
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Explanation and Clustering of Playtraces using Temporal Logics
Pablo Gutiérrez-Sánchez

pabgut02@ucm.es
Complutense University of Madrid

Madrid, Madrid, Spain

Diego Pérez-Liébana∗
diego.perez@qmul.ac.uk

Queen Mary University of London
London, London, United Kingdom

Raluca D Gaina∗
r.d.gaina@qmul.ac.uk

Queen Mary University of London
London, London, United Kingdom

Abstract
This paper addresses the challenge of explaining gameplay be-
haviours and traces in video games using methods based on linear
temporal logics (LTL). Applications for this range from classify-
ing a player’s game-style to craft personalised user experiences,
to exploring the most significant behaviour patterns within a set
of trajectories, particularly in the context of data-driven design
and quality control assisted by black-box algorithms. We divide the
problem into two complementary tasks. First, to infer a temporal
characterisation of a registered play-style by means of a predicate
in LTL from a set of representative traces and potential counterex-
amples. Second, to classify a diverse set of traces into groups in
order to identify behavioural patterns within the samples. The first
problem focuses on recognising what makes a behaviour unique
when compared to others, while the second problem seeks to detect
meaningful patterns in groups of players. For the first task, we
propose a series of heuristic search methods in the LTL predicate
space, such as Monte Carlo Tree Search and Grammatical Evolution.
For the second, we introduce a new algorithm that clusters traces
based on predicates that split them into cohesive sets, demonstrat-
ing how the methods of the first problem can be extrapolated to the
latter. Both approaches are evaluated with practical experiments
on a 3D third-person stealth game developed in Unity 3D, show-
casing how these techniques can be used for analysis. Preliminary
results obtained with real player traces provide evidence that these
methodologies can support a more comprehensive understanding
of observed behaviours.

CCS Concepts
• Theory of computation→ Linear logic;Modal and temporal
logics; • Computing methodologies→ Game tree search; Dis-
crete space search; Randomized search; Temporal reasoning.
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1 Introduction
The recent surge of complex black-box systems in artificial intel-
ligence methods has led to a growing interest in devising simple,
or at least human-understandable, explanations of the underlying
logical processes behind these systems’ abstractions. In fields such
as healthcare, robot manipulation, or transportation, the design
of models that are interpretable and directly tractable by humans
has become a focal point for ensuring trust and adoption by real
users [1, 24].

This applies to the video game industry as well, where there
exists a steadily growing literature on the potential of deep learning
for quality assurance (QA), testing, and even the design of bots,
Non-Player Characters (NPCs), or artificial players for different
areas of interest. It is in QA that these techniques have been most
successfully adopted, as the resulting agents are largely proxies for
human testers in order to explore environments, look for bugs in the
game, or perform systematic regression tests to ensure that certain
combinations of actions and interactions lead to the expected results
as incremental changes are introduced to other parts of the product.
These applications also suffer from a lack of explainability that
reduces the trust of practitioners and hinders the clarity of the
results gathered in the QA process.

This desire to clarify the rationale behind black box systems is
essentially a dual form of another task of interest in the industry,
namely the analysis of gameplay and play-styles. Arguably, this
problem presents two distinct dimensions depending on the design
objective to be pursued. For an already released game, or a game
currently under development undergoing beta testing with real
players, the first issue of interest is to understand what kinds of
interactions are likely to be encountered in practice. This can take
several shapes, among which the following can be highlighted:
• Classifying players on the basis of game profiles, which are
not known in advance. For example, after recording the
behaviour of dozens of users, we could separate them into
those who solve a level in an aggressive way by engaging in
hand-to-hand combat against their enemies, and those who
prefer to follow a stealth strategy to avoid confrontation.
• Conducting a statistical balance analysis of which strategies
work best or worst and under what circumstances. This
might include observations about a card or character in a
game being used more frequently by top players, or items
that are not equipped as much as expected by design.
• Performing a systematic exploration of game map regions
via techniques such as heat maps, to understand the physical
distribution of events of interest such as deaths, item uses,
or scouted areas.
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The second dimension considers the problem of inferring what
category or style a player belongs to in real time, either based on
their closeness to some preconceived archetype (e.g., wary, explorer,
fighter) or on their level of skill and proficiency within the game.
This is particularly useful for guiding dynamic difficulty adjust-
ment mechanisms or for customising the user experience to the
individual’s characteristics.

The former is generally an explorative problem where the focus
is on detecting patterns in user behaviour, whereas the latter is
more in line with a supervised regression or classification paradigm,
although what this adjustment is performed on may be a vague
notion (e.g., the skill level of a player, which can be complex to
quantify objectively).

In this paper, we will focus mainly on this first exploratory ques-
tion and, more specifically, on the inference of meaningful temporal
patterns in game traces. For this purpose, and momentarily depart-
ing from the game domain, some of the most typically employed
models include finite state machines and temporal logics, which not
only possess a substantial set of theoretically desirable properties,
but also come with a syntax and structure that are generally sim-
ple to understand, alongside human-friendly semantics. The latter
turns them into mechanisms that are particularly well conditioned
to construct interpretable models in the tasks described above.

Now, this problem, by its inherently exploratory nature, is ill-
conditioned in that the notions of what is or is not interpretable, as
well as what provides useful information andwhat does not, have no
self-evident or theoretically straightforward numerical definition.
As an example, a concise model that classifies a set of game traces
correctly could be the trivial model that simply classifies them all
as positive (a logical true statement), but this does not provide any
useful information that explains what exactly is happening in the
game. However, an overly explanatory model that details every step
of the interaction could become overwhelming and hard to grasp;
hence, the aim here is to strike a compromise between correctness
and complexity within our explanations.

With this in mind, we begin the paper by summarising related
work on similar problems in Section 2, after which we move on
to describing the general concepts and establishing the notions
and notations necessary to understand the rest of the article, with
concise introductions in Section 3. We then elaborate on our first
contribution, which involves formulating formal definitions of two
exploratory problems of interest in video games. The first, described
in Section 4, aims to characterise what differentiates a set of game
traces from others through models that focus on temporal prop-
erties that are fulfilled in those examples but not in the provided
counterexamples (e.g. one group might be distinguished by always
defeating enemies and then opening a chest, while the other might
try to avoid foes and go straight for the loot). The second, presented
in Section 5, given a set of game traces from different potentially
diverse play sets, addresses the problem of dividing them into well-
structured groups that share similar behaviours. In turn, we dif-
ferentiate them from each other, similar to the case of a clustering
algorithm, but with a special focus on the temporal part.

For the first problem, we propose a set of predicate space search
methods mostly based on heuristic techniques such as Grammatical
Evolution or Monte Carlo Tree Search, in what is known as Linear
Temporal Logic (LTL), a formal language for specifying properties

of a system over time. For the second problem, we introduce a new
algorithm that groups traces based on predicates that divide them
into cohesive sets separated from each other. These methods are
further detailed in the same sections where each problem is defined.

Subsequently, Section 6 reports on experiments conducted on
a stealth game testing environment developed in Unity 3D, where
the above algorithms are tested and contrasted on real player traces.
Section 7 concludes the paper with discussions and future work.

2 Related Work
The problem of learning temporal properties from positive and
negative examples has been widely discussed both in the field
of robotic control and in more general contexts within various
works in the literature. Some of the most relevant contributions
in this field come from Grinchtein et al. [29] and Biermann et
al. [3] on the synthesis of finite state machines from demonstrations,
and again Grinchtein et al. [9] on the automatic learning of time-
invariant properties of complex systems. More recently, Roy et
al. [26] propose a symbolic approach supported by SAT Solvers
for the task of learning predicates in Temporal Logic from positive
examples only, which is known as the one class classification (OCC)
problem, while Raha et al. [23] propose a set of techniques used
to learn segments of predicates in linear temporal logic in a more
general fashion.

On the other hand, the problem of automatically recognising
play styles in video games enjoys an extensive literature base, both
in archetypal style classification and in regression on skill level.
Bontchev et al. [4] propose a model for recognising play styles
using linear regression techniques on performance metrics in dif-
ferent subtasks in a game with adaptive difficulty. Valls-Vargas et
al. [28] detail a new approach where it is suggested that it may be
more effective to infer play styles as a dynamic and time-varying
property, and suggest a player-modelling framework that exploits
this characterisation. Ingram [14] makes use of unsupervised deep
clustering strategies such as long short term memory (LSTMs) auto-
encoders to convert game traces into points in a latent space of
lower dimensionality on which to later apply clustering algorithms.

Similar deep learning techniques have also been applied to var-
ious unsupervised clustering problems of game trajectories and
general systems, several of which also make use of temporal auto-
encoders as a prior dimensionality reduction step [18, 30]. Deep
learning has also been used in supervised problems in order to
identify which player category a user belongs to by combining
latent spaces with datasets of game trajectories labelled with their
matching style [27]. While effective for building broad behavioural
archetypes, these often lack the granularity to capture specific
behavioural flows within categories. Our approach provides a com-
plementary perspective by focusing on the general temporal char-
acterization of groups of play-traces.

Lastly, a similar problem has been studied in the field of in-
verse reinforcement learning (IRL) to learn reward functions for
RL agents based on positive demonstrations. Kasemberg et al. [15]
learn LTL formulas from demonstrations of behaviour trajectories
in Markov Decision Processes (MDPs), although they do so on the
assumption that the underlying system’s internal mechanisms are
accessible. In turn, Hasanbeig at al. [13] introduce an algorithm
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for inferring automata describing high-level goals for RL agents. It
is worth mentioning that there are multiple additional works that
take specifications expressed in temporal logics as a starting point
to train agents by reinforcement, deriving learning mechanisms in
which the customary process of reward engineering is avoided, in
favour of more accessible and interpretable languages [11, 16, 31].

3 Preliminaries
In this section, we describe the general concepts and establish the
notation to be used in the rest of the paper.

Game Traces. To formally represent the executions of a game,
we will resort to the concept of traces defined over a non-empty
set Σ of possible game states 𝑠 ∈ Σ to be considered in the analysis.
A trace over Σ is a finite sequence 𝑡 = {𝑠1, . . . , 𝑠𝑛}, where 𝑠𝑖 ∈ Σ,
1 ≤ 𝑖 ≤ 𝑛}. In the context of this paper, a trace will correspond to
an observation of the game states logged over the course of a play
session of a given player in their interaction with a game. In what
follows, we represent the length of a trace 𝑡 by |𝑡 |. Additionally, we
denote by Σ∗ the set of all possible traces that can be generated
from Σ. Here we speak of states in a deliberately ambiguous sense,
and shall define what is understood as game state more precisely
after introducing predicates and temporal logics.

Temporal Logics. By Temporal Logics (TLs) we refer to any
system of rules and symbols that allows reasoning about proposi-
tions in terms of their evolution over time. TLs play an important
role in the formal verification of requirements in both hardware
and software [6], with Linear Temporal Logic (LTL) [17] being one
of the most widely adopted examples of these logics. LTL formulas
(which we shall also refer to as specifications in what follows) are
defined based on a series of core logical and temporal operators
and, more importantly, predicates of the form 𝑓 (𝑠) > 0, where
𝑓 : Σ→ R represents a function applied to the system’s state 𝑠 ∈ Σ.
The latter are the ones that are truly responsible for incorporating
a certain knowledge base into our specifications, as well as condi-
tions related to the world and context in which we operate, such
as “being close to a goal” or “an enemy having a high awareness
of the player.” These conditions are highly domain-dependent and
consequently, for each game we contemplate, we will inevitably
encounter the need to define a specific set of predicates that will
determine the expressiveness of our tasks. In what follows, we
shall assume that system states are given directly through arrays
of real-valued evaluations of the original game state, i.e. Σ ⊆ R𝑛 .
An LTL specification 𝜙 adheres to the following syntax:

𝜙 := ⊤ | 𝑓 (𝑠) > 0 | ¬𝜙 ′ | 𝜙 ′𝐴 ∧ 𝜙
′
𝐵 | 𝜙

′
𝐴 ∨ 𝜙

′
𝐵 |

𝜙 ′𝐴 ⇒ 𝜙 ′𝐵 | F𝜙
′ | G𝜙 ′ | 𝜙 ′𝐴 U 𝜙 ′𝐵 | X𝜙

′ (1)

Here, ⊤ is the True boolean constant, 𝑓 (𝑠) > 0 is a check on a
domain function on the system state, ¬ (negation), ∧ (conjunction),
∨ (disjunction) and⇒ (implication) are Boolean connectives, and
F (eventually), G (always), U (until), and X (next) are temporal
operators. The above grammar is complete in that it is capable of
generating any LTL predicate.

Quantitative Semantics and Progress. All of our algorithms
rely on the notion of progress of a trace with respect to a specifica-
tion, which we will briefly introduce in this section. Intuitively, we
are interested in defining a function that takes as inputs a trace and

a predicate in LTL, and computes a real value indicating how well
the trace has complied with the corresponding specification. When
the predicate is fulfilled throughout a run 𝑡 ∈ Σ∗ we shall say that
the trace models the specification and write 𝑡 |= 𝑝 or, alternatively,
that 𝑡 is an example of 𝑝 . In the opposite case, we will say that 𝑡 is
a counterexample of 𝑝 , and denote it by 𝑡 ̸ |= 𝑝 . Ideally, we would
expect our fitness function to be positive if and only if the evaluated
trace models the predicate, to be negative for counterexamples, and
to report the appropriateness of this satisfaction or rejection by
means of its magnitude; that is, the larger its absolute value, the
greater the conformance or violation of the trace to the predicate
under consideration, for the positive and negative cases, respec-
tively. A function that fulfils these properties is commonly known
as a robustness function or qualitative semantics [22].

In the case of the grammar from Equation 1, here we define the
robustness function 𝜌𝑠 (𝜙) := 𝜌 (𝑠, 𝜙) that outputs:

𝜌𝑠 (⊤) = 1
𝜌𝑠 (¬𝜙) = −𝜌𝑠 (𝜙)

𝜌𝑠 (𝑓 (𝑠) > 0) = 𝑓 (𝑠)
𝜌𝑠 (𝜙𝐴 ∧ 𝜙𝐵) = min(𝜌𝑠 (𝜙𝐴), 𝜌𝑠 (𝜙𝐵))
𝜌𝑠 (𝜙𝐴 ∨ 𝜙𝐵) = max(𝜌𝑠 (𝜙𝐴), 𝜌𝑠 (𝜙𝐵)) .

(2)

The above expressions only consider predicates that do not include
temporal operators or, in other words, that can only be evaluated
over a single time instant and not over complete traces (hence the
overloaded notation for state instead of trace). While a number of
quantitative semantics exist in the literature that enable the evalua-
tion of goodness-of-fit to predicates including temporal operators,
in this paper we shall adopt the automaton construction from [11].

Any predicate in LTL can be transformed into a Finite State
Predicate Automaton (FSPA) by means of various different proce-
dures [2]. A FSPA is a finite state automaton that processes a system
trace step by step and advances through its different states until it
decides whether to accept or reject the input, with the particularity
that its edges are equipped with propositional logic predicates and
a quantitative semantics. At each step of the execution, the pred-
icates associated with the outgoing edges from the current state
of the automaton are evaluated over the next state in the trace,
and the most robust positive transition is chosen according to the
rules of Equation 2. Whether or not an FSPA constructed from a
predicate accepts or rejects a trace (i.e., whether or not it ends up
in an acceptance state) is equivalent to deciding if the trace does
or does not model the predicate at hand. It is worth noting that
an FSPA can be based on different types of automata, as it is sim-
ply an abstract construction, with the most common ones being
deterministic Rabin and Büchi automata.

An advantage of using an auxiliary automaton to analyse traces
is that it makes it possible to calculate the progress of a trace in the
specification, measured as the distance advanced in the structure
towards the nearest acceptance condition. This is generally simpler
to compute than other quantitative semantics of temporal predi-
cates in LTL that do not rely on such constructs, and also easier
to interpret, as it always results in a value between 0 and 1 that
intuitively denotes what proportion of the specification has been
successfully satisfied.

2025-03-28 11:41. Page 3 of 1–10.
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Let us express this notion formally. Let 𝑡 = {𝑠0, . . . , 𝑠𝑛}, 𝑠𝑖 ∈ Σ be
a system trace, 𝜙 the predicate in LTL containing our specification,
𝑠𝑡FSPA the state of the corresponding automaton reached after pro-
cessing 𝑡 sequentially, and 𝐷FSPA the maximum distance between
two nodes within the automaton. By now terming the minimum
distance between the final state of the automaton and an acceptance
state as 𝑑FSPA (𝑠𝑡FSPA), we define the progress attained in the trace
𝜌FSPA (𝑡) as:

𝜌FSPA (𝑡) =
𝐷FSPA − 𝑑FSPA (𝑠𝑡FSPA)

𝐷FSPA
+
1 +max𝑒∈𝑖𝑚𝑝𝐸𝑑𝑔 (𝜌𝑠𝑛 (𝜙𝑒 ))

𝐷FSPA
.

(3)

The second term in the expression represents the distance pro-
gressed in the current state to advance to any adjacent state of
the automaton that is closer to an acceptance condition (here,
𝑒 ∈ 𝑖𝑚𝑝𝐸𝑑𝑔 are edges that lead to states improving the progress
metric in the specification).

As an example, if we define a predicate F (enemyDefeated ∧
X(F (itemCollected))), the resulting automatonwould have three
states, one for “enemy not yet defeated”, one for “enemy defeated
but item not yet collected”, and a last one for having completed
both goals, with 𝐷FSPA = 2. If the enemy has just been defeated
and the player is still far from the item, we would likely observe
that 𝜌 ≈ 0.5, as the current distance to the next acceptance state is
1, which is halfway through the automaton size.

4 Inferring Temporal Characterisations of
Play-Traces

In this section, we present our algorithms for learning temporal
predicates to characterise play styles through a set of examples and
counterexamples. We begin by formally defining the problem at
hand.

Let P𝑔 be the (possibly infinite) set of LTL predicates that can
be generated from an LTL grammar 𝑔. We define a trace evaluator
𝜎 as a function that takes a predicate 𝑝 ∈ P𝑔 and a real-valued
trace of length 𝑛 ∈ N, 𝑡 = {𝑠1, . . . , 𝑠𝑛}, in a given trace space Σ∗

and outputs an array of fitness values representing how well the
predicate models the trace according to the function’s criteria in
a series of dimensions. More formally, if𝑚 ∈ N is the number of
fitness dimensions (or alternatively, the number of metrics that
are computed for each trace), this is a function with signature
𝜎 : Σ∗ × P𝑔 → R𝑚 :

𝜎 (𝑡, 𝑝) = (𝜎1 (𝑡, 𝑝), . . . , 𝜎𝑚 (𝑡, 𝑝)),

where 𝜎𝑖 (𝑡, 𝑝) ∈ R, 0 ≤ 𝑖 ≤ 𝑚, is the 𝑖-th fitness value of the trace 𝑡
with respect to the predicate 𝑝 .

This allows us to convert a set of traces into a real vector represen-
tation that can be used to compare traces and predicates with each
other according to a set of user-defined heuristics. On top of this,
we can define additional functions to aggregate the results of each
evaluator considered in the analysis into a single goodness value
accounting for evaluators’ outputs across sample sets (usually a
combination of a positive examples set and a negative one). A typical
aggregation function has the signature𝛾𝜎 : (Σ∗)∗×(Σ∗)∗×P𝑔 → R.

With these notions in mind, we are ready to formally state this
section’s problem.

Problem 1. Given a set of positive traces or examples 𝑃 , a second
set of negative traces or counterexamples 𝑁 for a game, a list of
trace evaluators 𝜎𝑖 , 𝑖 = 1, . . . ,𝑚, and a metrics aggregator 𝛾𝜎 , learn
an LTL predicate 𝜙 such that: (1) 𝑡 |= 𝜙 , ∀𝑡 ∈ 𝑃 ; (2) 𝑡 ̸ |= 𝜙 , ∀𝑡 ∈ 𝑁 ;
and (3) 𝛾𝜎 (𝑃, 𝑁 , 𝑝) >= 𝛾𝜎 (𝑃, 𝑁 , 𝑝′),∀𝑝′ ∈ P𝑔 .

The first two conditions indicate that we aim to find predicates
that fit the considered examples and counterexamples, while the
third one states that we are also interested in the chosen predicates
being optimal with respect to the established metric aggregator. In
practice, we will use approximate strategies to address this problem,
so the above conditions will not always be met exactly.

4.1 Brute Force Tree Expansion
The first search method we will consider to approximate Problem 1
can be seen in Algorithm 1, and is a brute-force approach in which
all possible solutions within certain constraints are explored in
search of the optimal one in terms of fitness.

First of all, it is to be noted that, from this point onwards, when-
ever we speak of a grammar, we will assume that we are working
with one in Backus-Naur form (commonly BNF), a meta-syntax
notation for context-free grammars, often used to describe the
structure of language specifications. We will also assume when ref-
erencing clauses representing functions over the state of the system
(𝑓 (𝑠) > 0 in Equation 1) that the grammar has been extended to
represent all variables of interest in the context where the language
is used. This implies that the 𝑓 (𝑠) > 0 symbol can be expanded to
any of the possible literals recorded in a game as an implicit rule.

That stated, the brute-force algorithm starts from the initial
node of the grammar considered, and builds a production tree
T𝑔 , in which each node is expanded according to all the possible
derivations allowed from it. Since this tree is usually infinitely
deep (one need only consider the recursive rules that reference a
predicate within another), here we opt to prevent this construction
from exceeding amaximum depth specified by the parameter𝐷 ∈ N.
Once the pruned tree is available, it is possible to perform any
traversal of its leaves, collecting all the predicates that have been
completely expanded within the imposed limit. For each of the
predicates gathered in this way, it is enough to apply the chosen
metrics aggregation function, and keep the individual with the best
value according to this heuristic.

Algorithm 1 Brute Force Tree Expansion with Fixed Depth 𝐷 .
Generate a production tree T𝑔 from input grammar 𝑔, allowing a
maximum depth of 𝐷 .
For each leaf node in the tree that results in a fully expanded
LTL predicate 𝑝 , compute 𝛾𝜎 (𝑃, 𝑁 , 𝑝).
return 𝑝 | 𝛾𝜎 (𝑃, 𝑁 , 𝑝) is maximal among terminal nodes.

4.2 Grammatical Evolution Search
Grammatical Evolution (GE) [21] is a type of genetic programming
(GP; [19]) that evolves solutions by generating computer programs
or expressions, guided by a predefined grammar. A common tool
used in GE is precisely the Backus-Naur Form grammar, which
provides a formal way to specify the syntactical structure of the
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programs or expressions to be evolved. GE encodes solutions as se-
quences of integers, which are then mapped to syntactically correct
programs using the BNF grammar.

The adaptation of our problem to a grammatical evolution model
is straightforward by setting up the search grammar we are inter-
ested in alongside the heuristic function given by the corresponding
metric aggregator, and is relatively simple to implement with ge-
netic programming libraries such as the MOEA Framework [12].

4.3 Grammar-Based Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a highly-selective best-first
search method that is often used for decision-making. This algo-
rithm balances between exploitation and exploration to balance the
search tree growth towards the most promising parts of the search
space. This iterative method combines a tree policy (e.g. UCB1 [8])
with Monte Carlo simulations or rollouts, which are trajectories
sampled at random in the decision space. For more information
about this algorithm and its variants, please refer to [5].

In our particular case, we model the search as a sequential de-
cision problem on which production of the reference grammar to
apply at each step of a derivation. That is, starting from a first state
given by the initial symbol of the grammar, in each run of the MCTS
we are interested in first deciding which of the symbols of our cur-
rent state we wish to expand and, secondly, which of its production
rules to use to perform this expansion. As MCTS heuristics, we
make use of the metric aggregation function common to all the
algorithms in this section, assuming a value of 0 for predicates that
have not yet been fully expanded. This means that only rollouts
that result in final states can yield useful information.

Algorithm 2 Grammar-Based MCTS.
Initialise base predicate 𝑠𝑝 state with the base symbol from the
chosen search grammar.
while 𝑠𝑝 not fully expanded do
Apply MCTS to 𝑠𝑝 with allocated budget to select the seem-
ingly best symbol to expand from the set of unexpanded
symbols in 𝑠𝑝 and production rule from the given grammar.
Update 𝑠𝑝 after applying the suggested expansion.

end while
return 𝑠𝑝 .

5 Tree Clustering of Play-Traces
The second problem to be undertaken in this paper is to propose a
classification or clustering approach to distil general behavioural
patterns within samples from a potentially diverse set of traces.
This is a purely exploratory analysis problem, and as such more
complex to define than the task in the previous section. In this case,
we shall frame it in terms of looking for predicates that are capable
of “separating” traces as much as possible in the sense that the sets
of samples that do and do not satisfy the predicate are cohesive and
at the same time distant from each other.

More specifically, starting from the previously defined trace eval-
uators and some form of standard clustering metric, our problem
is to construct a predicate that seeks to optimise this metric for

the partition given by the sets of traces that it accepts and rejects,
respectively.

More formally, given a predicate 𝑝 ∈ P𝑔 and a set of traces𝑇 , we
define the sets𝐶𝑝

|= (𝑇 ) = {𝑡 ∈ 𝑇, 𝑡 |= 𝑝} and𝐶
𝑝

̸ |= (𝑇 ) = {𝑡 ∈ 𝑇, 𝑡 ̸ |= 𝑝}
of traces accepted and rejected by that predicate. By now applying
a trace evaluator 𝜎 on each member of these clusters we obtain two
new sets of individuals 𝜎 (𝐶𝑝

|= (𝑇 )), 𝜎 (𝐶
𝑝

̸ |= (𝑇 )) ⊂ R𝑚 , on which it is
now possible to apply a clustering metric to heuristically evaluate
how good the partition of the samples into these two sets is. With
this, we can formally formulate our second problem.

Problem 2. Given a set of unclassified traces or examples 𝑇 , a
list of trace evaluators 𝜎𝑖 , 𝑖 = 1, . . . ,𝑚, a clustering quality score
function 𝑞, and a quality threshold 𝛼 > 0, learn a sequence of
predicates (𝑝 𝑗 )𝑛𝑗=0 such that:

𝑃 𝑗 = 𝐶
𝑝 𝑗−1
̸ |= (𝑃 𝑗−1), 𝑁 𝑗 = 𝑁 𝑗−1 ∪𝐶

𝑝 𝑗−1
|= (𝑃 𝑗−1), 𝑃0 = 𝑇, 𝑁0 = ∅, (4)

𝑞(𝜎 (𝐶𝑝 𝑗

|= (𝑃 𝑗 )), 𝜎 (𝐶
𝑝 𝑗

̸ |= (𝑃 𝑗 )), 𝜎 (𝑁 𝑗 )) >= 𝛼, 𝑗 = 0, . . . , 𝑛 − 1, (5)

𝑞(𝜎 (𝐶𝑝𝑛
|= (𝑃𝑛)), 𝜎 (𝐶

𝑝𝑛
̸ |= (𝑃𝑛)), 𝜎 (𝑁𝑛)) < 𝛼. (6)

Intuitively, we are describing an iterative task. We start from a
set of traces𝑇 to be partitioned based on predicates 𝑝 𝑗 that explain
a subset of samples with sufficient confidence 𝛼 > 0. In the first
iteration, we are simply trying to find a predicate 𝑝0 that splits𝑇 into
two cohesive sets that are sufficiently separated from one another
according to our clustering criterion in the real space induced by
our selected metrics. 𝑁1 will then become the set of traces that were
modelled by 𝑝0 and that as such do not need further classification,
while 𝑃1 becomes populated with the traces discarded in the first
round. The next iterations follow this pattern, with the subtlety that
we keep expanding 𝑁 𝑗 with the traces modelled by the sequence of
splitting predicates, and we then try to find subsequent predicates
in such a way that the groups 𝜎 (𝐶𝑝 𝑗

|= (𝑃 𝑗 )), 𝜎 (𝐶
𝑝 𝑗

̸ |= (𝑃 𝑗 )) and 𝜎 (𝑁 𝑗 )
maintain a good clustering score. Therefore, at each iteration we ask
ourselves the question “which trace groups can we find that appear
to behave differently to all previous explanations?”. In other words,
we look for predicates that can explain unique and meaningful
behavioural subsets, and progressively more specific ones. These
iterations continue until it becomes infeasible to find predicates that
induce a reasonable partitioning according to the quality threshold.

Algorithm 3 specifies a procedure by which to heuristically and
approximately construct a sequence of predicates with the above
conditions. Leveraging the constructs developed in the previous
section for Problem 1, the tree clustering algorithm aims to model
the trace separation steps as predicate searches that optimise the
result of the metric aggregator given by:

𝛾𝜎 (𝑃, 𝑁 , 𝑝) = 𝑞(𝜎 (𝐶𝑝

|= (𝑃)), 𝜎 (𝐶
𝑝

̸ |= (𝑃)), 𝜎 (𝑁 )) . (7)

That is, at each step we look for a predicate that induces the best
possible separation between the traces we have already explained
through previous predicates, the traces that become explained by
the new predicate, and the traces that remain to be modelled.

2025-03-28 11:41. Page 5 of 1–10.
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Algorithm 3 Tree Clustering of Trace Set 𝑇 with Threshold 𝛼 .

Choose a list of trace evaluators {𝜎𝑖 }𝑚𝑖=1.
Choose a clustering quality score 𝑞.
Choose a search algorithm 𝑆alg from Problem 1, selecting
𝛾𝜎 (𝑃, 𝑁 , 𝑝) = 𝑞(𝜎 (𝐶𝑝

|= (𝑃)), 𝜎 (𝐶
𝑝

̸ |= (𝑃)), 𝜎 (𝑁 )) as metrics aggre-
gator.
𝑃0 = 𝑇 .
𝑁0 = ∅.
𝑗 = 0.
𝑝0 ← 𝑆alg (𝑃0, 𝑁0).
while 𝛾𝜎 (𝑃 𝑗 , 𝑁 𝑗 , 𝑝 𝑗 ) >= 𝛼 do
𝑗 = 𝑗 + 1.
𝑃 𝑗 = 𝐶

𝑝 𝑗−1
̸ |= (𝑃 𝑗−1).

𝑁 𝑗 = 𝑁 𝑗−1 ∪𝐶
𝑝 𝑗−1
|= (𝑃 𝑗−1).

𝑝 𝑗 ← 𝑆alg (𝑃 𝑗 , 𝑁 𝑗 ).
end while
return {𝑝 𝑗 }, sequence of splitting predicates.

6 Experiments
We start by defining the remaining trace evaluators and the aggre-
gation function that we will use for the first set of experiments,
which approach problem 1 by means of different methods.
• Progress. We shall consider progress 𝜌 (𝑡, 𝑝), already defined
in Section 3, as our first metric. Note how progress is 1 if
and only if 𝑡 |= 𝑝 .
• Exploitation. Let 𝑖 be the instant where the FSPA associated
with the predicate accepts or rejects the trace 𝑡 ; we define
exploitation 𝑒 (𝑡, 𝑝) as 𝑒 (𝑡, 𝑝) = 1 − |𝑡 |−𝑖|𝑡 | , or the proportion
of trace steps that are processed before the underlying FSPA
reaches an acceptance decision. Intuitively, we are interested
in a predicate showing high values of exploitation in posi-
tive examples, where this metric can often be interpreted as
implying that the predicate contains relevant information
about the reference trace.
• Reward. We define the reward 𝑟 (𝑡, 𝑝) as the sum of varia-
tions in progress for each of the automaton’s execution steps,
𝑟 (𝑡, 𝑝) = ∑ |𝑡 |−1

𝑖=1 (𝜌FSPA𝑝
(𝑡𝑖+1) − 𝜌FSPA𝑝

(𝑡𝑖 )). This value al-
lows us to identify segments in which a player is actively
striving to achieve a sub-goal through local variations in the
robustness of certain state variables.

Let us look at a concrete example of the above metrics. For
instance, if we have that 𝑝 = SSEQ[𝑔1, 𝑔2, 𝑔3], where𝑔𝑖 corresponds
to the predicate of reaching a certain location in the level, and in a
sample trace the player sequentially visits these locations and then
immediately terminates the log (note how this is not necessarily the
same as finishing the game; instead, this refers to ending the current
play trace), we will observe that 𝑢 (𝑡, 𝑝) ≈ 𝛾 (𝑡, 𝑝) = 1, since the vast
majority of the states in the trace have been relevant to the FSPA,
and if the player has additionally managed to steadily approach
their goals without straying, we will further notice 𝑟 (𝑡, 𝑝) ≈ 1. This
denotes that the trace successfully models the predicate.

Alternatively, if the player continues to perform other tasks on
the trace after having completed the visits to the target points from

the predicate, we would perceive a reduction of both the exploita-
tion and the reward of the trace, due to the automaton reaching
an early state of acceptance, ignoring all subsequent events, with a
progress of 1. This is a symptom that, although the trace models
the predicate, the latter is probably not sufficiently informative. In
one last scenario, if the player only visits the first goal and then
finishes the game, then the exploitation would be 1, since the entire
trace is processed by the automaton. However, both the progress
and the reward would be fairly low as no FSPA acceptance states
would have been encountered. This suggests that the predicate is
specifying a more extensive behaviour than what is actually being
experienced in the game.

In order to evaluate the quality of a predicate for which the sets
of examples and counterexamples in the game have been fixed, we
define the following aggregation function:

𝛾 (𝑃, 𝑁 , 𝑝) =
∑
𝑡 ∈𝑃 (𝑒 (𝑡, 𝑝) + 𝑟 (𝑡, 𝑝) + 𝜌 (𝑡, 𝑝))

|𝑃 |

+ |{𝑡 ∈ 𝑃 | 𝑡 |= 𝑝}||𝑃 | + |{𝑡 ∈ 𝑁 | 𝑡 ̸ |= 𝑝}||𝑁 | .

(8)

In doing so, we aim to maximise the above metrics for examples, as
well as the proportion of examples accepted and counterexamples
rejected by the predicate under consideration.

6.1 Game Environment and Recorded States
Liquid Snake [10] is a prototype third-person stealth game devel-
oped in the Unity3D engine, in which players control the main
character to navigate various levels while collecting valuable items
and avoiding detection by robotic guards, security cameras and
other surveillance mechanisms. Guards follow pre-set patrol routes,
but, if a guard detects the player, they will visit the spot where
they last saw them and look around for a short time. As long as the
guard keeps noticing the player, or senses them in their vicinity,
a suspicion meter will gradually build up. If the suspicion meter
reaches a maximum level, the guard will enter an aggressive mode
and chase the protagonist until they are captured. The player can
use the environment to hide, crouch behind mid-height objects to
avoid detection by vision cones, and run to quickly dash through
sections of the level before the enemies’ suspicion gauges can grow
too high. Certain levels also require the player to momentarily al-
low themselves to be spotted by the robot guards and draw their
attention to a secluded spot, forcing them to inspect that location
while the protagonist advances through the areas the guards have
left unprotected in the process.

In this environment, we register a set of variables as robustness
functions on the state of the system every 0.1 seconds of a game in
progress. In several of them we make use of the notion of proximity
of one object to another within a bounded range, defined as:

𝛿 (𝑜1, 𝑜2, 𝑏, 𝐵) =

1 − | | ®𝑜1𝑜2 | |

𝑏
, 0 ≤ || ®𝑜1𝑜2 | | < 𝑏

| | ®𝑜1𝑜2 | |
𝑏−𝐵 , 𝑏 ≤ || ®𝑜1𝑜2 | | ≤ 𝐵
−1, 𝐵 < | | ®𝑜1𝑜2 | |

(9)

where | | ®𝑜1𝑜2 | | represents the Euclidean distance between the points
of interest 𝑜1 and 𝑜2. In practice, we take 𝑏 = 1, 𝐵 = level size. The
variables considered are:
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• objectCollected𝑖 : with a value of 1 if the 𝑖-th object has
been picked up by the player and 𝛿 (player, object𝑖 , 𝑏, 𝐵) oth-
erwise.
• goalReached: same as for objectCollected, but only tak-
ing on a value of 1 when the player reaches the level exit.
• safeFromEnemy𝑖 : with a value of −1 if the player is visible
within the detection cone of the 𝑖-th enemy or camera and 1
otherwise.
• enemySuspectingPlayer𝑖 : with a value of −1 + awareness,
with awareness ∈ [0, 1] being the proportion of suspicion
accumulated by the enemy, and 1 when awareness = 1.
• playerCrouching: with a value of 1 if the player is crouch-
ing and −1 otherwise.

Within the game, we performed trace recordings of several
groups of players interacting with a reference level. This envi-
ronment, depicted in Figure 1, requires the player to collect all
yellow items in order to open the door (blocking the exit to the
left of the image) and escape. The lower area of the environment
is guarded by a security camera that slowly rotates to cover the
room in which it is placed, while the upper area houses a guard
who patrols around its central structure with several watch-points
that he inspects with greater caution. In this level, we recorded 5
different behaviour patterns defined as follows, with 3 traces per
play-style, by having a human tester playing the game according
to the instructions given bellow:
• Style A. Traces in which the player collects the first two
objects, does not crouch to hide, and is then detected by a
camera.
• Style B. Traces in which the player collects the first two
objects, attempts to crouch to hide, but is still detected by a
camera.
• Style C. Traces in which the player collects the first ob-
ject, crouches to hide, and then proceeds to collect all other
objects in order, while avoiding detection by following the
patrolling robot from behind.
• Style D. Traces in which the player collects the first object,
crouches to hide, and then proceeds to collect all other ob-
jects. Follows an order inverse to that of the patrolling robot
and is forced to hide behind walls. Sometimes detected, but
gets away safely.
• Style E. Traces in which the player collects the first object,
crouches to hide, and then proceeds to collect all other ob-
jects. Follows inverse robot order and is eventually spotted
and captured before reaching the exit.

6.2 Temporal Characterisations
With these traces and the variables described above, we apply the
algorithms from Section 5 to Problem 1 to try to infer predicates
that characterise each of the play styles relative to the rest of the
styles. That is, if the styles are given by 𝑆 = [𝐴, 𝐵,𝐶, 𝐷, 𝐸], then
we are considering the problems that take 𝑃 = 𝑆𝑖 , 𝑁 =

⋃
𝑗≠𝑖 𝑆 𝑗 ,

𝑖 = 1, . . . , 5. In all of them we use the metrics aggregator from
Equation 8 and the grammar from Equation 1.

The results obtained can be found in Tables 1, 2 and 3. Each of
these tables includes, for every style used as a positive example
set: the best predicate found according to the metrics, its fitness

Figure 1: Top View of Reference Environment.

measure normalised to the interval [0, 1] by dividing the value of
the metric aggregator by 5, the time taken to reach the solution,
and the partial results of each of the terms that make up the search
heuristic. Here, 𝜌 (𝑃) refers to progress reached in the predicate by
traces in the positive set, 𝑟 (𝑃) and 𝑒 (𝑃) are shortened notation for
reward and exploitation, respectively, and acc𝑃 , rej𝑁 denote the
proportion of traces in the positive and negative examples sets that
are accepted or rejected. All of these experiments were run on a PC
with 16GB of RAM and an Intel Core i7-9750H, 2.60GHz processor.

In the case of the brute-force algorithm, we choose a maximum
expansion depth 𝐷 = 6 to try to strike a balance between expres-
siveness and computational time. With the given grammar, this
leads to process a total of 428,750 terminal nodes in each of the
searches; the best one with respect to the chosen fitness metric is
reported. As can be noted in the results from Table 1, the time spent
is very similar in all cases, at around 6 minutes of computing time.
Since this approach systematically explores all possible expansions
within the established limit, and these do not vary from one case to
another, this result is to be expected and makes it the most stable
algorithm in terms of time, although it is important to mention that
this would grow exponentially according to the branching factor
of the grammar used. The predicates proposed as solutions are
fairly modest in this approach given the constraint imposed on the
number of derivations of the grammar, and should therefore be con-
sidered as broad features of the modelled traces rather than detailed
behavioural explanations. Thus, for example, the best individual for
the first style is G(!playerCrouching), which corresponds to the
property that registered players did not crouch at any time to hide,
but does not address the level progress made. Moreover, this very
inability to produce complex or highly sequentialised predicates
means that the reward values tend to be low: assertions of the type
‘globally’ result in automata in which it is impossible to increase
progress once the state of acceptance has been reached, and even-
tuality assertions limited to a goal only generate reward in the
segment prior to its attainment. In short, this approach produces
general explanations that, while optimal in terms of depth, do not
yield very fine-grained explanations of the observed behaviour.

In the case of the grammatical evolution algorithm (see Table 2),
we choose an initial population size of 100 individuals with individ-
ual size of 15, and a total of 100 generations to evolve from this first
sample. The time required in this case is markedly shorter than that
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Table 1: Brute-force Algorithm Results

Style Best Individual Fitness Time 𝜌 (𝑃) 𝑟 (𝑃) 𝑒 (𝑃) acc𝑃 rej𝑁
A G(!(playerCrouching)) 0.81 5m 52s 1 0.03 1 1 1

B G(!(objectCollected03)) 0.76 5m 58s 1 0.03 1 1 0.77

C F((goalReached)&(playerSafeFromCamera)) 0.85 6m 0s 1 0.32 0.99 1 0.92

D F((objectCollected07)&(goalReached)) 0.84 5m 58s 1 0.50 0.99 1 0.69

E G(F(objectCollected08)) 0.76 5m 49s 1 0.34 1 1 0.46

Table 2: Grammatical Evolution Results

Style Best Individual Fitness Time 𝜌 (𝑃) 𝑟 (𝑃) 𝑒 (𝑃) acc𝑃 rej𝑁
A G(!((objectCollected04)|(playerCrouching))) 0.81 13s 1 0.03 1 1 1

B !(F(objectCollected05)) 0.76 1m 18s 1 0.03 1 1 0.77

C F(objectCollected06) 0.67 3m 45s 1 0.24 0.63 1 0.50

D F(goalReached) 0.80 31s 1 0.33 0.99 1 0.69

E F(objectCollected06) 0.68 22s 1 0.24 0.71 1 0.46

of the brute-force algorithm, largely due to the fact that a stagnation
state is typically reached quite rapidly when the individuals start
to look very similar to each other. Except for time, however, the
results obtained with this procedure are generally strictly worse
or equal to those of the other algorithms, without this resulting in
more interesting predicates from a qualitative point of view.

The MCTS algorithm positions itself as the most successful over-
all (albeit modestly so), yielding the individuals with the highest
fitness in all styles, and with the best metrics in most cases (see
Table 3). Here, we take exploration constant 𝐾 =

√
2, rollout length

= 15 and a budget of 300 iterations per expansion. The search capa-
bilities of the algorithm to explore the derivation tree in depth result
in predicates that are generally more elaborate than in the other
two cases, but at the same time more informative. For instance, in
the case of style E, the proposed explanation starts by specifying
that the level is not completed, followed by a characteristic notion
of order: object 3 is collected first, and then at some point object 8
is collected. This corresponds to the observation that this type of
player traverses the top of the level in reverse order to the order
in which the guard traverses. In the case of style B, on the other
hand, it is indicated that there always comes a point in these traces
where the player becomes detected by the camera until the end
of the game, which again is a representative explanation of the
reason for the defeat of this group. Note how this algorithm gen-
erally features significantly higher values for the reward metric,
which we intuitively link to the ability of the predicate to capture
consistently positive variations in progress across traces, and is a
desirable property in individuals exhibiting a good degree of detail.

Something noteworthy here is the time required to run style C,
which amounts to about 28 minutes of computation time. Since the
budget in this case is specified for each node expansion decision
in the derivation tree, and the depth is not initially bounded, this
means that it is sometimes necessary to explore a large number of
predicates of potentially large size if the rollout leads to a state deep

in the structure. Furthermore, it is known that the cost of translating
LTL to deterministic automata can grow significantly quickly in
practice in both time and size as predicate complexity increases [7],
which means that solutions computed at deep nodes may take an
unforeseen amount of time. This can be solved by imposing more
restrictive conditions on the search, such as limiting the maximum
depth of the structure; for the moment, we leave this as future work.

6.3 Tree Clustering
With these same traces, the next step is to apply Algorithm 3 to
try to establish a tree structure that explains the most prominent
behavioural patterns of the recorded players. In this case, instead
of using the grammar from Equation 1, we will introduce a new
grammar useful for representing time-ordered sequences of events
to demonstrate that our system allows searching over different
subsets of predicates driven by more specific questions by simply
modifying the reference grammar:

𝜙 := SSEQ(lit-seq)
lit-seq := lit | lit, lit-seq

lit := 𝑓 (𝑠) > 0 | ¬(𝑓 (𝑠) > 0),
SSEQ(𝑙) = F (𝑙),

SSEQ(𝑙1, . . . , 𝑙𝑛) = F (𝑙1 ∧ X(SSEQ(𝑙2, . . . , 𝑙𝑛))) ∧ !𝑙2U𝑙1 .

(10)

As can be seen, this new grammar makes use of the SSEQ oper-
ator to represent sequences of literals that occur in a strict order.
Based on this grammar, we can then use the clustering algorithm
to explore what types of behavioural sequences define the traces of
𝑇 . The result of the analysis can be found in Figure 2. In this case,
we have chosen the Silhouette Score [25] as the clustering quality
metric, the MCTS-based search algorithm, and 𝛼 = 0.51.

Let us qualitatively analyse the information provided by this
trace clustering diagram. From the 15 starting traces, originally in-
troduced without any kind of labelling in the algorithm, the process
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Table 3: MCTS Results

Style Best Individual Fitness Time Steps 𝜌 (𝑃) 𝑟 (𝑃) 𝑒 (𝑃) acc𝑃 rej𝑁
A G(!objectCollected09) & F(objectCollected02 &

X(playerSafeFromCamera))
0.89 1m 1s 34 1 0.60 1 1 0.85

B F(G(!playerSafeFromCamera)) & G(!objectCollected06) 0.88 0m 42s 23 1 0.62 1 1 0.77

C F(objectCollected09 & objectCollected02 & objectCollected07
& objectCollected04 & X(playerSafeFromCamera) &

goalReached & objectCollected06)

0.93 28m 34s 50 1 0.73 1 1 0.92

D F(objectCollected05 & objectCollected09 & goalReached &
objectCollected06 & objectCollected08)

0.87 1m 8s 26 1 0.67 0.99 1 0.69

E G(!goalReached) & F(objectCollected03 &
X(F(objectCollected08)))

0.87 3m 55s 31 1 0.37 1 1 1

Figure 2: Clustering Diagram for Player Traces.

ends up generating 4 distinct groups based on a total of 3 separation
predicates with the newly described grammar. Interestingly, at a
preliminary level, the groups established in this way, represented
as dashed boxes in the figure, bear a close resemblance to the traces
belonging to each of the original play styles, with the only excep-
tion being style D, whose traces are distributed between the groups
with the E and C styles. Intuitively, this a desirable result, as it
suggests that the algorithm is identifying significant patterns that
agree with what we consider to be relevant. The new clusters can
then be interpreted as:
• Traces in which the player was detected by the robot.
• Traces inwhich the player collected object 9 and then reached
the goal, while not being detected by the robot.
• Traces in which the player crouched at some point, but with-
out collecting object 9 and then reaching the goal, nor being
detected by the robot.
• Traces in which player never crouched, nor was detected by
the robot, nor collected object 9, and then reached the goal.

As can be seen, each group is defined on the basis of a negation
of all previous properties (this follows by construction: had a trace
been modelled by a predicate, it would have been discarded in
subsequent iterations from that point onwards), plus an additional
constraint that refines its characterisation when contrasted with
the remaining traces.

7 Discussion and Future Work
The algorithms and experiments described in this paper are not
intended as anything beyond initial pilots and proofs of concept

to explore what kind of feedback these techniques can generate in
quality control and user analysis tasks, as well as what the practical
challenges are for introducing them into the design and develop-
ment loop of a game.

Technically, there remain a number of unresolved issues to be
considered for future iterations of the study:

• All the algorithms for Problem 1 are markedly redundant in
the searches, for a number of reasons. The first of these is
the semantic symmetry of the grammars used, so that, for
example, one has that 𝑎 ∧ 𝑏 ≡ 𝑏 ∧ 𝑎, and the same applies
to the disjunction operator. The second, linked to the first, is
that at no point are we talking about minimal or simplified
predicates according to some system of LTL reduction rules,
and so wewind up treating predicates like F (F (𝑝)) ≡ F (𝑝)
or 𝑎 ∨ ¬𝑎 ≡ ⊤ separately. The same is true for the absence
of equivalence rules that would aid in not having to handle
pairs of predicates such as G(¬𝑝) ≡ F (𝑝) separately.
• This redundancy significantly affects the time and space cost
of the algorithms described here: since the process of trans-
lating a predicate in LTL into an automaton can potentially
be expensive in both of these ways, calculating automata for
equivalent predicates is something that should be avoided
as much as possible in the future.
• Moreover, the above algorithms may attempt to evaluate the
same predicate more than once due to randomness or con-
struction. The clearest example is in grammatical evolution,
where it is possible to generate identical individuals that are
then evaluated separately. Similarly, MCTS rollouts can lead
to the same terminal nodes. Solution caching is possible to
some extent and can alleviate some of the time cost, but in
return a potentially significant memory cost may be incurred
when the number of cached elements becomes high.

On the other hand, the grammars used for the searches play an
integral role in conditioning both the search space, the efficiency
of the algorithms and the form of the solutions produced.

• First, a grammar acts as a query in a certain sense, in that
by selecting a grammar that generates only predicates with
a very specific structure, we are effectively restricting the
problem to a more focused and therefore manageable one.
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We provide an example of this with Grammar 1 in order to
search for predicates that refer to sequences of events across
time; while this grammar is not complete in that it does not
output every predicate in LTL, it can become even more
valuable from a design point of view, by yielding predicates
that are simple to interpret and that meet a well-delimited
practical question. The same could be done with grammars
conditioned on global properties (i.e. events that are true
at all times), on logical consequences (events that happen
whenever others happen before them), and so on.
• Second, the shape of the grammar can have a significant
effect on the quality of the algorithms that employ it, usually
by inducing some kind of bias on the probability distribution
of the different types of solutions. While beyond the scope of
this paper, some early studies on the effect of these properties
in the case of grammatical evolution can be found in [20].

Another important point to consider is the metrics used and
their effect on the types of solutions obtained. Since we are dealing
with unsupervised problems of an exploratory nature, it is com-
plex to define quantitative quality measures that guarantee that the
predicates found are truly helpful and insightful; the exploitation,
progress and reward metrics are first approximations to understand-
ing which properties might be of interest, but other factors, such as
the length or complexity of the predicate, or interactions between
different metrics, might be worthwhile depending on how this
ill-conditioned notion of fitness is interpreted within this problem.
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