
Opponent Models Comparison for 2 Players in
GVGAI Competitions

Jose Manuel Gonzalez-Castro
University of Essex

Colchester CO4 3SQ, UK
Email: jmanuelgc94@gmail.com

Diego Perez-Liebana
University of Essex

Colchester CO4 3SQ, UK
Email: dperez@essex.ac.uk

Abstract—The GVGAI-2P competition has shown that oppo-
nent models are an area to explore as most of the submissions
assume random actions from the opponent. This paper presents
9 different opponent models implemented for and within the
sample MCTS controller from the framework. All opponent
models were put up against one another in a round robin style
tournament. The experiment took place in an offline environment
where competition parameters are not in effect. Results gathered
from the experiment show that models that have a buffer with
history of the actions from the player either outperform or
are close to beating the random approach used by participants
in the competition, and also suggest that probabilistic models
(LimitedBuffer, UnlimitedBuffer, Probabilistic) are the ones with
the highest win rates.

I. INTRODUCTION

General Game Playing (GGP) is a field in Artificial Intel-
ligence (AI) where players learn to play different kinds of
turn-taking board games [1]. General Video Game Playing
(GVGP) is an extension of GGP applied to video games [2].
Both areas count on competitions where people submit agents
to be matched in a series of games, developing progress in the
field with more proficient agents as time passes.

General Video Game AI (GVGAI) [3][4] is a GVGP com-
petition with multiple tracks where participants submit agents
that play real time video games created with the Video Game
Description Language (VGDL) [5].

GVGAI recently introduced the 2 Player track [6] where
agents are tested in both cooperative and competitive video
games, in the former agents need to work together towards a
common goal while the latter has them competing against one
another. In both the first and second editions of the competition
the results showed two important points; the first being that
Monte Carlo Tree Search (MCTS) typically outperforms all the
other agents submitted, and the second being that most of the
agents submitted were not using an enhanced opponent model
as they were assuming random actions from the opponents [6].

The results from the 2016 edition of the competition [6]
stress the fact that opponent modeling in this context remains
an open question. Therefore this paper addresses the matter
by introducing and testing 9 different opponent models apart
from the one used by controllers submitted to the competition.
To get accurate results all agents were tested using MCTS in a
closed environment where competition parameters such as the
time limit to make an action don’t affect the performance. This

is meant to show the potential in using alternative opponent
models in the 2 Player track of GVGAI.

The remainder of the paper is structured as follows: Section
II describes previous work carried out in the area of opponent
modeling, Section III details the GVGAI 2 player (GVGAI-
2P) framework, Section IV explains the Monte Carlo Tree
Search method, Section V introduces the opponent models
used for the experiment, Section VI explains the experiment
setup, Section VII shows and explains the results, Section
VIII concludes the paper with the results of the research, the
discussion of them and future work.

II. RELEVANT RESEARCH

Opponent modeling has been a subject of research for
turn-table games such as Texas Hold ’Em, Poker and Chess
[7][8][9]. Research carried out for these games has focused
on figuring out which move the opponent is most likely to do
given the current state of the game in order to maximize its
score, this way the agent can react by using a move to counter
his opponent. These types of games have a fixed number of
possible combinations of moves, this is the reason turn-table
games involve probabilistic models [10].

Real-time strategy (RTS) video games have also used oppo-
nent models in recent years given their levels of abstraction by
modeling economy and warfare. More often opponent models
have been created for specific games such as Civilization IV or
Starcraft: Brood War but there have been approaches to create
generic models for RTS games [11][12]. The main problem
when dealing with RTS games is the lack of information the
player has in the current time step. The previous issue has
led researchers to develop two phases when creating RTS
opponent models, an offline and an online one. The first phase
involves looking at previous gameplay to build descriptive
figures through feature selection and create a model of the
opponent. The online phase then needs to determine which
model the enemy behavior is closest to [11]. Another approach
that has been explored has been a hierarchical model with
two levels where the top level has a general play style for
the opponent while the bottom one classifies the opponent’s
choice based on the units it has built [13].

Since there are various types of games that opponent
models can deal with and given the amount of decisions and
combinations of moves for even a single game, the most



common approach is to create a tree with all the possible
moves you can explore in the next time step. There can be
hundreds of thousands of actions depending on the game,
therefore researchers have also been interested in creating
pruning techniques to reduce the time taken to get the next
move or even to maximize the agents reward. One of the most
used techniques is Maxn with Alphabeta pruning. Maxn is an
extension of minimax that holds an n-tuple for n players and
searches for the best move in a given state of the tree for
a particular player. Alphabeta pruning has been used in the
Hearts and Sergeant Major card games to reduce the size of
the tree by only using moves that will maximize the agents
score at a given time step, this way there is no need to explore
the whole tree [14]. Another common technique that uses
probability is the fallible opponent where you assume that
the opponent will not select a rational move, this has been
tested on the games Roshambo and Poker [15]. More work has
been carried out on pruning techniques and probability with
opponent models. Donkers [9] shows a comparison between
variations of these opponent models in four different game
domains including random game trees, Lines of Action, the
King-Queen-King-Rock endgame of chess, and Chinese Bao.

To the knowledge of the authors, opponent models have
not been applied to GGP [16] and GVGP but rather to
specific video games or genres like RTS or turn-table. Even
in the GVGAI-2P competition most of the submissions have
explicitly stated that the opponent model used is the default
one where an action is chosen at random. The previous model
was used by the participants that got the first, third, fourth
and fifth places from the 2016 edition of the competition. It
was only the participant that obtained second place that used
a different opponent model, this model involved keeping track
of the opponents score Qopp(a). This value is the average of all
the opponents scores back-propagated through that same node
where action a was selected. Taking the previous the model
chooses a random action at each node with a probability (ε)
= 0, while the action that maximizes Qopp(a) is chosen with
probability 1 - (ε) [6].

III. GVGAI-2P FRAMEWORK

GVGAI uses a framework structured in an object-oriented
way and it uses the Video Game Description Language
(VGDL) which was built up using the Game Descriptor
Language (GDL) as a baseline. The main difference between
them is that VGDL uses the entities in the game and their
interactions as a game descriptor. This in return offers a wider
array of games, including arcade and puzzle games such as
Pacman, Space Invaders, among others. Given that it is object-
oriented, the framework is built in Java and it uses objects
to provide information about the game state. In addition, the
framework provides agents with a time limit to perform each
step in the game as they only have 40ms. Using this, the agent
needs to learn how to play the game, without knowing the
rules, dynamics, and even the requirements to beat the game
[4].

In the GVGAI-2P framework agents know whether the game
involves 1 or 2 players. The game description provided as
a text file indicates this in the first line, subsequent lines
indicate the entities in the game, interactions among them,
the level mapping and conditions to end the game. Another
file is also provided, this is called the level file and it has
a matrix of ASCII characters representing the state of the
sprites in the game [6]. Additionally, each agent is provided
with 40 milliseconds at each game step to perform an action
and 1 second for initialization, the only exception is the act
method which can return the NIL action if the time is between
40 and 50 milliseconds. Any controller that goes beyond the
established time limit is disqualified [6].

Players in all games from the framework play simultane-
ously, this differs from turn-table games where MCTS grows
the tree by alternating moves between the player and the
opponent. Since the players don’t know the opponents action at
each turn the decision tree is constructed differently. Each tree
level in MCTS has states derived from both players executing
their respective moves in the same time step [6].

IV. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search methods have been widely used
in the different GVGAI entries and many variations have been
awarded the top spots in the competition. In the 2016 edition
of the GVGAI-2P competition 3 from the first 5 places were
using variations of MCTS.

The underlying ideas behind MCTS are the capacity of
approximating an action’s value through random simulations
and further using these values to get the best policy. These
algorithms iteratively build a tree that can estimate the value
of each action, until a given budget (i.e. time, iterations, or
others) is exhausted. The four main steps of each iteration are
selection, expansion, simulation, and back-propagation [17].

Selection starts at the root of the tree, where based on a
policy a child is selected recursively and the tree is navigated
until a non-terminal state is reached, or in other words, a child
that has not been expanded. This is followed by expansion,
where based on a set of actions the tree is expanded by
adding one or more child nodes to the tree. From that node,
a simulation of game moves is performed using a default
policy until the game end or a determined simulation depth
is reached. The state reached is evaluated, and the result is
back propagated through the visited nodes.

Upper Confidence Bound (UCT) is the name of the MCTS
algorithm when it uses UCB1 as a tree policy. In this algorithm
the value of a node is the expected reward of a child node in the
tree as seen through the result of the Monte Carlo simulations.
Additionally UCT is considered a good approach to avoid the
exploration-exploitation dilemma in MCTS as it is simple and
efficient [17]. Given its characteristics it has been used in the
GVGAI-2P framework as part of the default MCTS controller.

V. OPPONENT MODELS

There were 9 different opponent models created to test with
the GVGAI-2P framework. Some of these models follow the



probabilistic approach that has been mentioned while some are
just variations and simplifications of other models described.
While more opponent models have been researched as seen
in [9], this section focuses on simpler models that avoid
putting too much overhead on the controllers submitted to the
competitions so they don’t get disqualified by exceeding the
time restrictions for taking an action (40 milliseconds). The
opponent models covered are Alphabeta, Average, Fallible,
LimitedBuffer, Minimum, Mirror, Probabilistic, Same Action,
and UnlimitedBuffer.

A. Alphabeta

Unlike the original pruning technique with the same name
as mentioned in [14], this implementation of Alphabeta has
been simplified to avoid longer execution times and possible
disqualifications from the competition. The main idea behind
the algorithm is to get the current state of the game and expand
the tree one step at a time. At each expansion the model gets
all the actions and for each one of them simulates and gets
its respective reward Q(s,a). Instead of back-propagating after
the simulation has ended, the model returns the action with the
highest reward (see Equation 1). By doing this there is no need
to create the whole tree and prune afterwards, instead at each
time step the tree expands with the best action possible thus
having a model that predicts the opponent will always select
the best action at each time step.

a* = argmax
aεA(s)

{Q(s, a)} (1)

B. Average

This opponent model follows similar steps as Alphabeta.
The underlying idea is to return an action with a moderate
reward. To do so the opponent’s tree is expanded, all actions
are then retrieved and simulated once to get their associated
rewards Q(s,a). All actions and their respective rewards are
used afterwards to get an average reward avg(Q(s,a)). Before
determining which action needs to be returned, all available
actions are looped over until the action closest to avg(Q(s,a))
is found, it is then returned as the opponents action. This model
assumes the opponent will not select the best or worst actions
at each time step but rather an average or moderate one.

C. Fallible

As explained in [15], a fallible opponent is that which
has an erratic behavior by selecting irrational moves from
time to time. In order to emulate such behavior this model
uses a combination of Alphabeta by getting the action with
the highest reward as the default action, and the action with
the minimum reward as the irrational one. A threshold was
established to limit when the agent follows its normal behavior
and when it doesn’t. This was done with probabilities where
the opponent has a probability p = 0.2 of selecting the
worst possible action available after expanding the tree and
simulating once for every available action. If the opponent
doesn’t select the worst move it will return the best action
with probability p = 0.8.

D. Minimum

Similar to the Alphabeta model, Minimum also focuses on
expanding the opponents tree one step at a time and simulating
the results for every action. The only difference is the policy
that determines which action is to be returned as it is the one
with the minimum reward Q(s,a). This model will essentially
build the worst possible tree of actions as it follows the
least favorable moves at every time step (see Equation 2). As
with its counterpart, the model provides less overhead to the
controller by just expanding the tree one step at a time instead
of creating it fully.

a* = argmin
aεA(s)

{Q(s, a)} (2)

E. Probabilistic

Perhaps one of the most complex opponent models created
as it involves offline learning to get the probabilities of the
player using each action. The offline phase involved recording
the moves used by the sample MCTS controller agent provided
with the GVGAI-2P framework. This was done with 20
games from the framework (see Table I). After doing so the
probabilities of using each move were calculated. An array of
size 10000 stores all the actions based on their probability of
being used. A random number between 0 and the size of the
array (10000) was drawn, this served as the index to get from
the array and represents the opponents move. Its disadvantage
is that an action that is not used in a game can be picked.
One possible improvement outside the scope of this paper and
related to Machine Learning is to take features as inputs so
the model learns the actions in terms of game state features.

F. Limited Buffer

As part of the models that use probabilities, LimitedBuffer
stores the last n = 20 actions performed by the player. The
model starts gathering the first 20 actions by following the
same approach as the Probabilistic model by using the offline
data to get the opponents action. Once it has filled in the buffer
a random seed between 1 and n is created. This number is used
as an index to get a value from the buffer, thus simulating what
would be a probability distribution since each action stored
has a given probability of occurring. The random seed is used
to reduce the models complexity if it is to be used in the
competition. Additionally, the buffer could be shuffled before
drawing the opponents action. This model has the advantage
that it only stores the most relevant actions in the buffer as
some games use a limited number of them.

G. Unlimited Buffer

The last opponent model is an extension of the Limit-
edBuffer approach. It still uses the probabilities from the
Probabilistic model for the first 20 actions. Once the buffer
is filled with at least 20 actions it starts to add all the
following moves from the player, this creates a probability
distribution over time with the moves used per game. With
this, the probabilities of each move variate less over time as
more actions are performed. At each time step after adding



TABLE I
OFFLINE SET OF GAMES USED TO GET THE FREQUENCY OF ALL ACTIONS

Games
Accelerator Akka Arrh Asteroids Beekeeper Bombergirl
Breeding Dragons Capture Flag Compete Sokoban Cops N’ Robbers Donkey Kong
Dragon Attack Drowning Egg Hunt Fatty Fire Truck
Football Ghostbusters Gotcha I Saw Santa Klax

the players action to the buffer a random number between
0 and the buffer’s size is rolled, this is the index from the
buffer where the opponents action will be taken from. Its main
disadvantage is that it takes the history of the game to select
the action, the problem is that at a given point in the game
some actions are less relevant than others.

H. Mirror

One of the simplest actions the opponent can choose is to
select an opposite action from the one chosen by the player.
This is the main idea behind this opponent model and the main
reason why it is so simple and provides little to no overhead on
the controller. The only actions that can be mirrored from the
player are ACTION UP, ACTION DOWN, ACTION LEFT,
ACTION RIGHT which return their respective counterparts as
the opponents move. If the player uses any of the remaining
actions the opponent will copy that as its action.

I. Same Action

Just as the Mirror opponent model, this provides less
overhead to the controller as the opponents action is the same
as the player. This is the simplest out of all the opponent
models and it assumes the opponent will always try to follow
your moves. There is no need to expand the opponents tree
and simulate to get the best action as this is only done by the
player and copied by the opponent.

VI. EXPERIMENT SETUP

Several variations of the sample MCTS controller with the
different opponent models provided in this paper were tested
on 10 games (see Table II) from the GVGAI-2P framework.
Each algorithm played in all 5 levels of the 10 games 5 times
(therefore 25 times per game per algorithm). All agents played
with the previous settings two times to swap positions and play
as both player 1 and player 2. This was done to eliminate any
possible bias caused by playing as any of the two players.

All controllers were tested in an offline environment, this
means they were not uploaded to the competition website.
Instead all controllers played in a round robin style tournament
where each algorithm played against all the others swapping
places as first and second player. Competition parameters were
excluded, this includes the limit of 40 milliseconds per action
so no controller could be disqualified. The previous was done
to ensure that all controllers can build their decision trees, thus
providing more time to select better actions for both the agent
and the opponent when needed.

In order to avoid bias from the machine being used, all
controllers were given a budget with which to work at every
time step as they were given 900 forward model calls which

TABLE II
GAMES COMPRISING THE TEST SET

Games Type
Asteroids, Capture Flag,
Cops N Robbers, Gotcha,
Klax, Samaritan, Sokoban,
Steeplechase, Tron

Competitive

Akka Arrh, Sokoban Cooperative

TABLE III
RESULTS FROM THE ROUND ROBIN TOURNAMENT WITH THE WINS,

DRAWS, AND LOSSES OF EACH CONTROLLER, ROWS REPRESENT PLAYER 1
WHILE COLUMNS REPRESENT PLAYER 2. LEGEND: 1) ALPHABETA, 2)

AVERAGE, 3) FALLIBLE, 4) LIMITEDBUFFER 5) MINIMUM, 6) MIRROR, 7)
PROBABILISTIC, 8) SAMEACTION, 9) UNLIMITEDBUFFER, 10) RANDOM

1 2 3 4 5 6 7 8 9 10
1 (4,3,3) (5,3,2) (2,2,6) (4,4,2) (3,2,5) (2,2,6) (4,2,4) (1,3,6) (2,2,6)
2 (4,2,4) (5,3,2) (3,2,5) (5,2,3) (4,3,3) (2,2,6) (3,3,4) (3,3,4) (2,2,6)
3 (3,2,5) (5,4,1) (2,2,6) (5,2,3) (2,3,5) (3,2,5) (4,3,3) (1,3,6) (3,2,5)
4 (5,3,2) (5,3,2) (7,2,1) (5,4,1) (4,3,3) (5,3,2) (4,3,3) (4,3,3) (4,3,3)
5 (4,3,3) (3,3,4) (6,2,2) (1,2,7) (1,3,6) (1,3,6) (4,3,3) (3,3,4) (2,2,6)
6 (5,3,2) (4,4,2) (6,3,1) (4,2,4) (5,3,2) (4,2,4) (5,3,2) (3,5,2) (2,3,5)
7 (6,3,1) (5,3,2) (5,2,3) (3,2,5) (5,3,2) (5,3,2) (4,3,3) (4,2,4) (5,3,2)
8 (5,3,2) (6,2,2) (6,2,2) (3,3,4) (6,3,1) (4,2,4) (3,2,5) (3,4,3) (3,3,4)
9 (6,2,2) (7,2,1) (5,3,2) (3,2,5) (4,4,2) (5,2,3) (4,3,3) (5,3,2) (5,3,2)
10 (5,3,2) (5,3,2) (5,2,3) (4,4,2) (5,3,2) (5,2,3) (5,3,2) (5,2,3) (3,4,3)

is the average number of calls achieved by the vanilla Rolling
Horizon Evolutionary Algorithm (RHEA) in the current GV-
GAI corpus that includes 100 games [18][19][20]. This means
that at any point where the controller uses the advance function
a counter is increased until it reaches the established limit
of 900. The controllers typically use that function when they
need to act and choose an action for both themselves and
the opponent. Additionally, the controllers are computationally
efficient so ideally they perform the same number of iterations
in the same time period.

VII. RESULTS

The results presented in this section are the outcome of the
round robin tournament between all controllers as mentioned
in the previous section. All results have been divided into 3
main categories, the first one representing the statistics of each
controller against the others as being both the first and second
player, as seen in Table III where the rows represent the model
playing as player 1 and the columns show the model playing
as player 2. The second being the combined statistic after
swapping the opponent models as player 1 and 2, (see Table
IV) and the third represents the percentage of total game wins,
draws and losses (see Table VI).

Table III has a three number tuple representing the number
of wins, draws and losses from each of the 10 games played
from the test set. Getting the final results for a single game
takes into consideration all the results from playing that game
in all 5 levels 5 times. In the results from Table III a green
background means that player 1 won more games than player
2, a yellow background means both players won the same
number of games, and a red background implies that player 2
won more games than player 1. Therefore, an opponent model
that is mostly green on its row and red on its column provides
a very good performance. Based on the results from this table
and the previous statement, LimitedBuffer, UnlimitedBuffer
and Random are the top performing models. Given this it



can be assumed that opponent models that expand their tree
can’t outperform models that avoid this step. The 900 FM
calls are not enough given the extra overhead provided by
expanding and simulating every action in both the expand and
uct methods; from the sample MCTS controller, for both the
player and the opponent.

Table IV showcases the combined results of each opponent
model after they were swapped by playing as players 1 and 2.
Contrary to what is shown in Table III, a green background
indicates that row outperforms column as an opponent model,
yellow indicates a draw among both models, and red im-
plies that the model in column outperforms the one in row.
Basically, an opponent model is considered a top performer
when its row is mostly green and its column is mostly red.
Table V condenses the results from Table IV indicating all
the opponents beaten by each model. Ranking the opponent
models by the number of controllers beaten, LimitedBuffer and
UnlimitedBuffer tie as the top performing models after beating
8 of the 9 models they were matched against, followed closely
by the Random model with 7 victories and Probabilistic with
6. Interestingly enough, only UnlimitedBuffer was able to beat
the Random model even though it lost against LimitedBuffer.
Next to this Probabilistic was the second one closest to beating
the Random model as these two controllers were the only ones
with a tie. This indicates that models with more historical data
about the actions taken by each opponent; Probabilistic with
the data gathered in the offline training and UnlimitedBuffer
gradually adding each action to the buffer, are the only ones
that can outperform or tie with the Random model. Thus, the
fact that the player has a better understanding of how the
opponent behaves over time can give it an advantage over
any random action.

When taking a closer look into the percentage of num-
ber of games won per opponent model (as seen in Table
VI), it is clear that the LimitedBuffer is the best in terms
of win percentage and it is followed by both the Random
and Probabilistic models in second place, leaving only the
UnlimitedBuffer model closely behind in third. The Random
model is better than the Probabilistic one when taking into
account the number of defeats as the tie breaker. These
results are taken from the total number of games played, 10
against each controller per player side, thus giving 90 games
when being player 1 and 90 as player 2, for a total of 180
games played. Even without taking into account the individual
match-ups between the opponent models, the top performers
mentioned previously coincide with the results from Tables
III and V. This strengthens the fact that probabilistic models
(LimitedBuffer, UnlimitedBuffer, Probabilistic) and Random
are the leading models in the current state of the framework.

Based on the results gathered it would seem like opponents
that expand their tree and simulate once for every action can’t
compete with opponents that don’t do this, the main probable
reason being the fact that 900 FM calls are not enough to get
both the actions from the player and the opponent. It is clear
that the Minimum model be the worst even in percentage of
victories with only 24.44% as an opponent will rarely choose

TABLE IV
RESULTS FROM THE ROUND ROBIN TOURNAMENT COMBINING THE WINS,

DRAWS, AND LOSSES OF EACH CONTROLLER WITH PLAYER SWAPPING.
LEGEND: 1) ALPHABETA, 2) AVERAGE, 3) FALLIBLE, 4) LIMITEDBUFFER

5) MINIMUM, 6) MIRROR, 7) PROBABILISTIC, 8) SAMEACTION, 9)
UNLIMITEDBUFFER, 10) RANDOM

1 2 3 4 5 6 7 8 9 10
1 (8,5,7) (10,5,5) (4,5,11) (6,7,7) (5,5,10) (3,5,12) (6,5,9) (3,5,12) (4,5,11)
2 (6,7,7) (5,5,10) (9,5,6) (6,7,7) (4,5,11) (5,5,10) (4,5,11) (4,5,11)
3 (3,4,13) (7,4,9) (3,6,11) (6,4,10) (6,5,9) (3,6,11) (6,4,10)
4 (12,6,2) (8,5,7) (10,5,5) (8,7,7) (9,5,6) (6,7,7)
5 (3,6,11) (3,6,11) (5,6,9) (5,7,8) (4,5,11)
6 (6,5,9) (9,5,6) (6,7,7) (5,5,10)
7 (9,5,6) (7,5,8) (7,6,7)
8 (5,7,8) (6,5,9)
9 (8,7,5)

10

TABLE V
LIST OF OPPONENTS BEATEN BY EACH OPPONENT MODEL

Opponent Model Controller beaten
Alphabeta Average, Fallible
Average Minimum
Fallible Average

LimitedBuffer Alphabeta, Average, Fallible, Minimum,
Mirror, Probabilistic, SameAction, UnlimitedBuffer

Minimum Alphabeta, Fallible

Mirror Alphabeta, Average, Fallible, Minimum,
SameAction

Probabilistic Alphabeta, Average, Fallible, Minimum,
Mirror, SameAction

SameAction Alphabeta, Average, Fallible, Minimum

UnlimitedBuffer Alphabeta, Average, Fallible, Minimum,
Mirror, Probabilistic, SameAction, Random

Random Alphabeta, Average, Fallible, LimitedBuffer,
Minimum, Mirror, SameAction

TABLE VI
PERCENTAGE OF MATCHES WON, DRAWN AND LOST (WITH STANDARD
ERROR) FOR EACH OPPONENT MODEL OUT OF THE 180 GAMES PLAYED

AFTER SWAPPING PLAYER POSITIONS

Win rate % Draw rate % Loss rate %
Alphabeta 27.22 (2.23) 26.11 (2.26) 46.66 (0.96)

Average 27.77 (2.22) 27.22 (2.23) 45 (1.17)
Fallible 25.55 (2.27) 25 (2.28) 49.44 (0.39)

LimitedBuffer 48.33 (0.68) 27.22 (2.23) 24.44 (2.29)
Minimum 24.44 (2.29) 28.88 (2.19) 46.66 (0.96)

Mirror 40 (1.63) 28.33 (2.21) 31.66 (2.09)
Probabilistic 45 (1.17) 25.55 (2.27) 29.44 (2.17)
SameAction 37.22 (1.82) 27.77 (2.22) 35 (1.94)

UnlimitedBuffer 43.88 (1.29) 28.88 (2.19) 27.22 (2.23)
Random 45 (1.17) 27.22 (2.23) 27.77 (2.22)

the worst action all the time, the same applies to Alphabeta,
Fallible and Average, all with less than 30% of victories as
they focus too much on weighting actions based on their Q(s,a)
reward values thus providing more overhead to the controllers.
It is safe to assume that models with high variability in the
action selected are the optimum ones, which is the case for
the probabilistic models and Random, where the actions are
selected without taking into consideration the action’s rewards.
As for the Mirror and SameAction models, the reason for them
to perform the way they did is based mostly on the level design
of the games. It also seems that all opponent models tend
to struggle with certain games, most likely the cooperative
ones. Table III shows that all games had at least 2 draws,
corresponding to the cooperative games from the test set.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented the results of creating and comparing
different opponent models with the GVGAI-2P framework.
The main goal is to make a comparison between different
opponent models in an offline environment, where competition
parameters didn’t affect the performance of the models. This



was done by using the sample MCTS controller from the
framework and implementing all the opponent models in it,
and then playing a round robin tournament between all of
them, swapping the models so they played as both players.

Based on the results from the experiment it is evident that
probabilistic models (i.e. LimitedBuffer, UnlimitedBuffer, and
Probabilistic) give the best results on the GVGAI-2P frame-
work. The LimitedBuffer being the best of all the opponent
models in terms of win percentage by storing the last 20
actions performed by the agent and having fresh memory of
the most important moves, and the UnlimitedBuffer with its
gradually increasing buffer with all the actions used, by being
the only model capable of beating Random. Models that limit
the number of actions performed to those available exclusively
for that game (LimitedBuffer and UnlimitedBuffer) provided
better results, as they don’t waste actions at every time step.

Future work will focus on testing all the opponent models
with the competition parameters by uploading them to the
competitions website. By looking at the results it will also be
worth implementing the opponent models with different algo-
rithms besides MCTS as the performance might be different.
Additionally, some of the opponent models can have slight
adjustments, specially the LimitedBuffer and Probabilistic as
the buffer size can be either increased or decreased. In the
case of the Probabilistic model, data from all games available
in the framework can be used for the offline phase instead
of a fraction of them. Besides the previous, Probabilistic
could record the actions of the main player from different
controllers so that it doesn’t overfit to a particular opponent.
The previous wouldn’t be difficult to implement since the
website of the competition provides all previous submitted
controllers for download. Additionally, the model could take
features as inputs so the model learns the actions in terms
of game state features. By sacrificing time, opponent models
that expand and simulate the decision tree can look more
than one depth further by creating the whole tree and pruning
afterwards as is the case of the Alphabeta, Average, Minimum,
and Fallible models. Long term work can focus on studying
the impact of these opponent models on GVGP outside the
framework, specifically for 2-player games.

Furthermore, detailed statistics can be gathered for each
game. This can help differentiate between the performance of
the models on cooperative and competitive games. If the case
exists where the opponent models favor one type of game the
focus should be on implementing a more universal opponent
model. This would hopefully reduce the number of matches
in which there’s a draw between the opponents.

REFERENCES

[1] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the AAAI competition,” AI magazine, vol. 26, no. 2, p. 62, 2005.

[2] J. Levine, C. B. Congdon, M. Ebner, G. Kendall, S. M. Lucas, R. Mi-
ikkulainen, T. Schaul, and T. Thompson, “General video game playing,”
2013.

[3] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas, A. Couëtoux,
J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General Video Game
Playing Competition,” 2015.

[4] D. Perez-Liebana, S. Samothrakis, J. Togelius, S. M. Lucas, and
T. Schaul, “General Video Game AI: Competition, Challenges and
Opportunities,” in Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[5] D. J. Soemers, C. F. Sironi, T. Schuster, and M. H. Winands, “En-
hancements for real-time Monte-Carlo tree search in general video game
playing,” in Computational Intelligence and Games (CIG), 2016 IEEE
Conference on. IEEE, 2016, pp. 1–8.

[6] R. D. Gaina, D. Perez-Liebana, and S. M. Lucas, “General Video
Game for 2 Players: Framework and Competition,” in Proceedings of
the IEEE Computer Science and Electronic Engineering Conference
(CEEC), 2016.

[7] A. J. Lockett and R. Miikkulainen, “Evolving opponent models for Texas
Hold’em,” in Computational Intelligence and Games, 2008. CIG’08.
IEEE Symposium On. IEEE, 2008, pp. 31–38.

[8] D. Billings, D. Papp, J. Schaeffer, and D. Szafron, “Opponent modeling
in poker,” in AAAI/IAAI, 1998, pp. 493–499.

[9] J. Donkers, “Nosce hostem: searching with opponent models,” 2003.
[10] R. J. Baker, P. I. Cowling, T. W. Randall, and P. Jiang, “Can opponent

models aid poker player evolution?” in Computational Intelligence and
Games, 2008. CIG’08. IEEE Symposium On. Ieee, 2008, pp. 23–30.

[11] G. M. Farouk, I. F. Moawad, and M. Aref, “Generic opponent modelling
approach for real time strategy games,” in Computer Engineering &
Systems (ICCES), 2013 8th International Conference on. IEEE, 2013,
pp. 21–27.

[12] M. Leece and A. Jhala, “Opponent state modeling in RTS games with
limited information using Markov random fields,” in Computational
Intelligence and Games (CIG), 2014 IEEE Conference on. IEEE, 2014,
pp. 1–7.

[13] F. Schadd, S. Bakkes, and P. Spronck, “Opponent Modeling in Real-
Time Strategy Games.” in GAMEON, 2007, pp. 61–70.

[14] N. R. Sturtevant and R. E. Korf, “On pruning techniques for multi-player
games,” AAAI/IAAI, vol. 49, pp. 201–207, 2000.

[15] H. J. van den Herik, H. Donkers, and P. H. Spronck, “Opponent
modelling and commercial games,” in Proceedings of the IEEE 2005
Symposium on Computational Intelligence and Games (CIG05), 2005,
pp. 15–25.

[16] K. Waldzik and J. Mańdziuk, “CI in General Game Playing-to date
achievements and perspectives,” in International Conference on Artificial
Intelligence and Soft Computing. Springer, 2010, pp. 667–674.

[17] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[18] D. P.-L. Raluca D. Gaina and S. M. Lucas, “Rolling Horizon Evolution
Enhancements in General Video Game Playing,” in Computational
Intelligence and Games (CIG), 2017 IEEE Conference on. IEEE, 2017,
pp. 1–8.

[19] R. D. Gaina, S. M. Lucas, and D. Pérez-Liébana, “Population Seeding
Techniques for Rolling Horizon Evolution in General Video Game
Playing,” arXiv preprint arXiv:1704.06942, 2017.

[20] R. D. Gaina, J. Liu, S. M. Lucas, and D. Pérez-Liébana, “Analysis of
Vanilla Rolling Horizon Evolution Parameters in General Video Game
Playing,” in European Conference on the Applications of Evolutionary
Computation. Springer, 2017, pp. 418–434.


