, because each agent
knows all the events (e.g. position, direction, life, speed, etc. of
all the objects on the map) that have previously occurred when
making any decision; it has incomplete information because
neither of agents knows the type or strategies of its opponent
and moves are made simultaneously.

IV. CONTROLLERS

In this section, we summarize the different controllers used
in this work. All controllers use the same heuristic to evaluate
states (Section IV-A).

A. Search Heuristic

All controllers presented in this work follow the same
heuristic in the experiments where a heuristic is used (Al-
gorithm 1), aiming at guiding the search and evaluating game
states found during the simulations. The end condition of the
game is checked (detailed in Section III-A1) at every tick.
When a game ends, a player may have won or lost the game
or there is a draw. In the former two situations, a very high
positive value or low negative value is assigned to the fitness
respectively. A draw only happens at the end of last tick. Give
a game state s ∈ §,

Winner(s) =

0, if the game finishes with a draw
1, if player 1 wins
2, if player 2 wins
null, otherwise.

Algorithm 1 Heuristic.

1: function EVALUATESTATE(State s, Player p1, Player p2)
2: s← Update(p1, p2)
3: winner =Winner(s)
4: if winner == 1 then . Player 1 wins
5: fitness1 ← HIGH V ALUE
6: fitness2 ← LOW V ALUE
7: else if winner == 2 then . Player 2 wins
8: fitness1 ← LOW V ALUE
9: fitness2 ← HIGH V ALUE

10: else if winner = 0 then . A draw
11: fitness1 ← Score1(s)− Score2(s)
12: fitness2 ← Score2(s)− Score1(s)
13: else . Game not finished
14: fitness1 ← Score1(s)− Score2(s)
15: fitness2 ← Score2(s)− Score1(s)
16: end if
17: return fitness1, fitness2
18: end function

B. RHEA Controllers

In the experiments described later in Section V, two
controllers implement a distinct version of rolling horizon
planning: the Rolling Horizon Genetic Algorithm (RHGA)
and Rolling Horizon Coevolutionary Algorithm (RHCA) con-
trollers. These two controllers are defined next.

1) Rolling Horizon Genetic Algorithm (RHGA): The
pseudo-code of RHGA is given in Algorithm 2. RHGA uses
a tournament-based truncation selection with threshold with
arbitrarily chosen threshold 20, i.e., the 20% best individuals
will be selected as parents, and a population x, where each
individual in x represents some successive behaviours of

current player. The objective of x is to evolve better actions to
kill the opponent. At each generation, the best 20% individuals
in x are preserved as parents (elites), afterwards the rest
are generated using the parents by uniform crossover and
mutation.

Algorithm 2 Rolling Horizon Genetic Algorithm (RHGA)

Require: λ ∈ N∗: population size, λ > 2
Require: ProbaMut ∈ (0, 1): mutation probability
Require: α ∈ (0, 1): truncation threshold

1: µ = dαλe . the size of elites
2: Randomly initialise population x with λ individuals
3: Randomly initialise opponent’s individual y
4: for x ∈ x do
5: Evaluate the fitness of x and y
6: end for
7: Sort x by decreasing fitness value order, so that

x1.fitness ≥ x2.fitness ≥ · · · ≥ xλ.fitness

8: while time not elapsed do
9: Randomly generate y . Update opponent’s individual

10: x′1 ← x1, · · · , x′µ ← xµ . Keep stronger individuals
11: for k ∈ {µ+ 1, . . . , λ} do . Offspring
12: Generate x′k from {x′1, · · · , x′µ} by uniform

crossover
13: Mutate x′k with probability ProbMut
14: end for
15: x← x′ . Update population
16: for x ∈ x do
17: Evaluate the fitness of x and y
18: end for
19: Sort x by decreasing fitness value order, so that

x1.fitness ≥ x2.fitness ≥ · · ·

20: end while
21: return x1, the best individual in x

2) Rolling Horizon Coevolutionary Algorithm (RHCA):
RHCA (Algorithm 3) also uses a tournament-based truncation
selection with threshold 20 and a population x to represent
some successive behaviours of current player. Additionally, a
population y is included, where each individual in y represents
some successive behaviours of its opponent. The objective
of y is to evolve stronger opponents, thus provide a worse
situation to the current player. Similarly, at each generation,
the best 20% individuals in x (respectively in y) are preserved
as parents (elites), afterwards the rest are generated using the
parents by uniform crossover and mutation. Algorithm 4 is
used to evaluate game state, given two populations, then sort
both populations by average fitness value. Only a subset of
the second population is involved.

3) Macro-actions and single actions: A macro-action is the
repetition of the same action for to successive time steps.
Different values of to are used during the experiments in
this work in order to show how this parameter affects the

Algorithm 3 Rolling Horizon Coevolutionary Algorithm
(RHCA)

Require: λ ∈ N∗: population size, λ > 2
Require: ProbaMut ∈ (0, 1): mutation probability
Require: SubPopSize: the number of selected individuals

from opponent’s population
Require: EVALUATEANDSORT()
Require: α ∈ (0, 1): truncation threshold

1: µ = dαλe . the size of elites
2: Randomly initialise population x with λ individuals
3: Randomly initialise opponent’s population y with λ indi-

viduals
4: (x,y)← EVALUATEANDSORT(x,y, SubPopSize)
5: while time not elapsed do
6: y′1 ← y1, · · · , y′µ ← yµ . Keep stronger rivals
7: for k ∈ {µ+ 1, . . . , λ} do . Opponent’s offspring
8: Generate y′k from {y′1, · · · , y′µ} by uniform

crossover
9: Mutate y′k with probability ProbMut

10: end for
11: y← y′ . Update opponent’s population
12: x′1 ← x1, · · · , x′µ ← xµ . Keep stronger individuals
13: for k ∈ {µ+ 1, . . . , λ} do . Offspring
14: Generate x′k from {x′1, · · · , x′µ} by uniform

crossover
15: Mutate x′k with probability ProbMut
16: end for
17: x← x′ . Update population
18: EvaluateAndSort(x,y, SubPopSize)
19: end while
20: return x1, the best individual in x

performance. The individuals in both algorithms have genomes
with length equals to the number of future actions to be
optimised, i.e., th.

In all games, different numbers of actions per macro-action
are considered in RHGA and RHCA. The first results show
that there is an improvement in performance, for all games,
the shorter the macro-action is. The result using one action
per macro-action, i.e., to = 1, will be presented.

Recommendation policy In both algorithms, the recom-
mended trajectory is the individual with highest average fitness
value in the population. The first action in the recommended
trajectory, presented by the gene at position 1, is the recom-
mended action in the next single time step.

C. Open Loop MCTS

A Monte Carlo Tree Search (MCTS) using Open Loop
control (OLMCTS) is included in the experimental study. This
was adapted from the OLMCTS sample controller included in
the GVGAI distribution [14]. The OLMCTS controller was
developed for single player games, and we adapted it for
two player games by assuming a randomly acting opponent.
Better performance should be expected of a proper two-player

Algorithm 4 Evaluate fitness of population and subset of
another population then sort the populations.

function EVALUATEANDSORT(population x, population y,
SubPopSize ∈ N∗)

for x ∈ x do
for i ∈ {1, . . . , SubPopSize} do

Randomly select y ∈ y
Evaluate the fitness of x and y once, update their

average fitness value
end for

end for
Sort x by decreasing average fitness value order, so that

x1.averageF itness ≥ x2.averageF itness · · · ≥ xλ.averageF itness

Sort y by decreasing average fitness value order, so that

y1.averageF itness ≥ y2.averageF itness · · · ≥ yλ.averageF itness

return (x,y)
end function

OLMCTS version using a minimax (more max-N) tree policy
and immediate future work is to evaluate such an agent.

Recommendation policy The recommended action in the
next single time step is the one present in the most visited root
child, i.e., robust child [1]. If more than one child ties as the
most visited, the one with the highest average fitness value is
recommended.

D. One-Step Lookahead

One-Step Lookahead algorithm (Algorithm 5) is determin-
istic. Given a game state s at timestep t and the sets of legal
actions of both players A(s) and A′(s), One-Step Lookahead
algorithm evaluates the game then outputs an action at+1 for
the next single timestep using some recommendation policy.

Algorithm 5 One-Step Lookahead algorithm.

Require: s: current game state
Require: Score: score function
Require: π: recommendation policy

1: Generate A(s) the set of legal actions for player 1 in state
s

2: Generate A′(s) the set of legal actions for player 2 in state
s

3: for i ∈ {1, . . . , |A(s)|} do
4: for j ∈ {1, . . . , |A′(s)|} do
5: ai ← ith action in A
6: aj ← jth action in A′

7: Mi,j ← Score1(s, ai, a
′
j)

8: M ′i,j ← Score2(s, ai, a
′
j)

9: end for
10: end for
11: ã← π, using M or M ′ or both
12: return ã: recommended action

Fig. 2: At the beginning of every game, each spaceship is
randomly initialised with a back-to-back position.

Recommendation policy There are various choices of π,
such as Wald [15] and Savage [16] criteria. Wald consists
in optimizing the worst case scenario, which means that we
choose the best solution for the worst scenarios.

ã = argmax
i∈{1,...,|A(s)|}

min
j∈{1,...,|A′(s)|}

Mi,j . (1)

Savage is an application of the Wald maximin model to the
regret:

ã = argmin
i∈{1,...,|A(s)|}

max
j∈{1,...,|A′(s)|}

M ′i,j . (2)

We also include a simple policy which chooses the action with
maximal average score, i.e.,

ã = argmax
i∈{1,...,|A(s)|}

∑
j∈{1,...,|A′(s)|}

Mi,j . (3)

Respectively,

ã = argmin
i∈{1,...,|A(s)|}

∑
j∈{1,...,|A′(s)|}

M ′i,j . (4)

The OneStep controllers use separately (1) Wald (Equation
1) on its score; (2) maximal average score (Equation 3) policy;
(3) Savage (Equation IV-D); (4) minimal the opponent’s aver-
age score (Equation 4); (5) Wald on (its score - the opponent’s
score) and (6) maximal average (its score - the opponent’s
score). In the experiments described in Section V we only
present the results obtained by using (6), which performs the
best among the 6 policies.

V. EXPERIMENTS ON BATTLE GAMES

We compare a RHGA controller, a RHCA controller, an
Open Loop MCTS controller and an One-Step Lookahead
controller, denoted as RHGA, RHCA, OLMCTS, OneStep and
a move in circle controller, denoted as ROT, by playing a two-
player battle game of perfect and incomplete information.

TABLE I: Analysis of the number of wins of the row controller
against the column controller in the battle games described in
Section III-A. The last column shows the average #wins of
the row controller, the higher the better; the last row show the
average #loss of the column controller, the lower the better.
10ms is given at each game tick and MaxTick = 2000. Each
game is repeated 100 times with random initialization. RHCA
outperforms all the controllers.

Test case 1: Simple battle game without weapon.
RND ROT OneStep OLMCTS RHCA RHGA Avg. wins

RND - 62.5 51.0 9.0 6.5 7.5 27.3
ROT 37.5 - 0.0 0.0 0.0 0.0 7.5

OneStep 49.0 100.0 - 49.5 13.0 42.0 50.7
OLMCTS 91.0 100.0 50.5 - 50.0 50.0 68.3
RHCA 93.5 100.0 87.0 50.0 - 50.0 76.1
RHGA 92.5 100.0 58.0 50.0 50.0 - 70.1
Avg. loss 72.7 92.5 49.3 31.7 23.9 29.9

A. Parameter setting

All controllers should decide an action within 10ms. OLM-
CTS uses a maximum depth= 10. Both RHCA and RHGA
have a population size λ = 10, ProbaMut = 0.3 and
th = 10. The size of sub-population used in tournament
(SubPopSize in Algorithm 3) is set to 3. These parameters are
arbitrarily chosen. Games are initialised with random positions
of spaceships and opposite directions (cf. Figure 2).

B. Analysis of numerical results

We measure a controller by the number of wins and how
quickly it achieves a win. Controllers are compared by playing
games with each other using the full round-robin league. As
the game is stochastic (due to the random initial positions of
ships, the random process included in recoil or hitting), several
games with random initialisations are played between any pair
of the controllers.

For comparison, a random controller, denoted as RND, is
also included in the experiments.

Table I illustrates the experimental results. Every entry in
the table presents the number of wins of the column controller
against the row controller among 100 trials of battle games.
The number of wins is calculated as follows: for each trial
of game, if it’s a win of the column controller, the column
controller accumulates 1 point, if it’s a loss, the row controller
accumulates 1 point; otherwise, it’s a draw, both column and
row controllers accumulates 0.5 point.

1) ROT: The rotated controller ROT, which goes in circle,
is deterministic and vulnerable in simple battle game.

2) RND: Though the RND controller is not outstanding in
the simple battle game, it still outperforms the deterministic
ROT.

3) OneStep: OneStep performs poorly against all the other
controllers except one case: against ROT. It’s no surprise that
OneStep beats ROT, a deterministic controller, in all the 100
trials. Among the 100 trials, OneStep is beaten separately by
OLMCTS once and RND twice, the other trials finish by a
draw.

4) OLMCTS: OLMCTS outperforms ROT and RND, how-
ever, there is no clear advantage or disadvantage when against
OneStep, RHCA or RHGA.

5) RHCA: The fewer actions set in a macro-action, the
better RHCA performs. RHCA outperforms all the controllers.

6) RHGA: The fewer actions set in a macro-action, the
better RHGA performs. RHGA is the second-best in the battle
game.

VI. CONCLUSIONS AND FURTHER WORK

In this work, we design a new Rolling Horizon Coevolution-
ary Algorithm (RHCA) for decision making in two-player real-
time video games. This algorithm is compared to a number
of general algorithms on the simple battle game designed.
In the game, more actions per macro-action lead to a worse
performance of both Rolling Horizon Evolutionary Algorithms
(controllers denoted as RHGA and RHCA in the experimental
study). Rolling Horizon Coevolution Algorithm (RHCA) is
found to perform the best or second-best.

More work on battle games with weapon is in progress.
In the battle game, the sum of two players’ fitness value
remains 0. An interesting further work is to use a mixed
strategy by computing Nash Equilibrium [17]. Furthermore,
a Several-Step Lookahead controller is used to recommend
the action at next tick, taking into account actions in the
next n ticks. A One-Step Lookahead controller is a special
case of Several-Step Lookahead controller with n = 1. As
the computational time increases exponentially as a function
of n, some adversarial bandit algorithms may be included to
compute an approximate Nash [18] and it would be better to
include some infinite armed bandit technique.

Finally, it is worth emphasizing that rolling horizon evolu-
tionary algorithms provide an interesting alternative to MCTS
that has been very much under-explored. In this paper we have
taken some steps to redress this with initial developments of a
rolling horizon coevolution algorithm. The algorithm described
here is a first effort and while it shows significant promise,
there are many obvious ways in which it can be improved, such
as biasing the rollouts [19]. In fact, any of the techniques that
can be used to improve MCTS rollouts can be used to improve
RHCA. In the future, we are interested in improving our
RHEAs and comparing them using some stronger opponents,
such as an improved MCTS.

REFERENCES

[1] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search,” in Computers and games. Springer, 2006, pp. 72–83.

[2] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved Monte-Carlo
Search,” Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[3] S. Gelly, Y. Wang, O. Teytaud, M. U. Patterns, and P. Tao, “Modification
of UCT with Patterns in Monte-Carlo Go,” 2006.

[4] G. Chaslot, S. De Jong, J.-T. Saito, and J. Uiterwijk, “Monte-Carlo
Tree Search in Production Management Problems,” in Proceedings of
the 18th BeNeLux Conference on Artificial Intelligence. Citeseer, 2006,
pp. 91–98.

[5] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-Carlo Tree
Search: A New Framework for Game AI,” in AIIDE, 2008.

[6] “Mastering the game of Go with deep neural networks and tree search,
author=Silver, David and Huang, Aja and Maddison, Chris J and Guez,
Arthur and Sifre, Laurent and Van Den Driessche, George and Schrit-
twieser, Julian and Antonoglou, Ioannis and Panneershelvam, Veda and
Lanctot, Marc and others, journal=Nature, volume=529, number=7587,
pages=484–489, year=2016, publisher=Nature Publishing Group.”

[7] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas, A. Couetoux,
J. Lee, C. U. Lim, and T. Thompson, “The 2014 General Video Game
Playing Competition,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. PP, no. 99, pp. 1–1, 2015.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-Level Control Through Deep Reinforcement Learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[9] D. Perez, J. Dieskau, M. Hünermund, S. Mostaghim, and S. Lucas,
“Open Loop Search for General Video Game Playing,” in Proc. of the
Conference on Genetic and Evolutionary Computation (GECCO), 2015.

[10] R. Weber, “Optimization and control,” University of Cambridge, 2010.
[11] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas, A. Couëtoux,

J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General Video Game
Playing Competition,” 2015.

[12] A. Weinstein and M. L. Littman, “Bandit-Based Planning and Learning
in Continuous-Action Markov Decision Processes,” in Proceedings of
the Twenty-Second International Conference on Automated Planning and
Scheduling, ICAPS, Brazil, 2012.

[13] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen, “Rolling
Horizon Evolution versus Tree Search for Navigation in Single-player
Real-time Games,” in Proceedings of the 15th annual conference on
Genetic and evolutionary computation. ACM, 2013, pp. 351–358.

[14] D. Perez, J. Dieskau, M. Hünermund, S. Mostaghim, and S. M. Lucas,
“Open loop search for general video game playing,” Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), pp. 337–
344, 2015.

[15] A. Wald, “Contributions to the Theory of Statistical Estimation and
Testing Hypotheses,” Ann. Math. Statist., vol. 10, no. 4, pp. 299–326,
12 1939.

[16] L. J. Savage, “The Theory of Statistical Decision,” Journal of the
American Statistical Association, vol. 46, no. 253, pp. 55–67, 1951.

[17] M. J. Osborne and A. Rubinstein, A course in Game Theory. MIT
press, 1994.

[18] J. Liu, “Portfolio Methods in Uncertain Contexts,” Ph.D. dissertation,
INRIA, 2015.

[19] S. M. Lucas, S. Samothrakis, and D. Perez, “Fast Evolutionary Adap-
tation for Monte Carlo Tree Search,” in Applications of Evolutionary
Computation. Springer, 2014, pp. 349–360.

