
Open Loop Search for General Video Game Playing

Diego Perez
∗

diego.perez@ovgu.de
Jens Dieskau

jens.dieskau@st.ovgu.de
Martin Hünermund

martin.huenermund@gmail.com

Sanaz Mostaghim
sanaz.mostaghim@ovgu.de

Simon M. Lucas
sml@essex.ac.uk

ABSTRACT
General Video Game Playing is a sub-field of Game Artificial In-
telligence, where the goal is to find algorithms capable of playing
many different real-time games, some of them unknown a priori. In
this scenario, the presence of domain knowledge must be severely
limited, or the algorithm will overfit to the training games and per-
form poorly on the unknown games of the test set. Research in this
area has been of special interest in the last years, with emerging
contests like the General Video Game AI (GVG-AI) Competition.
This paper introduces three different open loop techniques for deal-
ing with this problem. First, a simple directed depth first search
algorithm is employed as a baseline. Then, a tree search algo-
rithm with a multi-armed bandit based tree policy is presented,
followed by a Rolling Horizon Evolutionary Algorithm (RHEA)
approach. In order to test these techniques, the games from the
GVG-AI Competition framework are used as a benchmark, evalu-
ation on a training set of 29 games, and submitting to the 10 un-
known games at the competition website. Results show how the
general game-independent heuristic proposed works well across all
algorithms and games, and how the RHEA becomes the best evo-
lutionary technique in the rankings of the test set.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence, Learning

Keywords
Games; Decision Making; Genetic Algorithms

1. INTRODUCTION
Research in Game AI traditionally presents algorithms that play

a particular game, counting on heuristics tailored to them. These
heuristics are usually designed manually by some expert in these

∗The first four authors are with the Faculty of Computer Science
at the Otto von Guericke University, Magdeburg, Germany. Simon
M. Lucas is with the Computer Science and Electronic Engineering
School at the University of Essex, Colchester, UK.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11–15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754811

specific games, and are used to guide the search to states with high
chances of victory.

General Game Playing (GGP) and General Video Game Playing
(GVGP), on the other hand, drive research to algorithms that play
a set of significantly different games, even some of them unknown
a priori. Therefore, the presence of specific domain knowledge is
limited or almost non-existent. The main challenge of GGP and
GVGP is that the agent needs to be general enough to learn the
structure of any game, guide the search to relevant states of the
search space, and be able to adapt to a wide variety of situations
in the absence of game-dependent heuristics. The idea of having
general agents that are able to deal with a large variety of situations
is one of the most important goals of AI [19].

One of the first attempts to develop and establish a GGP frame-
work was carried out by the Stanford Logic Group of Stanford
University, when they organized the first Association for the Ad-
vancement of Artificial Intelligence (AAAI) GGP competition in
2005 [6]. GGP focuses mainly on 2-player board games, where
each player must provide an action after 1s of “thinking time”. In
contrast, GVGP proposes playing real-time single-player games,
where the time budget for a move is measured in milliseconds.
Recently, a GVGP framework and competition has been carried
out by Perez et al. [17]. Interestingly, both GGP and GVGP com-
petitions have shown the proficiency of Monte Carlo Tree Search
(MCTS) methods, the winner of several editions of these contests.
For instance, CADIA-Player (by Hilmar Finnsson [5]), was the first
MCTS based approach to be declared winner of the 2007 AAAI
GGP competition, followed by Ary, another MCTS approach de-
veloped by J. Méhat and T. Cazenave [12] that won the 2009 and
2010 editions. In the case of GVG-AI, the winner of the only edi-
tion of the competition (2014) was Adrien Couëtoux with an Open
Loop MCTS approach (OLETS) [17].

However, to the knowledge of the authors of this paper, no re-
search has been done on Rolling Horizon Evolutionary Algorithms
(RHEA) for GVGP. This paper addresses this, proposing a combi-
nation of an evolutionary algorithm with a game tree search, and
compares it with other tree search methods. Additionally, this pa-
per proposes a game-independent GVGP heuristic that focuses on
maximizing the exploration of the level played by the agent. Last
but not least, this paper analyzes the hazards posed by stochastic
real-time games to action-decision making, and the advantages of
using an open loop approach to deal with these. Most of the agents
submitted to the GVG-AI Competition were based on closed loop
techniques [17].

This paper is structured as follows. Section 2 presents the bench-
mark used for this research. Then, Section 3 explains the concepts
behind the agents proposed in this paper, such as game tree search,
open loop and RHEA. Section 4 describes the algorithms used for

http://dx.doi.org/10.1145/2739480.2754811

the experimental study, detailed in Section 5. Finally, Section 6
draws some final conclusions and lines for future work.

2. THE GVG-AI FRAMEWORK
The General Video Game Playing competition and framework

(GVG-AI) is inspired by the Video Game Description Language
(VGDL), a framework designed by Ebner et al. [4] and developed
by Tom Schaul [22] for GVGP in Python (py-vgdl). In VGDL,
objects interact in a two-dimensional rectangular space, with as-
sociated coordinates, and have the ability to interact (collide) with
each other. VGDL defines an ontology that allows the generation
of real-time games and levels with simple text files.

The GVG-AI framework is a Java port of py-vgdl, re-engineered
for the GVG-AI Competition by Perez et al. [17], which exposes
an interface that allows the implementation of controllers that must
determine the actions of the player (also referred to as the avatar).
The framework provides a forward model and information regard-
ing the state of the game to the controllers. The VGDL definition of
the game is, however, not provided, so it is the responsibility of the
agent to determine the nature of the game and the actions needed
to achieve victory.

A controller in the GVG-AI framework can spend 1s of initial-
ization time before a game starts, and 40ms for each game step,
where a move to execute in the game must be returned. During each
one of these calls, the agent receives information about the current
state of the game, such as the current time step, game score, current
victory condition (game won, lost or ongoing) and the list of avail-
able actions in the game (variable from game to game, these can be
moving left, right, up or down, and a generic use action). Informa-
tion about the observations in the level (other sprites in the game)
and history of avatar events (collisions between the avatar and other
sprites) is also provided. The GVG-AI framework includes several
sample controllers. The most relevant to our research are Sam-
pleGA (a simple RHEA), and SampleMCTS and SampleOLMCTS
(closed and open loop MCTS approaches, respectively).

The GVG-AI framework featured in the first edition of the GVG-
AI Competition in 2014, held in the IEEE Computational Intelli-
gence in Games Conference in Dortmund (Germany), and the sec-
ond edition will be held in the Genetic and Evolutionary Compu-
tation Conference (GECCO) 2015 in Madrid (Spain). At the time
of the writing of this paper, 29 games of the framework have been
made public (20 used in the competition, plus 9 created after the
contest), which form the training game set used for the experi-
ments described in this paper. 10 more games, unknown to all
participants, are held in the server. Contestants can submit their
controllers to this server in order to play these secret games. This
set of 10 games is used as a test set for this research. All games
vary in many different aspects, such as winning conditions, num-
ber and types of non-player characters, scoring mechanics and even
in the available actions for the agent. Examples of known games
are Sokoban, BoulderDash, Zelda, Frogger, Digdug and Pacman.
The full list of games, sample controllers, results and rules of the
competition can be found on the website1 and in [17].

The results of the 2014 GVG-AI Competition show that this
problem is far from trivial. The winner of the contest achieves a
rate of victories, in the test set, of 51.2%, and only 2 more entries
were able to obtain a rate higher than 30%. The way that entries are
ranked, however, is not by the percentage of victories across this set
of 10 games. Instead, controllers are sorted (for each game) by the
highest number of games won, the highest total sum of game scores
(as a tie-breaker), and finally the minimum time spent in total (as

1http://www.gvgai.net

a second tie-breaker). Points are then awarded to them according
to this order, following a Formula-1 score system (25, 18, 15, 12,
10, 8, 6, 4, 2 and 1 points; entries beyond the 10th position obtain
0 points). The winner is determined by the sum of points across
all games, using the number of first, second, etc. positions to break
possible ties.

3. BACKGROUND
This section introduces the main techniques behind the algorithms

presented in this paper, such as game tree search, open loop ap-
proaches and RHEA.

3.1 Game Tree Search
Tree Search (TS) is one of the most employed types of tech-

niques for action-decision making in games. Tree search tech-
niques are iterative approaches originally employed for 2-player
board games such as Chess, Checkers or Go. Research in this
type of algorithms has advanced the state of the art from initial
approaches such as Minimax or α− β search [20] to Monte Carlo
Tree Search (MCTS) [3, 2]. This and other tree search algorithms
are currently applied to a wide range of games, including games of
uncertain information, general game playing, single-player games
and real-time games.

A tree search algorithm builds a game tree with game states as
nodes and actions as edges, with the current game state as the root
of the tree. One of the most important components needed by a tree
search algorithm is a generative or forward model, in order to be
able to simulate actions before making a final decision about the
move to make. In particular, a forward model is able to produce a
state s′ from a state s when an action a is taken (a ∈ A(s) is one
of the possible actions from the state s).

When the tree reaches a terminal state (where the game is over),
it is possible to determine if the game was won or lost. However,
in some cases, terminal states are so far ahead in the future that
they are not reachable by simulations (this happens, for instance, in
real-time games, a subject of study in this paper). In this situation,
the algorithm defines a Simulation DepthD, that limits the number
of moves that are performed from the current state, and a heuristic
function, which evaluates a non-terminal state.

In either case, the evaluation of a game state allows statistics to
be stored in the nodes of the tree regarding how good or bad cer-
tain actions are, and therefore bias the action selection process and
tree growth towards the most promising parts of the search space.
Examples of statistics that are usually stored are: how often each
move is played from a given state (N(s, a)), how many times any
move is played from there (N(s)) and the empirical average of the
rewards obtained when choosing action a at state s (Q(s, a)).

This information allows the agent to make decisions at two le-
vels. First, for each iteration of the algorithm, decisions must be
made while navigating the tree (a procedure known as Tree Policy,
that determines actions to take from a given state). Difference poli-
cies are used in the literature, such as ε-greedy (with 1 − ε prob-
ability, the best action from a state is chosen; otherwise, another
action is picked uniformly at random) or Upper Confidence Bound
1 (UCB1) , introduced by Kocsis [9] and shown in Equation 1:

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

This equation finds an action a that maximizes the UCB1 equa-
tion, designed to provide a balance between exploration of the dif-
ferent actions available, and exploitation of the most promising ac-
tion found so far. Q(s, a) is the exploitation term, while the second

http://www.gvgai.net

term (weighted by a constant C) is the exploration term. If the
rewards Q(s, a) are normalized in the range [0, 1], a commonly
used value for C in single-player games is

√
2. The value of C is

application dependant, and it may vary from game to game. Addi-
tionally, when N(s, a) = 0 for any of the possible actions from s,
the action a must be chosen before UCB1 can be applied. This tree
selection policy has become very popular because of the success
of MCTS, concretely in the Upper Confidence Bounds for Trees
version of the algorithm (UCT, [9]).

Secondly, a decision has to be made about the action to take
when the iterations have finished (a limit imposed, for instance,
by a time budget in real-time games). This policy, known as Re-
commendation Policy, can be implemented in different ways, such
as selecting the action that leads to the highest reward found, the
one with the highest average reward, the one with the maximum
number of visits, or simply applying the UCB1 Equation 1.

3.2 Open versus Closed Loop Tree Search
In deterministic scenarios, a game tree can contain future states

in its nodes that mimic perfectly the states that will be found when
performing an action or sequence of actions (Closed Loop tree
search). Additionally, once a new node is added to the tree, there is
no need to generate such state again, and the algorithm can traverse
the tree during the tree policy phase without spending time in using
the forward model again from the previous pair (s, a).

However, this aspect changes when considering stochastic sce-
narios, as this poses the problem of not knowing how believable
the states reached after a simulated move are. In the general case,
given a state s and a set of actions A(s), if the action a ∈ A(s)
is selected, one may assume that the state s′ obtained using the
forward model is drawn from an unknown probability distribution.
Consequently, storing a state in a node could be detrimental: the
state generated when the node was added to the tree might not be
representative of the most probable s′ found after applying a from
s. Furthermore, even if it were, the search performed from that
node in the tree would be biased by one instance of all possible
states s′.

Ideally, in order to deal with this scenario, the algorithm should
sample each one of the available actions a sufficient number of
times, and create as many children as future states found. In prac-
tice, however, the combination of nodes that the tree would contain
by applying this procedure grows exponentially. Additionally, the
limited time budget available in real time games draws this solution
infeasible.

An approximate solution to this problem is to use an Open Loop
approach. The idea is that the nodes do not store the states, but only
the statistics. Obviously, this forces the use of the forward model
every time the algorithm chooses an action during the tree policy.
However, now the statistics gathered are representative of the set
of states found after applying an action a from s. In other words,
the tree stores statistics derived from executing a sequence of ac-
tions from a given state (open loop case), and not from a sequence
of pairs (s, a) (closed loop). More information about open versus
closed loop control can be found in [23].

Another important detail about tree search is the way the infor-
mation is kept. Typically, an algorithm runs during the allowed time
budget and, at the end, selects an action to apply in the real game
guided by the recommendation policy. This process is repeated
during several game steps until the game ends. All controllers em-
ployed in this research keep this information from one game cycle
to the next, as the data from the node that follows the chosen action
can be reused. This node becomes the new root, and its siblings

Figure 1: Changing the root node from a previous game step.

are discarded, as they can no longer be reached. Figure 1 shows an
explanatory diagram of this procedure.

3.3 Rolling Horizon Evolutionary Algorithms
Rolling Horizon Evolutionary Algorithms (RHEA) are a suitable

alternative to Tree Search for action-decision making in real-time
games. Traditionally, Evolutionary Algorithms (EA) are used in
conjunction with a simulator to train a controller offline, and then
use the already evolved controller to play the game. This is a tech-
nique not only used in games [11], but also in other problems [8]
or in the domain of Artificial Life [1].

RHEA approaches, however, employ evolution in a similar way
to how it is done in tree search, using a forward model to evaluate
a sequence of actions. The agent evolves a plan (a sequence of ac-
tions) during some predefined time budget, and then selects the first
action of the best individual as the move to play in the real game.
This type of approach is called “Rolling Horizon”, as planning is
performed at every time step, up to a determined point in the future,
as far as the length of the individual (or plan).

It is worthwhile mentioning that this approach, by definition, is
an open loop approach, as the states found during the search are not
stored or reused in any way. The evaluation of each individual con-
sists of applying the sequence of actions, and assigning as fitness
the value given by the evaluation of the state reached at the end. It
is possible to find usages of RHEA in the literature in deterministic
games, as in S. Samothrakis and S. Lucas [21] in the Mountain Car
problem, or Perez et al. [16] in the Physical Travelling Salesman
Problem.

A possible usage of RHEA in stochastic scenarios could be to
evaluate each individual several times, and assign as fitness the ave-
rage of these evaluations. However, the same problem seen in tree
search affects RHEA in real-time games: the limited time budget
does not permit running too many evaluations. This paper proposes
the combination of RHEA and Tree Search, while keeping the ben-
efits of open loop search, in one of the algorithms presented (see
Section 4.4).

4. CONTROLLERS
This section explains the different controllers used for the ex-

periments described later in Section 5. All these algorithms build
a game tree without storing the states in the nodes (i.e., they im-
plement open loop search, as explained in Section 3.2) and reusing
the subtree in the next step. Additionally, all algorithms use the
same heuristic to evaluate states (see Section 4.1) and the same re-
commendation policy (described in Section 4.2).

Algorithm 1 Pseudocode of the heuristic
1: procedure HEURISTIC(state, avatar, pheromones)
2: p← avatar.position
3: reward← 0
4: if HasPlayerWon(state) then
5: reward← HIGH_V ALUE
6: if HasPlayerLost(state) then
7: reward← −HIGH_V ALUE
8: reward← reward+ GetGameScore(state)
9: if OppositeActions(avatar) then

10: reward← reward− PENOA
11: if BlockedMovement(avatar) then
12: reward← reward− PENBM
13: reward← reward− pheromones[p.x][p.y]
14: return reward

4.1 Heuristic
All controllers presented in this study follow the same heuristic,

whose objective is to guide the search and evaluate states found dur-
ing the simulations. Note that this a domain independent heuristic,
as it has been designed without any domain knowledge from spe-
cific games. Algorithm 1 shows how the different components of
the heuristic are combined together.

The heuristic is a combination of several factors. First of all, the
end condition of the game is checked (lines 4 to 7). When a game
ends, the player may have won or lost the game. If any of these two
scenarios is met, a very high or low reward is assigned to the score
respectively.

Then, the reward is modified by adding the current score of the
game (line 8) and subtracting two penalties (lines 9 to 12):

• Opposite Actions: None of the algorithms tested impose any
restriction about the movements available, other than the ac-
tions allowed by each game on each state. In some cases, it
is possible to perform two consecutive contrary movements,
such as moving Right after Left or vice-versa. With the ex-
ception of some rare cases where this is a good thing to do,
this redundancy is unnecessary. Thus, a penalty PENOA
is subtracted from the reward when this happens. The value
of PENOA is set to 0.1, determined after a trial and error
process.

• Blocked Movement: It is possible that one of the available
movement actions in a state does not change the avatar’s po-
sition in a determined situation (i.e. moving against a static
wall). When this happens in the state reached, the reward re-
ceives a penalty PENBM set to −100, a value determined
by trial and error.

Another possibility to these penalties would have been to deny
some actions from being chosen, similar to pruning branches in
tree search. However, penalties permit to achieve a similar effect
with a lower computational cost, which is a valuable resource in
real-time games. Additionally, this sort of soft pruning does not
completely avoid an action from being selected, allowing some ex-
ploration through that node anyway. Also, there are some minor
cases where taking these actions may be beneficial, such as dodg-
ing an bullet or not moving at all.

The last component of the heuristic is a nature-inspired technique
based on pheromone trails, that works as a potential field [24] for
the avatar. In the implementation presented in this paper, the avatar
secretes repelling pheromones. These pheromones spread into the

Figure 2: Pheromone diffusion.

neighbouring area, defined as the grid cells above, below, on the
right and on the left of a given position. The amount of pheromone
contained in a given cell is a value between 0 and 1, and it decays
with time. Figure 2 shows an example of a pheromone diffusion in
one game step, where the avatar is located at the center.

The amount of pheromone on each cell is updated at every state
as shown in Equation 2:

pheromonesi,j = ρdf × ρφ+
= (1− ρdf)× ρdc × pheromonesi,j

(2)

where i and j are coordinates in the level board, and ρφ is the
ratio of pheromone trail in the neighbouring cells divided by the
number of neighbouring cells (note that the edges of the level might
limit the amount of neighbours). ρdf ∈ (0, 1) defines the value of
diffusion of the pheromone in the current game step, and ρdc ∈
(0, 1) indicates the decay of the value at each game step. After
some experimental testing, these values have been set to ρdf = 0.4
and ρdc = 0.99, providing a balance between global and local
exploration (higher and lower values, respectively).

The pheromone diffusion algorithm creates a high concentration
of pheromones in the close proximity of the current and recent po-
sitions of the avatar. As defined in the heuristic (see line 13), the
value of the pheromone is subtracted from the reward. Hence, the
heuristic will give less value to those states with positions where
the avatar is, or has been in recent time steps, aiming to increase
the exploration of the level. Interestingly, this exploration tech-
nique is similar to the one developed independently (and almost
simultaneously) by Nielsen et al. [13].

Summarizing, the heuristic employed to evaluate states rewards
high game score or victory, plus favouring those actions that allow
a larger exploration of the level the avatar is playing.

4.2 Recommendation Policy
The recommendation policy of the algorithms described in this

paper selects the action a, so it maximizes the value R(s, a) calcu-
lated for each one of the children of the current state s. Equation 3
shows how the value R(s, a) is obtained2:

R(s, a) = wr ×Rmax(s, a) + (1− wr)×Q(s, a) (3)

R(s, a) is a weighted sum between Rmax(s, a) and the average
of rewards obtained from state s after applying a (this is, Q(s, a)).
Rmax(s, a) is described in Equation 4 as the maximum value of
R(s′, a′), where s′ is the state reached from s after applying a, and
a′ is each one of the actions available from s′.
2In order to adhere to the nomenclature used in the literature, we
will keep using s when referring to states, even when the statistics
are held in the nodes that (in open loop) do not store the state s.

Rmax(s, a) = maxa′∈A(s′)R(s
′, a′) (4)

The weight wr has been set to 0.5 by trial and error. This pol-
icy gives more weight to those states nearer in the future, and it is
inspired by the One-pass Exponential Weighted Average [10].

4.3 Tree Search Approaches
Two different tree search approaches have been used in the ex-

perimental study:

• DBS: A Directed Breadth First Search (DBS) algorithm has
been implemented as our first tree search approach. The ob-
jective of this simple algorithm is to serve as a baseline con-
troller for comparison with the other two. Starting from the
current state, a child node is created for each one of the avail-
able actions. The tree is then traversed depth level after depth
level until a terminal game state is reached, or the time bud-
get runs out. The tree search is directed because it evaluates
the children in order, according to the highest average reward
Q(s, a). When this process finishes, the action to take in the
game is selected by the recommendation policy described in
Section 4.2.

• UCB1-TS: The second tree search approach proposed in this
paper uses the UCB1 Equation 1 as tree policy, instead of
following the child with the highest average reward. The al-
gorithm grows the game tree iteratively up to a determined
simulation depth D, adding a new node to the tree at each it-
eration. All states found during the navigation of the tree are
evaluated with the heuristic described in section 4.1. When
the time budget is exhausted, the move to make is chosen by
the recommendation policy from Section 4.2.

4.4 RHEA
As with the tree search algorithms, it is important that the RHEA

is implemented in an anytime fashion (i.e. that it can be stopped
at any time, yielding a valid solution). In order to avoid having
long evaluation times, where a whole population is evaluated at
once, the algorithm proposed here evaluates one new individual per
generation. If this new individual is found better than the worse one
of the population, the latter is replaced by the former. This assures
that the best individuals are always kept in the population.

The population has a size T , and its individuals are encoded as
strings of actions with a determined length L, which establishes
how far into the future the plan is performed. Generation of new
individuals is performed in two different ways: by the recombi-
nation of two different individuals from the population, or by the
mutation of one of them. Recombination of two individuals is per-
formed by applying uniform crossover. Mutation replaces one gene
of the individual, chosen uniformly at random, with a new value,
also determined randomly. A parameter α defines the probability
of choosing one of the two breeding methods at each generation.

In both cases, the selection of individuals is performed by an
approach similar to non-linear ranking [18], but using a Gaussian
function instead of a Polynomial one. All individuals of the popu-
lation are ranked according to their fitness value, and selected for
reproduction by using Gauss Selection [7]. Two different selection
mechanisms were tried in a pre-experimental process:

• Normal Gauss Selection: A random value is drawn from a
Gauss distribution and mapped to the ranked population.

• P -Gauss Selection: With probability P = 0.5, the best in-
dividual of the population is selected. Otherwise, a normal
Gauss Selection is employed.

After some initial testing, P -Gauss Selection proved to provide
better solutions, and therefore it was chosen for the experiments
detailed in Section 5.

Fitness values are calculated by executing the sequence of ac-
tions of the individual using the forward model, until all actions
are executed or a final game state is reached. While evaluating an
individual, a tree is generated with the actions performed. When
a new sequence of actions is executed from the current state (i.e.
from the root of the tree), new nodes will be added to the tree ac-
cordingly. When some of these sequences are repeated in different
individuals, the tree nodes will be reused to gather the stored statis-
tics. Therefore, the evaluation of the individuals of the population
is used to generate a game tree, similar to the ones employed by the
tree search approaches. This provides the algorithms with a way
of calculating statistics about the actions taken, as well as reusing
information from one game step to the next by keeping the game
tree, as described before in Figure 1.

The fitness function proposed in this paper maximizes the ave-
rage of the Q(s, a) values of all nodes visited during the evalua-
tion of the individual. This allows not only the state of the game
reached after the sequence of actions has been executed to be taken
into account, but also valuing intermediate states. Alternative op-
tions, such as using only the reward of the state reached at the end
of the evaluation, would not take advantage of the statistics stored
in the game tree: note that the last state is only visited more than
once if two or more individuals with exactly the same sequence of
actions are evaluated.

5. EXPERIMENTAL STUDY

5.1 Experimental Setup
A thorough experimental study has been performed to analyze

the quality of the algorithms presented in this paper. For the RHEA
approach, the parameters tested are the breeding parameter (α =
{0.00, 0.25, 0.50, 0.75, 1.00}), the individual length (L = 2 to 7)
and the population size (T = {5, 20, 100}).

For the UCB1-TS, the parameters tested are the simulation depth
(D = 1 to 7) and the value of the constant C for UCB1 (see Equa-
tion 1; C = {0.00, 0.33, 0.67, 1.00, 1.33, 1.67, 2.00}).

All configurations have been tested 10 times on each one of the 5
levels of the 29 games from the training set of the GVG-AI frame-
work (Intel Xeon CPU E3-1245, 3.40GHz and 32GB of memory).
Therefore, each algorithm has played 1450 games, with the excep-
tion of DBS, which has played each level 100 times (thus playing
a total of 14500 games), and has no parameters to tune.

Finally, the DBS controller and the best configurations found for
RHEA and UCB1-TS, have been submitted to the GVG-AI com-
petition website for its evaluation in the test set (that contains 10
unknown games) in order to compare these approaches with other
entries from the contest. According to the rules of the competition,
the server executes each controller 10 times on each one of the 5
levels of the 10 games from this set.

5.2 Results on the Training Set
Table 1 shows the average (with standard error of the averages)

of the percentage of games won by UCB1-TS, for the configura-
tions tested for this algorithm. As can be seen, higher values of
the UCB1 constant C seem to provide a higher rate of victories.
The right-most column shows an increment of this measure as C
approaches to 2.00. This implies that a higher exploration in the
search space tends to provide better results. Actually, the worst
average of results is obtained with C = 0.00, which effectively

Simulation Depth D
1 2 3 4 5 6 7 Avg.

0.00 36.23
(0.54)

38.62
(0.38)

38.97
(0.19)

38.62
(0.53)

38.90
(0.48)

38.90
(0.28)

39.03
(0.33)

38.47
(0.17)

0.33 37.32
(0.1)

40.75
(0.48)

44.93
(0.38)

44.58
(0.3)

44.24
(0.34)

44.86
(0.26)

44.10
(0.32)

42.97
(0.14)

0.67 35.68
(0.49)

39.86
(0.27)

44.72
(0.34)

44.72
(0.44)

43.63
(0.33)

44.10
(0.39)

43.49
(0.12)

42.31
(0.17)

1.00 36.57
(0.31)

40.20
(0.3)

45.48
(0.4)

44.31
(0.31)

42.87
(0.37)

43.76
(0.47)

44.31
(0.44)

42.50
(0.15)

1.33 36.78
(0.37)

40.68
(0.27)

44.79
(0.14)

44.79
(0.27)

44.17
(0.44)

43.42
(0.34)

43.69
(0.29)

42.62
(0.12)

1.67 35.68
(0.52)

40.61
(0.33)

44.79
(0.16)

44.86
(0.36)

43.08
(0.45)

43.76
(0.38)

44.04
(0.41)

42.40
(0.15)

2.00 35.81
(0.48)

40.27
(0.3)

46.16
(0.35)

45.54
(0.28)

43.49
(0.36)

44.04
(0.26)

43.69
(0.26)

42.71
(0.13)

U
C

B
1

C
on

st
an

tC

Avg. 36.30
(0.54)

40.14
(0.38)

44.26
(0.32)

43.92
(0.43)

42.91
(0.46)

43.26
(0.42)

43.19
(0.44)

42.00
(0.35)

Table 1: Average (Standard Error) of the percent of games won by UCB1-TS. Best result in bold font.

Breeding parameter α
0.00 0.25 0.50 0.75 1.00 Avg.

2 24.65
(0.32)

41.36
(0.71)

40.13
(0.49)

38.97
(0.36)

40.20
(0.15)

37.06
(0.25)

3 26.78
(0.45)

42.39
(0.54)

43.35
(0.76)

42.73
(0.59)

44.59
(0.47)

39.97
(0.35)

4 29.38
(0.36)

43.35
(0.33)

44.10
(0.32)

44.24
(0.19)

44.04
(0.39)

41.02
(0.2)

5 30.27
(0.48)

42.05
(0.51)

42.53
(0.34)

42.60
(0.65)

42.39
(0.58)

39.97
(0.32)

6 28.15
(0.36)

42.94
(0.37)

43.15
(0.53)

43.90
(0.45)

43.42
(0.37)

40.31
(0.26)

7 29.31
(0.68)

41.50
(0.65)

42.60
(0.57)

43.08
(0.41)

42.60
(0.56)

39.82
(0.36)

In
di

vi
du

al
le

ng
th
L

Avg. 28.09
(0.57)

42.27
(0.67)

42.64
(0.65)

42.59
(0.57)

42.87
(0.54)

39.69
(0.26)

Table 2: Average (Standard Error) of the percent of games won
by RHEA (T = 5). Best result in bold font.

means that the tree policy follows greedily the best child of a node
at each movement within the tree.

Regarding the simulation depth (D), there seems to be an opti-
mal spot (among the values tested for D) at D = 3, with a slightly
worse rate of victories when this value is increased, and definitely
worse results whenD is set to 1 or 2. This result suggests that an in-
termediate number of steps from the current state (not too short, not
too long) produces higher rates of victories in the 29 games tested.
Note that the longer the simulation depth, the smaller the amount
of iterations that can be performed by UCB1-TS in the available
time budget. Therefore, an intermediate value ofD conveys a good
equilibrium between how long the algorithm simulates into future
states and the number of iterations, which give a higher confidence
in the statistics stored in the nodes of the tree.

The best average of victories obtained by UCB1-TS corresponds

Breeding parameter α
0.00 0.25 0.50 0.75 1.00 Avg.

2 35.34
(0.41)

41.37
(0.29)

39.79
(0.43)

39.86
(0.56)

39.52
(0.43)

39.17
(0.26)

3 39.31
(0.57)

44.93
(0.45)

44.99
(0.55)

44.86
(0.43)

44.04
(0.35)

43.63
(0.39)

4 38.21
(0.25)

44.10
(0.55)

45.27
(0.53)

45.41
(0.26)

46.36
(0.34)

43.87
(0.24)

5 38.49
(0.41)

47.26
(0.45)

46.37
(0.16)

45.68
(0.59)

47.05
(0.3)

44.97
(0.24)

6 36.50
(0.49)

44.93
(0.58)

45.41
(0.39)

45.96
(0.46)

46.98
(0.44)

43.95
(0.29)

7 36.30
(0.61)

46.23
(0.21)

44.31
(0.4)

44.59
(0.34)

45.27
(0.38)

43.34
(0.24)

In
di

vi
du

al
le

ng
th
L

Avg. 37.36
(0.59)

44.80
(0.54)

44.36
(0.53)

44.39
(0.57)

44.87
(0.48)

43.16
(0.24)

Table 3: Average (Standard Error) of the percent of games won
by RHEA (T = 20). Best result in bold font.

to the best values of these two parameters, providing a rate of
46.16% of victories, with a standard error of 0.35. For a com-
parison with the other algorithms, the percentage of games won by
UCB1-TS considering all configurations tested is 42.00% with a
standard error of 0.35.

Tables 2, 3 and 4 show the averages (with standard errors) of
each configuration tested for the RHEA approach, employing pop-
ulation sizes of 5, 20 and 100, respectively. There are some general
conclusions that can be drawn by analyzing the results obtained by
this algorithm.

The first aspect worth noticing is that a small population pro-
duces lower victory rates, with averages when T = 5 around 3 or
4 points lower than population sizes of 20 and 100. The results
between T = 20 and T = 100 are similar, with a slightly higher

Breeding parameter α
0.00 0.25 0.50 0.75 1.00 Avg.

2 41.43
(0.33)

40.95
(0.39)

40.00
(0.36)

40.55
(0.60)

39.79
(0.25)

40.54
(0.24)

3 44.99
(0.49)

44.79
(0.45)

45.34
(0.31)

45.82
(0.27)

46.09
(0.33)

45.41
(0.23)

4 43.22
(0.32)

45.13
(0.08)

46.91
(0.51)

46.78
(0.35)

47.39
(0.3)

45.89
(0.19)

5 40.68
(0.55

44.38
(0.37)

46.64
(0.38)

46.36
(0.37)

46.44
(0.41)

44.90
(0.26)

6 39.52
(0.35)

44.11
(0.51)

45.48
(0.52)

45.41
(0.44)

45.54
(0.43)

44.01
(0.28)

7 38.76
(0.34)

43.90
(0.51)

43.15
(0.23)

42.94
(0.33)

43.56
(0.34)

42.46
(0.22)

In
di

vi
du

al
le

ng
th
L

Avg. 41.43
(0.51)

43.88
(0.49)

44.56
(0.50)

44.64
(0.51)

44.80
(0.44)

43.87
(0.21)

Table 4: Average (Standard Error) of the percent of games won
by RHEA (T = 100). Best result in bold font.

victory rate for T = 100. This again suggests that a higher explo-
ration of the search space is better for the controller.

Limiting ourselves to analyzing the results obtained for T = 20
and 100, it can be observed that a good individual length is again
(as it happened with UCB1-TS) a good compromise between how
far a sequence of actions simulates into the future and the amount
of evaluations that can be performed during a game cycle (longer
sequences imply that fewer individuals can be evaluated in the time
budget). In this case, intermediate values of L such as 5 (for T =
20) and 4 (for T = 100) seem to perform best.

Regarding the breeding parameter, the differences on performance
are small when α > 0.00. A priori, it seemed obvious that a value
of α = 0.00 would not achieve very good results, as the only way
of creating new individuals does not generate any new genetic ma-
terial by mutation. However, it is still interesting to analyze the
results obtained. For T = 100, the results are around 10 points
better when α = 0.00 in T = 5, and close to 4 points higher than
in the T = 20 case. This is of course due to a higher variety of
individuals in a population with a larger size.

Nevertheless, it is clear that setting α to 0.00 is not an optimal
strategy, because the best results are found when α = 0.25 and
L = 5 for T = 20 (47.26 with a standard error of 0.45), and
α = 1.00 and L = 4 for T = 100 (47.39 with a standard error
of 0.3). The average of victories in all experiments run with the
RHEA approach is 42.2 (0.42).

The experiments performed with DBS provide an average of
39.0 (0.38) of games won, significantly lower than the other two
approaches. Table 5 compares the results of all algorithms tested
in this study, showing the average (with standard error), minimum
and maximum rates of victories of all runs of each approach. Both
UCB1-TS and RHEA are clearly better than DBS, with the evolu-
tionary approach slightly ahead of the best tree search technique in
terms of average of victories.

Finally, in a game per game basis, the results suggest that the
games where the proposed techniques fail more often are those
where the rewards are delayed far in the future.

5.3 Results on the Test Set
The top configurations of each controller have been submitted

for testing to the GVG-AI competition’s website server (Intel Core

Min Average (Std. Err) Max
DBS 36.3 39.0 (0.38) 41.1
UCB1-TS 35.7 42.0 (0.35) 46.2
RHEA 24.7 42.2 (0.42) 47.4

Table 5: Percent of games won by DBS, UCB1-TS and RHEA.

i5, 2.90GHz, and 4GB of memory), so they can be ranked ac-
cording to the contest rules as described at the end of Section 2.
This ranking awards those controllers that play better across the
set of 10 unknown games of the competition. The controllers sub-
mitted are DBS (its username in the server - and in Figure 3 - is
TeamTopbug_HR), UCB1-TS (TeamTopbug_RL) with D = 3 and
C = 2.00, and RHEA with T = 100, L = 4 and α = 1.00
(TeamTopbug_NI).

Figure 3 shows the three algorithms in the rankings with the first
entries submitted to the competition (for the sake of space, the bot-
tom 15 entries are not included in this figure). As can be seen, the
RHEA (TeamTopbug_NI) approach obtains more points than the
UCB1-TS algorithm, getting a better result in 9 of the 10 games of
the set. The evolutionary approach obtains 44.8% of victories in
this game, while the two tree approaches get around 41.0%. The
winner of the 2014 competition, still the first entry at the time of
writing of this paper, achieves a rate of victories of 51.2%.

Compared to the other entries of the competition, our evolution-
ary approach ranks 4th, obtaining the best overall result in two
games of the set. It is worthwhile highlighting that our RHEA con-
troller is the best evolutionary approach found in the rankings; the
other entries in Figure 3 are variants of MCTS, the second best EA
controller is ranked 14th, and the sample Genetic Algorithm (GA)
controller supplied with the framework is in 18th position.

6. CONCLUSIONS AND FUTURE WORK
This paper presents several approaches for general video game

playing in real-time games. Concretely, it proposes two tree search
algorithms and a RHEA combined with the generation of a game
tree search. All these approaches are open loop planning algorithms,
as they do not rely on specific states found by the forward model,
but on the statistics gathered after executing sequences of actions.
This paper also proposes a general purpose heuristic, with no game-
dependent knowledge, employed to play up to 39 different real-
time games.

The results obtained in this paper allow several conclusions to be
drawn about the algorithms tested. First, regarding the tree search
techniques, the experimental study shows the advantage of using a
tree policy that finds a balance between exploration of the search
space and exploitation of the best action found so far, tested across
a large set of games. The proposed RHEA algorithm obtains very
good results in the set of unknown 10 games of the GVG-AI com-
petition, becoming the highest ranked evolutionary approach. All
algorithms tested rank in the top third of the rankings, which sug-
gests that the common heuristic employed (that maximizes level
exploration) works well across algorithms and games.

Potential future work of this research may include exploration of
other values for the parameters tested. For instance, initial tests
show that larger values of simulation depth (∼ 20) behave ex-
tremely well in some of the games tested, although more thorough
experimental work is needed to analyze this.

Additionally, other techniques found in the literature may help
to further improve the results obtained in this research, such as the

Figure 3: Results of the three algorithms in the test set of the GVG-AI 2014 Competition.

use of macro-actions [15] to reduce the search space and effectively
enjoy a longer time budget for action decision. Another possibility
is to address the problem with Multi-Objective Optimization tech-
niques (both evolutionary and tree-search based) [14]. An approach
that takes the victory condition, the maximization of the game score
and the exploration of the level as separate but complimentary ob-
jectives, seems to be a viable alternative.

7. REFERENCES
[1] R. Beer and J. Gallagher. Evolving Dynamical Neural

Networks for Adaptive Behavior. Adaptive behavior,
1(1):91–122, 1992.

[2] C. Browne, E. J. Powley, D. Whitehouse, S. Lucas, P. I.
Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A Survey of Monte Carlo
Tree Search Methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4:1:1–43, 2012.

[3] G. M. J.-B. Chaslot, S. Bakkes, I. Szita, and P. Spronck.
Monte-Carlo Tree Search: A New Framework for Game AI.
In Proceedings of the Artificial Intelligence for Interactive
Digital Entertainment Conference, pages 216–217, 2006.

[4] M. Ebner, J. Levine, S. Lucas, T. Schaul, T. Thompson, and
J. Togelius. Towards a Video Game Description Language.
Dagstuhl Follow-up, 6:85–100, 2013.

[5] H. Finnsson and Y. Björnsson. CADIA-Player: A Simulation
Based General Game Player. IEEE Transactions on
Computational Intelligence and AI in Games, 1:1–12, 2009.

[6] M. Genesereth, N. Love, and B. Pell. General Game Playing:
Overview of the AAAI Competition. AI Magazine,
26:62–72, 2005.

[7] D. E. Goldberg and K. Deb. A comparative analysis of
selection schemes used in genetic algorithms. In Foundations
of Genetic Algorithms, pages 69–93. M. Kaufmann, 1991.

[8] F. Gomez and R. Miikkulainen. Solving Non-Markovian
Control Tasks with Neuroevolution. In International Joint
Conference on Artificial Intelligence, volume 16, pages
1356–1361. Lawrence Erlbaum Associates LTD, 1999.

[9] L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo
Planning. Machine Learning: ECML, 4212:282–293, 2006.

[10] J. Loveless, S. Stoikov, and R. Waeber. Online Algorithms in
High-Frequency Trading. Comm. ACM, 56(10):50–56, 2013.

[11] S. Lucas and G. Kendall. Evolutionary Computation and
Games (Invited Review). IEEE Computational Intelligence
Magazine, 1(1):10–18, February 2006.

[12] J. Méhat and T. Cazenave. A Parallel General Game Player.
KI - Künstliche Intelligenz, 25:43–47, 2011.

[13] T. Nielsen, G. Barros, J. Togelius, and M. Nelson. General
Video Game Evaluation using Relative Algorithm
Performance Profiles. In EvoApplications, 2015.

[14] D. Perez, S. Mostaghim, S. Samothrakis, and S. Lucas.
Multi-Objective Monte Carlo Tree Search for Real-Time
Games. IEEE Transactions on Computational Intelligence
and AI in Games, pp:1–13, DOI:
10.1109/TCIAIG.2014.2345842, 2014.

[15] D. Perez, E. J. Powley, D. Whitehouse, P. Rohlfshagen,
S. Samothrakis, P. I. Cowling, and S. Lucas. Solving the
Physical Travelling Salesman Problem: Tree Search and
Macro-Actions. IEEE Transactions on Computational
Intelligence and AI in Games, 6:1:31–45, 2013.

[16] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen.
Rolling Horizon Evolution versus Tree Search for
Navigation in Single-Player Real-Time Games. In
Proceedings of the Conference on Genetic and Evolutionary
Computation (GECCO), pages 351–358, 2013.

[17] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas,
A. Couëtoux, J. Lee, C.-U. Lim, and T. Thompson. The 2014
General Video Game Playing Competition. IEEE
Transactions on Computational Intelligence and AI in
Games, page (to appear) DOI:
10.1109/TCIAIG.2015.2402393, 2015.

[18] H. Pohlheim. Ein genetischer Algorithmus mit
Mehrfachpopulationen zur numerischen Optimierung.
at-Automatisierungstechnik, 43(3):127–135, 1995.

[19] S. J. Russell. Rationality and Intelligence. Artificial
Intelligence, 1:57–77, 1997.

[20] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[21] S. Samothrakis and S. Lucas. Planning Using Online
Evolutionary Overfitting. In UK Workshop on Computational
Intelligence, pages 1–6. IEEE, 2010.

[22] T. Schaul. A Video Game Description Language for
Model-based or Interactive Learning. In Proceedings of the
IEEE Conference on Computational Intelligence in Games,
pages 193–200, Niagara Falls, 2013. IEEE Press.

[23] R. Weber. Optimization and Control. University of
Cambridge, 2010.

[24] W. Zhe, K. Q. Nguyen, R. Thawonmas, and F. Rinaldo.
Adopting Scouting and Heuristics to Improve the AI
Performance in Starcraft. Proceedings of the Innovations in
Information and Communication Science and Technology
IICST 2013, pages 155–164, Sept. 2013.

