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Abstract—Numerous competitions have emerged in recent
years that allow researchers to evaluate their algorithms on
a variety of real-time video games with different degrees of
complexity. These competitions, which vary from classical arcade
games like Ms Pac-Man to racing simulations (Torcs) and real-
time strategy games (StarCraft), are essential to establish a uni-
form testbed that allows practitioners to refine their algorithms
over time. In this paper we propose a new competition to be held
for the first time at WCCI 2012: the Physical Travelling Salesman
Problem is an open-ended single-player real-time game that
removes some of the complexities evident in other video games
while preserving some of the most fundamental challenges. This
paper motivates and outlines the PTSP and discusses in detail
the framework of the competition, including software interfaces,
parameter settings, rules and details of submission.

I. AN INTRODUCTION TO THE PTSP

Research in game AI has traditionally focussed on 2-player
turn-taking board games of perfect information such as Chess
and Go, and in many cases has produced algorithms capable of
super-human play. Driven by past successes, practitioners have
started to concentrate on more complex domains, including
those characterised by hidden information, stochasticity, real-
time elements and simultaneous moves, to name but a few.
Amongst the wide variety of games considered, real-time
video games are of particular interest, both academically and
commercially: video games are immensely popular yet also
notoriously complex and so far, efforts to produce convincing
non-player characters (NPCs) have achieved some success
but have been labour-intensive; there are some examples
where modern Artificial Intelligence (AI) techniques have been
applied to video games, as probabilistic techniques in the
Halo series, or planning in FEAR and Skyrim. However, most
successful video games continue to rely on scripts, animations,
finite state machines (often hierarchical) or behaviour trees to
convey a sense of intelligence to the gamer. In an ongoing
effort to address this issue and offer a machine-learning
based alternative, numerous video games competitions have
been proposed in recent years, including, for instance, racing
simulations (TORCS), Ms Pac-Man, Tron, Planet Wars and
the Mario AI Challenge. Irrespective of any potential game
applications, they are also interesting problems for academic
study.

In this paper we propose a new competition centred around
the Physical Travelling Salesman Problem (PTSP), a modifica-
tion of one of the most well-known combinatorial optimisation
problems, the Travelling Salesman Problem (TSP). The goal
of the competition is to allow practitioners to compete in
a domain that is less complex than most other game-based
competitions while retaining some of the essential aspects of
modern video games. In particular, the PTSP requires real-time
navigation of a single-point mass, an abstraction of a concept
found in many modern video games. Despite its simplicity,
the PTSP bears significant resemblance to some older video
games, including CrystalQuest, XQuest and Crazy Taxi.1

The PTSP is a single-player real-time variant of the classical
TSP: the TSP consists of a set of spatially distributed cities
n0, n1, . . . nN . A solution to the TSP is a sequence of cities
(tour) that visits each city once, returning to the starting city at
the end. The tour length is the sum of the distances between all
consecutive pairs of cities and the goal is to find the tour with
the minimum overall length [1]. The TSP may be converted
into a single player real-time game: the agent (salesman; herein
referred to as a ship) and the cities are positioned in two-
dimensional continuous space as indicated by their respective
coordinates (a pair of real values). The objective of the game
is to direct the agent in real-time to visit all the cities (also
referred to as waypoints in this text) as quickly (i.e., in as few
time steps) as possible. This is done by providing an action
in each execution step. The actions that govern the ship are
summarised in Figure 1. There are two basic commands that
can be used: thrusting and left / right rotation. The former can
be seen as a boolean input (either the ship thrusts or not) while
the latter is an integer value to indicate rotation to the left (−1),
to the right (1) or no rotation at all (0). These two inputs may
be supplied simultaneously for a total of six different actions
that may be carried out at each time step. All actions can
be understood as forces applied to the ship that update its
position, orientation and speed. The equations shown below

1Crazy Taxi and Mario Kart also have a bonus game in which the player
drives the car around an open space with the aim of popping a set of balloons,
or collecting items, within a given time limit; the PTSP is very similar to this.



Fig. 1. Ship forces and actions.

illustrate how these values are updated:

dt+1 =

(
cos(α) − sin(α)
sin(α) cos(α)

)
dt (1)

vt+1 = (vt + (dt+1TtK))L (2)

pt+1 = pt + vt+1 (3)

where dt, vt and pt are the vectors that represent the orienta-
tion (direction), velocity and position of the ship at time t; α
is the rotation angle and L represents the friction factor, used
to reduce the speed of the ship at every time step, K is an
acceleration constant and the value of Tt depends on the force
applied in the step t: 1 if the action involves acceleration, and
0 otherwise. All these values have been tuned manually to
create the desired game physics (the specific values used in
the competition are shown in section III-F).

The difficulty of the PTSP may be increased by introducing
obstacles that the ship must circumvent. Although there is no
damage to the ship in the current version of the game, both
the ship’s velocity and position are affected by collisions. To
achieve this, the ship’s velocity vector is altered by a collision
factor, reducing its speed significantly. An example of a PTSP
map that includes obstacles can be seen in Figure 4.

There are two major difficulties inherent to the PTSP.
The first relates to the optimal order of waypoints and the
second relates to the actual navigation of the ship. While these
problems may be addressed separately, it is clear that their
interdependency could favour a more integrated approach.
It is very important to keep in mind that the physics of
the PTSP make this game significantly different to the TSP.
In particular, a route connecting all the waypoints whose
distances is minimised may not be optimal with respect to the
navigation of the ship (if, for instance, the route includes too
many changes of direction): while distance alone determines
the quality of a solution in the TSP, solution quality in the
PTSP corresponds to the time taken to traverse said route and
being able to travel at higher speeds generally achieves this.

II. RELEVANT RESEARCH

As seen in Section I, the PTSP can be understood as a
combination of two major problems: route optimisation and
navigation in real time. This section presents an analysis of the
literature related to the TSP, navigation and real time games.

A. TSP

Many different approaches have been proposed in the last
few decades to address the TSP and a wide array of heuristics
have emerged. An important category of these heuristics
are the tour construction heuristics, which focus on a local
search of available cities. A commonly used heuristic of this
kind is the Nearest Neighbour heuristic (as described by J.
Rosenkrantz et al. in [2]), which just adds to the tour the near-
est unvisited city. This should not be confused with the Greedy
heuristic (which J. L. Bentley presents in [3]), where the tour is
built in a similar way, but takes into account that the resultant
sequence at each step must be a Hamiltonian cycle where every
city has a degree of 2. Another tour construction heuristic
is the Clark-Wright Savings algorithm, first introduced by G.
Clarke and J. Wright [4]. It consists of picking a starting node
n0, and calculating the savings of each pair (ni, nj) : i, j 6= 0,
such that s(ni, nj) = d(n0, ni)+d(n0, nj)−d(ni, nj). These
savings are then sorted in a descending order until a path is
produced in a way that goes exactly once through each node
different than n0. Finally, the path is completed by adding n0
at each end. A detailed description of this algorithm can be
found at [5], by A. M. Frieze.

Insertion Algorithms offer a different type of tour construc-
tion. In this case an unvisited city is inserted into the tour
between two already included cities, always trying to minimise
the added cost caused by this insertion. The tour is built
when all cities are in the sequence. The algorithm and its
performance may vary depending on the policy chosen to pick
the new city to include (see J. Rosenkrantz [2] for details).

Additional heuristics for the TSP include the k-Opt Heuris-
tics, which are based on local improvements on existing tours.
The most famous ones are 2-Opt (described by G. A. Croes
in [6]) and 3-Opt (presented by S. Lin in [7]), where two edges
(or three, respectively) are removed from the initial tour and
then replaced by different ones that produce a smaller path
length.

Meta-heuristics have also been used frequently to tackle the
TSP is Tabu Search (F. Glover [8] and S. Lin [9] illustrate
this technique in their research) using the 2-Opt heuristic:
an initial solution to the problem is repeatedly modified by
swapping two nodes from the initial route until a stopping
criterion has been reached. To ensure the validity of new
candidate solutions and to deal with local optima, a list of
the edges removed by the algorithm is kept to avoid new
paths that produce worse tour lengths. Other techniques used
to tackle the TSP include Simulated Annealing (by J. S.
Kirkpatrick [10]), Genetic Algorithms, by R. M. Brady [11]
and D. Boese et al. [12], Ant Colony Optimization (described
by G. L. Dorigo [13]) and using different types of Neural
Networks (like the ones presented by C. Boeres and V. C.
Barbosa [14] or the Kohonen-type neural networks used by F.
Favata [15]).

B. Navigation

Navigation has been a highly active field of study in robotics
[16]. The problem of navigation (or path planning) typically



consists of finding the path, or sequence of positions, that
take an agent from an initial location (start) to a destination
(or goal), while avoiding collision with possible obstacles.

Many techniques have been used to approach this prob-
lem: Potential Fields, described by G. Wang [17] and Y.
Hwang [18], are a popular choice because of their simplicity
and the good solution quality. This approach builds an artificial
potential field, attractive at the goal and repulsive at the
obstacles. A mathematical function needs to be defined so that
each point in the space is affected by the potential field, in
order for the agent to obtain a direction to follow. However,
this approach has some limitations, such as the existence of
local minima and complications derived from the modelling
of an agent as a point-mass.

Other authors prefer to base navigation on the construction
of a graph on the map, in a way that its nodes are navigable
points in the world. The process of generating a graph is by
itself a non-trivial problem ([19], [20]), and it can be tackled
from different perspectives, like building visibility graphs,
Voronoi diagrams, cell decomposition or navigation meshes
(different approaches are illustrated by H. Hale et al. [21] and
D. C. Pottinger [22]). Once the graph has been constructed,
the agent must use it to navigate through the world. The
most common techniques are Dijkstra and A*, described by
Russell and Norvig in [23], and provide optimal results. These
graph search algorithms often ignore the physics involved in
moving an agent, and work on the basis that an agent has no
momentum and is free to move to any vacant neighbouring
square at each point in the search.

There are other techniques in the literature that navigate the
graph using different approaches. A good example is the usage
of Rapidly-exploring random trees (or RRTs), by Steven M.
LaValle [24]. RRTs are based on a heuristic-driven sampling
of the search space, taking the exploration towards unexplored
portions of the world. The algorithm is simple and it obtains
high quality sub-optimal solutions. It is well suited for high-
dimensional search spaces, where it can obtain better results
than traditional techniques, if the trade off between quality
of the solution and computational effort is taken into account.
Monte Carlo Tree Search (MCTS) has been used in the past to
solve an obstacle-free version of the PTSP [25]. The authors
found that MCTS with a suitable heuristics was able to find
solutions to most problem instances, though by visualising the
search process it was found that MCTS was performing mostly
short-term planning, so the solutions found in this way are
unlikely to be close to optimal.

Another important component of navigation is the steering
behaviours. In other words, how to specify the commands to
effectively move the agent (or robot) through the world. In this
case, the benchmark itself defines what types of commands
and movements are available. This is defined by the concept
of degrees of freedom, which is the number of independent
parameters that affect the movement, rotation and deformation
of the object. Craig W. Reynolds presents in [26] a compilation
of steering behaviours for autonomous characters (such as
seek, flee, arrive, pursuit or evasion, see Figure 2), giving

Fig. 2. An example of the steering behaviours Seek and Flee, from [26].

the agents “the ability to navigate around in a life-like and
improvisational manner” [26, p 763].

C. Real-Time Games and Competitions

Many game-related competitions have taken place in the
last decade and relevant subset of these competitions involves
real-time games. In these competitions the controller must
respond with an action within a time limit and must balance the
desire to make an optimal move with the necessity to respond
quickly. Furthermore, navigation, presented in different ways,
is an important part of the controllers programmed for these
competitions as can be seen in the following examples.

One of the longest-running real-time competitions is the Ms
Pac Man screen-capture competition, based on the famous Ms
Pac Man arcade game, organised by Simon M. Lucas [27]
since 2007. The objective is to control Ms Pac Man and
obtain the highest possible score receiving input from a
screen capture of the original game. A recent modification
of this competition, the Ms Pac-Man vs Ghosts competition
(by P. Rohlfshagen, D. Robles and S. Lucas [28]), allows
the participants to control both Ms Pac-Man and the ghosts.
These competitions share a key component with the PTSP: the
importance of navigating through the world avoiding obstacles
while trying to reach a concrete destination (a pill, an edible
ghost or Ms. PacMan when controlling the ghost team).

Another well known competition is the Simulated Car
Racing competition, by D. Loiacono [29]. It has been running
since 2007 and is based on the TORCS racing simulator.
With different formats, the goal of this game is to find the
fastest driver, in either single- or multi-player modes. Again,
the controller has to respond within a given amount of time.

A more recent competition is the Mario AI Competition, by
S. Karakovskiy and J. Togelius [30]. It is based on the famous
video game Super Mario Bros., using a modified version of it
called Infinite Mario Bros.. Its gameplay track combines the
idea of path planning and reactiveness to enemy movements.
An example of an entry to this competition, by D. Perez and
M. Nicolau [31], used A* to solve the navigation task and
grammatical evolution to evolve behaviour trees to manage the
reaction to dynamic enemies. The winner of the 2009 edition,
R. Baumgarten [30], also used A* for his controller, optimising
the search in order not to violate the real-time requirements
stated in the rules.



Two more recent real-time game competitions are the 2K
BotPrize (by P. Hingston [32]) and the Starcraft Competition
(by B. Weber [33]). These games cover two genres of games
that had not been covered before: First Person Shooter and
Real-Time Strategy games, respectively. In both scenarios,
navigation through the world plays an important part in the
final success of the controllers. In fact, in the case of the 2K
BotPrize, the objective is to make the participant’s controller
behave like a real human (as in the Turing Test), so navigation
needs to be not only effective, but also performed in a human-
like way.

III. RULES OF THE COMPETITION

A. Competition Format

Participants of the WCCI 2012 PTSP competition will be
able to download the framework from the competition web-
page at www.ptsp-game.net where the latest news, important
dates and submission instructions may be found also. A starter
kit is provided in order to ease the creation of controllers.
This kit includes the source code for the competition, some
sample controllers, and sample maps, that can be used by the
participants to train their controllers.

The competition’s submission server will be open three
months before the submission deadline. From that moment
on the server will allow participants to test their controllers
against an unknown set of maps that are partially changed over
time to avoid overfitting. The web page will present ranking
tables for all maps, showing the results of the controllers
submitted, providing feedback to the participants as to how
their controllers perform, compared with other competitors.
Although only one controller is allowed per participant, each
participant may resubmit as many times as they like prior to
the deadline.

The final evaluation consists of testing all the controllers on
a new set of maps. Some of these maps will be picked from
the pool of server maps, while others will be completely new.
The competition also includes a human track where human
players will be able to play the game on different maps and
get their scores published in a ranking. This allows a direct
comparison between humans and AI-controllers.

B. Evaluation

The objective of the PTSP is to visit all waypoints of a map
in the minimum number of time steps and each controller will
be evaluated on multiple maps (over multiple trials each) to
establish its general performance. A run on a map stops when
all waypoints have been visited. However, to avoid indefinite
games, the controller has a limit of 1000 time steps to reach the
next unvisited waypoint or the game is terminated prematurely.
A controller’s performance is subsequently established as the
average number of waypoints visited and the average time
taken to do so: if two or more controllers cover the same
number of waypoints, the winner will be the one who required
less time.

As the evaluation will take place on multiple maps, the
overall winner will be the one that performs best across all of

them. To do this, each map will have a ranking of controllers,
and points will be awarded depending on their position in the
score table. These points will follow the scheme: 10 points
for the first classified controller, 8 for the second, 6 for the
third, 5 for the fourth and so on up to 1 point for the eighth.
The controller with the highest score adding the points of all
maps will be the competition winner. In the case of a draw in
the final score, the best controller will be considered to be the
one with more first positions. If the draw persists, the number
of second, third, etc. positions will be taken into account.

C. Submission

Participants must submit the Java source code of their con-
trollers which is then compiled by the organisers. Compilation
errors will be reported back to the competitors but execution
errors will produce a result of 0 points in the map where the
error happened. A brief description of the technique used is
also expected. All files must be submitted, in a zip file, through
the submission webpage before the stated deadline.

D. Software

The Java software framework provided contains the follow-
ing packages and classes:

• Package controller . All the code for the participant’s
controller must be self-contained its own package like
the sample controllers included: random.RandomController,
lineofsight .LineOfSight, greedy. GreedyController and

WoxController.WoxController. Section IV gives more details
about these sample controllers.

• Package framework. Contains all the game code.
– Package core. Contains the core code of the game.
– Package graph. Path-finding code (see section III-G3).
– Package utils . Includes some useful classes.
– Several classes for different execution modes as

described below.
• Package wox. serial . The framework contains the latest

version of WOX Serializer2, that allows the participant to
utilise serialisation of objects into XML files. This is an
useful package for those competitors that plan to employ
any kind of offline training (as evolutionary or learning
algorithms).

The game may be executed in different modes as facilitated
by a number of classes created for this purpose:

• ExecSync.java: Synchronous modes, where the game
does not monitor the tame taken by the controller to
respond. Allows to execute one or several maps, with
and without visuals.

• ExecAsync.java: Asynchronous modes, used in the com-
petition to evaluate the controllers.

• ExecReplay.java: To execute replays of old games.
• ExecFromData.java: Special execution modes, as execu-

tion in maps created from data or providing a controller
through parameters. These modes can be used to execute

2woxserializer.sourceforge.net.

www.ptsp-game.net
woxserializer.sourceforge.net


large amounts of consecutive runs, which can be useful
for reinforcement learning or evolutionary algorithms.

E. Game Flow

To create a controller for this competition, the participants
need to create a Java class that extends framework.core. Controller .
The class created must include the following: a constructor,
that receives a copy of the game state and the time when this
controller is due to respond (framework.core.Game, long), and the
method getAction(framework.core.Game, long), that receives a copy
of the current game state and the time due to respond. This
function must return one of the six possible actions, that will
be the on executed on that cycle. These actions are defined
in the abstract class framework.core. Controller , and are indicated
here:

• ACTION NO FRONT: No rotation or acceleration.
• ACTION NO LEFT: Left rotation but no acceleration.
• ACTION NO RIGHT: Right rotation but no acceleration.
• ACTION THR FRONT: No rotation, forward acceleration.
• ACTION THR LEFT: Left rotation and acceleration.
• ACTION THR RIGHT: Right rotation and acceleration.

In the competition execution mode, the controller and the
game run in separate threads. This way, the game does not get
blocked when the controller takes too much time to respond.
The game will apply the action specified by the controller
every 40 milliseconds, and it will apply ACTION NO FRONT in
case the controller runs out of time.

A more complete game flow is shown in figure 3. The Game
Thread creates the game and the Controller Thread, and if the
initialisation was carried out correctly, the game goes into a
main loop that ends when the game is finished (what happens
if all waypoints have been visited or the time has run out).
During this loop, the game informs the Controller Thread at
every cycle about the current game state and the time when
the controller is due to respond with an action. The Controller
Thread then requests the participant’s controller for an action
and stores the result in a local variable. Then, after the Game
Thread has slept for the action time, it retrieves the last action
assigned by the controller and applies it in the game. The
Controller Thread is in charge of setting the local variable to
the default action every time it is notified by the game that
another game cycle starts. This way, should the controller takes
more time than allowed processing the next move, this action
is retrieved and executed.

It is important to note that the controller has access to the
whole game state, so queries can be made as to the condition
of the ship and environment. Furthermore, a copy of the
Ship object can be accessed from the game state, allowing
the performance of simulations by applying actions, before
returning the final move.

When the game is ended, the actions executed in this run
can be dumped to a file, with a name containing the current
date and time. The format of this file is the number of actions,
followed by all the executed moves, one per line.

Fig. 3. Game flow.

F. Ship Physics

The game framework implements the physics described
in section I. However, the following parameters need to be
defined in order to obtain the desired physics for the game:

• Rotation step (α) is set to π/60 and −π/60 radians for
right and left steering respectively, and 0 for no rotation.

• The friction factor (L) is set to 0.99. It is used to
decelerate the ship when no thrust is applied.

• The constant acceleration value (K) is fixed to 0.025.
• The collision factor used to reduce the speed of the agent

when it collides with an obstacle is set to 0.05.

G. Controllers

1) Programming specifications: Regarding the correctness
of the controllers, the following technical specifications must
be observed:

• The controllers must be programmed in Java. Extension
to other languages could be considered for future editions
of this competition.

• Multi-threading is not allowed.
• Reading from files is allowed at any moment. Writing

to files is only allowed if the controller does it in its
own directory. At the moment of the final evaluation, all
controllers will be executed using the exact same files
included by the participants in the packages submitted.

• There are two time limits that must be respected, at the
controller initialisation and update. The first one, set to
1000ms, is the maximum amount of time allowed for the
constructor of the controller. The second, set to 40ms, is
the time allowed for the controller to provide an action



to perform at every execution step. If the first time limit
is not respected, the controller will not be executed on
that map. Should the controller spend more time than
allowed during the update call, the action performed by
the controller in this step will be action 0 (i.e. no thrust
and no rotation).3

• The process of the controller is also memory limited, no
higher than 256MB. Not respecting this limitation will
produce a result of 0 points in that map.

• Copies of the game state are provided to the controllers
in order to have full access to the game during execution.
Any attempt to modify the real state of the game, other
than the required actions to control the ship, will end
with the disqualification of the controller from the whole
competition. The same applies for any attempt of using
a bug in the system to obtain any kind of benefit over
other participants.

2) Available data: Table I shows the most important
methods and fields available to the controller and the infor-
mation that they retrieve.

3) Path-finding: The Starter Kit provides code for path-
finding, that can be used for any controller. This code creates
a grid graph on the navigable parts of the map, using eight-way
connectivity between the nodes (i.e, each node is connected
to its eight neighbour nodes, if present.) The A* algorithm is
used to create paths between nodes, and these paths are stored
in memory so the computational time is not heavily affected.
The sample controller GreedyController, also described in
section IV-C, shows an example of usage of these classes. It
is important to mention that the execution of the code devoted
to this end must be triggered by the controller, so that, should
the participant decide not to use it, they will not be penalised
by the time/storage consumption that this process involves.

H. Maps

The maps accepted by this game are ASCII files, that have
the following format: the first two lines must specify the height
and the width of the map. Then, the keyword map indicates
the start of the map. Finally, the following lines compose
the map itself. Each position in the map is specified by an
ASCII character, which can have different values for walls or
obstacles (’@’ and ’T’), waypoints (’C’), starting point of the
ship (’S’) and empty spaces (’.’)4.

An example of one of the maps provided with the bench-
mark can be seen in Figure 4.

The waypoints are painted with different colours depending
on the ship have visited or not (red for non visited, blue for
visited, in the actual game). The ship is depicted as a blue
polygon, with a green triangle at the back that denotes that
the thrust is being pressed. The trajectory followed by the

3The competition will be run in a dedicated server Intel Core i5 machine,
2.90GHz 6MB, and 4GB of memory.

4This format is based on the symbols used by Nathan Sturtevant, from
games such as Warcraft, Starcraft or Baldur’s gate. They have been used by
many researchers in the literature - http://movingai.com/benchmarks/dao/

Function Information
From Game

getWaypoints() Returns the list with all the waypoints in
the map.

getWaypointsLeft () Indicates the number of waypoints that are
still to be visited.

getTotalTime () Gets the time spent since the beginning of
the game.

getStepsLeft () Returns the steps left until the time runs
out.

getMap() Returns the map of the game (instance of
Map).

getMapSize() Returns the dimensions of the map (in-
stance of java .awt.Dimension).

getShip () Gets the ship of the game (instance of class
Ship).

advanceMap() Advances the current map to the next
loaded one.

getCopy() Gets a copy of the whole game state in a
Game object.

From Waypoint

isCollected () Indicates if this waypoint has been collect-
ed/visited.

Vector2d s Indicates the position of this waypoint.

RADIUS Represents the radius (number of pixels)
of the waypoints.
From Map

getMapChar()

Gets a bi-dimensional array with the con-
tents of the current map. Each position is
a pixel on the map, and a character of the
map file (see section III-H).

getMapHeight() Gets the height of the map (in pixels).
getMapWidth() Returns the width of the map (in pixels).
getStartingPoint () Gets the starting point of the ship.

isObstacle (x,y) Returns true if there is an obstacle in the
position given.

checkObsFree(rect ) Checks if there are no obstacles in a given
rectangle.

LineOfSight(o, d)
Checks if there are no obstacles from the
origin position to the destination (consid-
ering ship radius).

distToCollision (v,w,d)

Returns the distance to a potential obstacle
from a given point (v), in a specified di-
rection (w) an up to a maximum distance
(d). Gets -1 if no collision.

getCopy() Gets a copy of the Map object.
From Ship

getCollLastStep () Indicates if there was a collision in the last
step.

update( action ) Performs the action provided.
getCopy() Gets a copy of the Ship object.
Vector2d s Position of the ship.
Vector2d sp Position of the ship in the previous step.
Vector2d v Velocity of the ship.

Vector2d d Direction of the ship (where the ship is fac-
ing, not necessarily the same as Velocity).

SHIP RADIUS Represents the radius (number of pixels)
of the ship.

From Controller

getThrust ( action ) Returns true if the action given accelerates
the ship.

getTurning( action ) Returns −1, 1 or 0 if the action given
rotates left, right or none, respectively.

getActionFromInput(
thrust , turn )

Given an acceleration boolean and a turn
sense, returns the desired action identifier.

TABLE I
CODE INTERFACE.

http://movingai.com/benchmarks/dao/


Fig. 4. Sample map, during execution.

ship is shown with a black line, and obstacles are drawn in a
dark colour on a white background.

IV. SAMPLE CONTROLLERS

A. RandomController

This is probably the most basic controller that can be
made in this benchmark. This controller returns a random
action at every execution step. The class, controllers . random.
RandomController, inherits from framework. Controller and it only
needs to create a constructor and override the getAction ()
method from the base, both of them receiving an instance

of framework.core.Game. Its code is shown below:
1 Random m rnd ;
2
3 p u b l i c RandomCon t ro l l e r ( Game gameCopy , long due )
4 {
5 m rnd = new Random ( ) ;
6 }
7
8 p u b l i c i n t g e t A c t i o n ( Game gameCopy , long due )
9 {

10 r e t u r n m rnd . n e x t I n t ( C o n t r o l l e r . NUM ACTIONS) ;
11 }

B. LineOfSightController

This is an extension of the previous controller. The ship in
this case wanders randomly through the level but, when the
closest waypoint is in line of sight, the ship drives directly to
it. This functionality is achieved using the function LineOfSight(
origin , destination ), from class Map, that checks whether there is
an obstacle directly between the origin and destination points.

C. GreedyController

This controller is another extension of the LineOfSight
controller. In this case, when there is no line of sight to a
waypoint, the controller tries to find the action that takes the
ship closer to the closest waypoint, avoiding the obstacles
in between. It does this by using the path-finding code, as

mentioned in section III-G3, calculating the distances from the
ship to the waypoints using the cost of the shortest paths. In
order to use the path-finding code included in the benchmark,
the first step is the creation of the graph. This can be made
with a single line:

1 Graph graph = new Graph ( gameCopy . getMap ( ) ) ;

Another useful function of the framework.graph.Graph class is
getClosestNodeTo(), that returns the closest node in the map to
a given position. This function can be used, for instance,
to obtain the closest node to the ship and the waypoints,
and hence is able to calculate paths between their positions.
The function that calculates paths is getPath () , and returns an
instance of the class framework.graph.Path. This is an example of
how to create and obtain paths between two nodes:

1 Ship s h i p = a gameCopy . g e t S h i p ( ) ;
2 Waypoint way = a gameCopy . g e t W a y p o i n t s ( ) . g e t ( 0 ) ;
3 Vec to r2d p = s h i p . s ; / / Sh ip p o s i t i o n
4 Vec to r2d d = way . s ; / / Waypoint p o s i t i o n
5
6 Node sNode = graph . g e t C l o s e s t N o d e T o ( p . x , p . y ) ;
7 Node wNode = graph . g e t C l o s e s t N o d e T o ( d . x , d . y ) ;
8
9 Pa th p a t h = graph . g e t P a t h ( sNode . i d ( ) , wNode . i d ( ) ) ;

10
11 d ou b l e p a t h C o s t = p a t h . m cost ;
12 Vector<I n t e g e r > pa thNodes = p a t h . m po in t s ;

D. WoxController

This is a modification of the RandomController. The pur-
pose of this controller is to demonstrate how to use the
Wox package included with the distribution (as stated in
section III-D). This controller reads a serialized object from
a file, that contains certain variables that bias the choose of
random actions executed during the game.

E. Performance of sample controllers

Table II shows the performance of the first three sample
controllers included with the distribution (differences be-
tween RandomController and WoxController and insignifi-
cant). These results can be seen as a baseline for the com-
petitors. The table also distinguishes between the 10 starter
kit maps (the ones distributed with the framework) and the
first set of 20 maps from the submission server (as stated in
section III-A).

V. CONCLUSION

This paper proposes a new real-time gaming competition
based on the Physical Travelling Salesman Problem, a single-

Maps Starter kit (Avg.) Server (Avg.)
Controller Waypoints Time Waypoints Time
RandomController 0.14 1071.6 0.15 1054.77
LineOfSightController 3.44 2321.52 3.09 2147.52
GreedyController 9.1 4469.1 7.35 3913.45

TABLE II
PERFORMANCE OF SAMPLE CONTROLLERS. EACH CONTROLLER WAS

EXECUTED FIVE TIMES ON EACH MAP.



player game variant of the well-known combinatorial optimisa-
tion problem, the Travelling Salesman Problem. Competitors
are required to navigate a ship in real-time to visit a set of
waypoints as quickly as possible. The waypoints are scattered
randomly across a playing field with numerous obstacles.

The PTSP provides a relatively simple yet interesting and
challenging competition on which to test a wide range of
optimisation and planning methods. Among these, we are
particularly interested to see how Monte Carlo Tree Search,
Evolutionary Algorithms, and meta-heuristics such as Ant
Colony Optimisation compare with each other. Also, an open
question is whether it is best to plan the city order then the
detailed action sequence to navigate that route, or whether it is
best to simply optimise the action sequence at a single level.

The PTSP is able to stand alone as an interesting optimi-
sation problem, a natural extension of the TSP. Additionally,
its game-like setting suggests a number of applications within
real-time video games, including the navigation of opponent
agents and the automated testing of map difficulty levels.

Finally, the PTSP game is a benchmark that permits many
additions and modifications for future versions. For instance,
the inclusion of different type of obstacles (elastic, inelastic,
damaging, etc.) would change the way the levels are played.
Another option would be to add a second player to compete
with, making the game much more challenging. An interesting
modification would also be to deny the controller access to the
level’s map, limiting the ship’s visibility to enforce a more
reactive navigation.
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