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Abstract—Multi-Objective optimization has traditionally been
applied to manufacturing, engineering or finance, with little
impact in games research. However, its application to this field
of study may provide interesting results, especially for games
that are complex or long enough that long-term planning is not
trivial and/or a good level of play depends on balancing several
strategies within the game.

This paper proposes a new Multi-Objective algorithm based
on Monte Carlo Tree Search (MCTS). The algorithm is tested in
two different scenarios and its learning capabilities are measured
in an online and offline fashion. Additionally, it is compared with
a state of the art multi-objective evolutionary algorithm (NSGA-
II) and with a previously published Multi-Objective MCTS
algorithm. The results show that our proposed algorithm provides
similar or better results than other techniques.

I. INTRODUCTION

Viewed simplistically, most competitive games can be
thought of as having a single objective: to win. While this
is easily stated, achieving it is usually complex, otherwise the
game would be of limited interest. Successful approaches often
include using some form of heuristic tree search, where the
heuristic may be defined as a weighted sum of features of
the game state. For example, a simple chess heuristic attaches
different weights to each piece in line with their value.

However, multi-objective optimization has been a field of
study mainly within enginering [9] and finance [4] applica-
tions, and these algorithms have had little impact on games
research. We argue that multi-objective approaches have much
to offer in developing richer game strategies with more fine-
grained control of alternative policies.

In real-time strategy games (for instance, Starcraft) where
the objective is clearly defined (being the only one alive at
the end of the match), the workarounds to achieve the victory
may take several factors into account simultaneously, such
as balancing attack power, defensive structures and resource
gathering.

When building up a team in a role-playing game (RPG),
the different members need to be balanced to be competitive
(strength, dexterity, and healing capabilities, for instance).
Multi-objective approaches may help in these scenarios, where
different goals have to be attended to at the same time.

Furthermore, even simpler games can benefit from these
approaches. For instance, in Othello, a player might want,
in a mid-game scenario, to maximize mobility (i.e. number
of available moves to make) as well as trying to play in the
corners, as this has proven to be a good strategy.

This paper presents a new algorithm that combines Multi-
Objective techniques with Monte Carlo Tree Search (MCTS),
a Reinforcement Learning (RL) algorithm that has become
more and more popular within the last decade. The proposed
algorithm is tested in two different simple games, Deep Sea
Treasure, and Puddle Driver, and its performance is compared
with state of the art multi-objective approaches. Additionally,
the algorithm is analyzed in two different ways: in an offline
(approximating solutions from an initial state) and online
(actually playing the game) learning modes.

The paper is structured as follows. First, Section II provides
the necessary background for Multi-Objective optimization
techniques. Section III describes MCTS and the only, to the
best of our knowledge, multi-objective MCTS implementation
in the literature. In Section IV, the algorithm proposed in
this paper is introduced, followed by the description of the
two games employed in this research, in Section V. Then,
the experimental setup and analysis of results are detailed in
Section VI. Finally, conclusions and future work are discussed
in Section VII.

II. MULTI-OBJECTIVE OPTIMIZATION

A multi-objective optimization problem (MOOP) is pre-
sented in a scenario where two or more objective functions are
to be optimized. In its general form a MOOP is described as the
minimization (or maximization) of a function Fm(x), where
x = (x1, x2, . . . , xn) is an element of the decision space and
Fm(x) = (f1(x), f2(x), . . . , fm(x)) belongs to the solution
space. In other words, each solution to the problem is a vector
of n variables that provides m different scores (or rewards, or
fitness) that are meant to be optimized.

A solution Fm(x) is said to dominate another solution
Fm(y) if it is not worse than Fm(y) in all objectives for
all i = 1, 2, . . . ,m, and at least one objective of Fm(x)
is better than its analogous counterpart in Fm(y). If these
conditions apply, it is said that Fm(x) � Fm(y) (Fm(x)
dominates Fm(y), and Fm(x) is non-dominated by Fm(y)).
This definition allows a comparison between two solutions
from the solution space: if Fm(x) � Fm(y), then Fm(x) is
considered to be better than Fm(y).

In those cases where it cannot be said that Fm(x) � Fm(y)
(when, for instance, F1(x) < F1(y) but F2(x) > F2(y)), these
solutions are non-dominated with respect to each other. The
set of the solutions that are non-dominated is called the non-
dominated set. Given a non-dominated set P , it is said that P
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is the optimal pareto front if there is no other solution in the
solution space that dominates any member of P .

An important question that arises is how to measure the
quality of a given pareto front. A possibility is to use the
Hypervolume Indicator (HV): given a pareto front P , HV (P )
is defined as the volume of the objective space dominated by
P . More formally, HV (P ) = µ(x ∈ Rd : ∃r ∈ P s.t r �
x), where µ is the de Lebesgue measure on Rd. For instance,
if the objectives are to be maximized, the higher the HV (P ),
the better the front calculated.

Multiple algorithms have been proposed in the literature
to tackle multi-objective optimization problems. One of the
simplest and most used methods is the weighted-sum approach:
each objective is given a weight by the user and the problem
is scaled to a single-objective optimization. By providing
different values for the weights, it is possible to converge
to any of the solutions of the optimal pareto front if this is
convex. However, as described by Deb [6], linear scalarisation
approaches fail to find solutions in the non-convex case. For
more extensive descriptions, definitions, properties and multi-
objective optimization in general, the reader can consult the
work by Deb [6].

A. Evolutionary Approaches to MOOP

Evolutionary multi-objective optimization (EMOA) algo-
rithms have become a popular choice to approach multi-
objective optimization problems [3], [16]. One of the most
mentioned algorithms in the literature is the Non-dominated
Sorting Evolutionary Algorithm 2 (NSGA-2, also employed
in this research). NSGA-2 presents a genetic algorithm that
evolves a population of individuals, which is ranked according
to dominance criteria and crowding distance.

NSGA-2 is based on three main concepts: a fast non-
dominated sorting algorithm to rank the individuals of the
population and group them in pareto fronts; each individual is
assigned a crowding distance value, that measures how close it
is to its neighbours. This value is used, along with its rank in
the population, to apply the selection genetic operator. Finally,
the algorithm implements elitism, by automatically promoting
the best N individuals to the next generation. A full description
of the algorithm can be found in [5].

B. Reinforcement Learning Approaches to MOOP

Multi-objective optimization has also been a matter of
study for Reinforcement Learning (RL) algorithms. RL [13] is
a broad field in Machine Learning that copes with situations
where an agent has to discover which actions (or sequences of
actions) should be applied in order to maximize the reward.

An RL problem can be defined with the tuple1 (S, A, T ,
R, π). S represents the set of states, where s0 is the initial
state. A is the set of available actions the agent can make, and
the transition model T (si, ai, si+1) determines the probability
of reaching the state si+1 after applying action ai in si. The
reward function R(si) provides a single number (reward) that
the agent must optimize, and it represents the desirability of the

1The RL problem can be formalised further using Markov Decision Pro-
cesses (or Partially Observable Markov Decision Processes), but we will not
use these definitions here.

state si reached. Finally, a decision policy π(si) = ai maps
states to actions, determining which actions must be chosen
from each state s ∈ S. One of the most important challenges
in RL is the trade-off between exploration and exploitation.
The decision policy can choose between following actions that
provided good rewards in the past versus exploring new parts
of the search space by selecting new actions.

Multi-objective Reinforcement Learning (MORL) [14]
modifies this definition by using a vector R = r0, r1, . . . , rn
for the rewards of the problem. In other words, MORL
problems differ from RL in having n > 1 objectives that
must be optimized. If the different objectives are independent
or they are not in conflict, approaches like the scalarization
technique described above would be suitable to solve the
problem by using a conventional RL algorithm on a single
objective obtained by a weighted-sum of the multiple rewards.
However, this is not always the case, as it is usual that the
objectives are in conflict and the policy (π) must balance
among them.

III. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a tree search tech-
nique that builds a tree in memory with the outcomes of
Monte Carlo (MC) simulations. MCTS is usually employed
as an online planning technique: the plan (actions to perform)
is recalculated every time step. Given an instant t, several
iterations of the algorithm are performed to plan up to a certain
point in the future. Then, an action is chosen, executed and the
next moved is re-planned from one step forward.

The best known version of MCTS is the Upper Confidence
Bounds for Trees (UCT), firstly introduced by Kocsis and
Szepesvári [7], that employs UCB1 (see Equation 1) as a
tree selection policy. This policy balances the exploitation of
known moves (first term of Equation 1) and the exploration
of a new portion of the search space (second term). Q(s, a)
is the empirical average of the rewards obtained by choosing
action a in state s. N(s, a) represents the number of times the
action a was chosen from state s, and N(s) counts how many
times state s was visited in the tree. Finally, C is a constant
that balances both terms. The value for this constant depends
on the problem approached, but it is common to find C =

√
2

in single-player games (or puzzles) and C ' 1 in two-player
games, assuming rewards are normalized in the range [0, 1].

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

The algorithm works as follows: starting from the root
node (current state), the agent applies the tree policy (selection
phase) to navigate to a node in the tree which is not fully
expanded. Once at a leaf node, the algorithm creates a new
node (expansion) and applies an MC simulation until reaching
an end-game state (simulation step). Finally, the reward r
obtained is back-propagated through the visited nodes until
reaching the root (Backpropagation). On each node, all the
statistics (Q(s, a), N(s, a) and N(s)) are updated for the next
selection step. This process is repeated until a termination
criteria is met (such as number of iterations or elapsed time).



Finally, the algorithm chooses which is the next action to make
based on the statistics of the root node.

The success of MCTS in recent years is due to it being
the first algorithm able to provide a professional level of play
in the game of Go for small board sizes (9 × 9). Since that
achievement, MCTS has been widely used in many different
games and applications. C. Browne et al. [1] presented a recent
survey where the algorithm, its applications and variants are
described.

A. Multi-objective Monte Carlo Tree Search

Moving from single to multi-objective MCTS (MO-MCTS)
requires some modifications in the baseline algorithm. The
most immediate modification is to the rewards obtained at the
end of an MC simulation: instead of retrieving a single value
r, the new reward is a vector R = r1, r2, . . . , rn. Therefore,
the value Q(s, a) becomes a vector that keeps the empirical
average of n rewards. The meaning of the other statistics
(N(s, a) and N(s)), however, do not change, as they just
indicate how many times each node is traversed. The question
to answer then is how to use Q(s, a) in Equation 1, given that
it is now a vector instead of a scalar value.

The first (and, to the best of our knowledge, only) applica-
tion of MCTS to a multi-objective domain has been performed
by W. Wang and M. Sebag [15]. In their work, the authors
replace the UCB1 equation from UCT with a mechanism based
on the HV calculation. During the execution of the algorithm,
a Pareto Archive (P) front is kept with all solutions found in
terminal states for the given scenario. In every node in the
tree, rsa is defined as a vector of UCB1 values, in which each
element is the result of calculating UCB1, where Q(s, a) is
defined for each objective (i.e. each rsa,i is calculated using
the rewards for objective i). The next step is to define W (s, a)
as in Equation 2:

W (s, a) =

{
HV (P ∪ rsa)− dist(rpsa, rsa) Otherwise
HV (P ∪ rsa) if rsa � P

(2)

where rpsa is the projection of rsa into the piecewise linear
surface defined by the pareto archive P . Then, HV (P ∪rsa) is
declared as the HV of P plus the point rsa. If rsa is dominated
by P, the distance between rsa and rpsa is subtracted from the
HV calculation. The tree policy selects actions based on a
maximization of the value of W (s, a).

The proposed algorithm implemented two known heuris-
tics: Rapid Action Value Estimate (RAVE) and Progressive
Widening (PW) (see [1], [15] for a description of these). MO-
MCTS was employed successfully in two domains: the DST
and the Grid Scheduling problem, matching state of the art
results in both domains, at the expense of a high computational
cost.

IV. PARETO MO-MCTS

This section describes the algorithm proposed in this paper.
As mentioned in Section III, the vector of rewards r obtained
at the end of an MC simulation is propagated through the
visited nodes until reaching the root. Each one of the nodes

Algorithm 1 Pareto MO-MCTS node update.
1: function UPDATE(node, r, dominated = false)
2: node.R = node.R+ r
3: if !dominated then
4: if node.P � r then
5: dominated = true
6: else
7: node.P = node.P ∪ r
8: UPDATE(node.parent, r, dominated)

will update the accumulated reward in a vector R, as in the
vanilla MCTS algorithm. However, in the algorithm proposed
here, each node will also keep a local pareto front (P ) that
is updated with every vector of rewards r obtained during the
simulations. If r is not dominated by the local pareto front, it
is added to it and propagated to its parent. If r is dominated
by the existing pareto front in one of the nodes, it is not added
to it. Algorithm 1 provides an example of this procedure.

This mechanism has several implications: first of all, each
node in the tree has an estimate of the quality of the solutions
reachable from there, both as an average (as in the baseline
MCTS) and as the best case scenario (by keeping the non-
dominated front P ). Secondly, by construction, if a reward r
is dominated by the front of a node, it is a given that it will
be dominated by the nodes above in the tree, so there is no
need to update the fronts of the upper nodes, producing little
cost in the efficiency of the algorithm. Finally, it is easy to
infer, from the last point, that the front of a node cannot be
worse than the front of its children (in other words, the front
of a child will never dominate that of its parent). Therefore,
the root of the tree contains the best non-dominated front ever
found during the search.

This last detail is important for two reasons. First, the
algorithm can store information in the root that indicates which
is the best action to take in order to converge to different points
of the front discovered. As described in Section III, MCTS
can be used in an online manner: the algorithm performs its
search for a given number of iterations and then a move needs
to be chosen. Hence, in this implementation, the root stores
information about which points in its non dominated front are
reached by following its children. This data is used in the
experiments shown in Section VI-B. Secondly, the pareto front
of the root can be used to measure the quality of the search,
using, for instance, the hypervolume calculation.

However, there is still one issue that needs to be defined:
how the tree policy uses the value of Q(s, a). Based on the
concept of HV, two different values for Q(s, a) are explored in
this research: the first one, HV-MO-MCTS, defines Q(s, a) =
HV (R)/N(s). The second option, called here Pareto-MO-
MCTS, employs Q(s, a) = HV (P )/N(s). While the first one
uses the HV of the averaged reward, the second case employs
the HV of the local pareto front P of the node.

There are several advantages of the approach introduced
here over the algorithm presented in III-A. First, it is computa-
tionally much less expensive as there is no need to calculate the
piecewise linear surface of the pareto front. This is particularly
important for real-time games with a reduced time budget to
choose a move. Secondly, the algorithm presented in this paper



Fig. 1: Optimal Pareto Front of the Deep Sea Treasure, with
both objectives to be maximized. From [15].

does not include any heuristic in its vanilla form (such as
RAVE or PW), making it simpler and more applicable to a
wider range of domains. Finally, the root of the tree contains
the best pareto front found during the search, and it can store
information to indicate which action leads to what solution in
the discovered front.

V. BENCHMARKS

A. Deep Sea Treasure

The Deep Sea Treasure (DST) is a multi-objective problem
introduced by Vamplew et al. [14]. The DST is an episodic
single-player puzzle where a submarine must find a treasure
at the bottom of the sea by moving in a grid of 11 rows and
10 columns. The vessel can perform four different moves (up,
down, right and left). In case the action applied takes the ship
off the grid or into the sea floor, the submarine’s position does
not change.

Figure 2 (on the left) shows the environment of the DST.
The vessel starts at the top left corner of the grid and the
grey squares represent the treasure (with their different values)
available in the map. The black cells are the sea floor and the
white ones are the positions that the vessel can occupy freely.
The game ends when the submarine picks one of the treasures.

This puzzle has two objectives: to minimize the number of
moves performed while maximizing the value of the treasure
found. Furthermore, the submarine can make no more than
a maximum of 100 moves, which allows the problem to be
defined as the maximization of two scores: (100 − moves,
treasure value). The reward obtained for each location where
there is no treasure is (−1, 0).

Figure 1 shows the optimal pareto front of the problem.
This front contains 10 non dominated solutions, one for each
treasure in the puzzle. As can be seen, the pareto front of the
DST is globally concave, containing local concavities at the
second (83, 74), fourth (87, 24) and sixth (92, 8) points from
the left. The HV value of the optimal front is 10455.

DST is an interesting problem for multi-objective opti-
mization because of the concave shape of its optimal pareto

Fig. 2: Example of two different sequences of actions (R:
Right, D: Down) that lie in the same position in the map,
but different node in the tree.

front. As mentioned earlier in Section II, this is a hazard for
linear scalarisation approaches. Concretely, in the DST, such
approximations converge to the non dominated solutions at
the edges of the pareto front: (81, 124) and (99, 1). Thus,
successful approaches should be able to find all elements of
the optimal pareto front and potentially converge to any of the
non dominated solutions.

1) Transposition Tables in DST: One of the features of
the DST is that it allows the usage of Transposition Tables
(TT) [2]. TT is a technique used to optimize the search in
tree search based algorithms. It is based on the fact that the
same state can be found in different locations within the tree.
Figure 2 shows an example of this situation in the DST.

Let us imagine that the submarine starts in position P1
(root of the tree) and moves right and down until reaching
position P2. From this point, in order to reach P3, the vessel
could take two different routes (in this example, whereas in
the general case, there are many more possibilities): route
a (applying actions Right, Right, Down) or route b (Down,
Right, Right). Both routes end in the same position, P3, but
two different nodes represent that position in the tree. It is
important to notice that the coordinates of the positions alone
are not enough to identify equivalent situations. Imagine a third
route c that, from P2, executes the following moves: Up, Right,
Right, Down, Down. The final location would also be P3, but
in this case the submarine would have performed 5 moves,
instead of the 3 moves that routes a and b made. From the
point of view of the tree, the node where P3 was found would
be two levels deeper in the tree.

It is sensible to presume that sharing information be-
tween equivalent situations should help the search procedure,
as otherwise these nodes would be treated as two distinct
positions. In the algorithm presented in this paper, TT are
implemented with a hash map that stores a representative node
for those equivalent positions. The key of the hash map needs
to be calculated using three values: coordinates x and y of the
position and depth in the tree. This way, transpositions can
only occur at the same depth of the tree. This feature has been
previously explored in the literature with success [8].

The usage of TT modifies the proposed algorithm for the
DST. In this case, every time a new node is added to the tree
(expansion phase), the algorithm checks first if an equivalent
node is already stored in the TT. If not, the node is created



Fig. 3: Example map from Puddle Driver.

and a new entry is added to the table. If there is already a
node in the table, the parent node points to the existing node
without the need of creating a new one. Additionally, the Back-
propagation step needs to be modified in order to update the
actual nodes traversed from the route, using a list of nodes
instead of just following the parents.

B. Puddle Driver

The second benchmark used in this paper is the Puddle
Driver. This problem, created explicitly for this research,
is a single-player real-time puzzle that has influence from
the Multi-Objective PuddleWorld (MOP) and the Physical
Travelling Salesman Problem (PTSP). The Multi-Objective
PuddleWorld, presented also by Vamplew et al. [14], offers
a puzzle where an agent has to reach a goal in a grid based
world where puddles lie between its starting position and
the destination. The target is to minimize two objectives: the
number of movements to reaching the goal and the presence of
the agent in the puddles. In the PTSP, a real-time game fully
described in [11], the player must drive a ship in a continuous
space in order to visit a series of waypoints scattered around
the world.

The Puddle Driver presents a real-time scenario where the
player drives a ship by supplying 6 different actions, like in
the PTSP, combining two different inputs: thrust (with values
on and off ) and steer (rotating left, right or straight). The
ship must apply an action every 40ms, and this move will
alter its position, velocity and orientation. The initial position
of the ship is located at the bottom left corner of the map,
while a target waypoint is placed at the top right corner. The
size of the map is 512× 512 pixels. There are several regions
(puddles) randomly placed between these two positions, and
they cause 1 unit of damage for each time step the ship drives
over them. Analogously to MOP, the objective is to minimize
both quantities: time taken to reach the goal, and damage
suffered in the puddles. The game ends if, after 1000 time
steps, the goal is not reached. Figure 3 shows an example of
a map for this game.

The Puddle Driver has several features that make it in-
teresting and more challenging than the DST. First of all, it
takes place in a continuous world, so discretizations obtained
with techniques such as transposition tables used here for the

DST (see Section V-A1) are not directly applicable to this
game. Secondly, it usually takes more than 300 steps to reach
the goal. Considering the 40ms of time allowed per game
step, creating plans for the whole route becomes complex.
Therefore, it is necessary to be able to measure the quality
of a given position even, if in the move plan in a determined
game step, the goal is not yet reachable.

The reward scheme provided for the Puddle Driver consists
of multiplying each one of the two objectives (total time and
damage) by the distance from the current position of the ship
to the goal’s location. As, given the shape and size of the map,
the maximum distance between two points is the length of the
diagonal (MD ' 725), a factor f in the range [0,1] is obtained
by calculating f = 1− dist

MD , where dist is the current distance
between ship and goal. Thus, the reward vector r at time step
t can be defined as rt = {(1000− T )× f, (1000−D)× f},
where T (total time) and D (damage) are the two rewards of
the problem, and rt is meant to be maximized.

1) Macro-actions for Puddle Driver: Previous research in
PTSP [12], [10] shows that the use of macro-actions for
real-time navigation domains increases the performance of
the algorithms. Given the similarities (identical actions and
generative models) between PTSP and the Puddle Driver, it is
straightforward to assume that macro-actions will be equally
effective in the benchmark presented here. There are several
possibilities when using macro-actions, but in this research the
simplest approach has been taken: a macro-action of length L
is defined as a sequence of L repetitions of the same action.

Plans composed of macro-actions can see further forward
in time than those composed only of single actions. This
reduces the search space drastically and allows for a better
algorithm performance. The length of macro-action for this
research is L = 15, a value that has previously shown
its proficiency in PTSP. For more information about macro-
actions and their application to real-time navigation problems
such as the PTSP, the reader is referred to [10].

VI. EXPERIMENTATION

Two different approaches have been taken for the exper-
iments presented in this paper: a) offline learning, where the
focus is on how the optimal pareto front is approximated; and
b) online learning, with the focus set on how the algorithms
are able to play the game.

A. Offline learning

The performance of the algorithms tested is compared,
showing how fast are they able to find the optimal pareto
front. In order to do this, the HV of the pareto front found by
the algorithms is shown in relation to the training iterations
performed (that is, simulations in MCTS approaches and
evaluations in NSGA-II).

Four different algorithms are compared: Pareto-MO-
MCTS, HV-MO-MCTS (both, as described in Section IV,
with TT) and NSGA-II.2 For the latter one, two versions with
50 and 100 individuals per population have been tried. Each
individual’s genome is a sequence of N = 100 actions to

2NSGA-II from library “MOEA Framework” - www.moeaframework.org

www.moeaframework.org
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Fig. 4: Offline training. Hypervolume of the solution versus
training iterations in logarithmic scale. The optimal hypervol-
ume indicator for the DST is 10455, firstly reached by Pareto-
MO-MCTS. NSGA-II (pop: 100) achieves sooner a very close
hypervolume of 10400, although it does not converge to the
optimal HV until reaching close to 19000 iterations.

Iterations: 10 100 1000 10000
Pareto-MO-MCTS (HV ∼) 750 3000 7000 10455
MO-MCTS [15] (HV ∼) 1000 2000 4250 9500

TABLE I: HV in Pareto-MO-MCTS and MO-MCTS [15].

make (as this is the maximum number of moves), represented
by integers, a value per action. All algorithms are run 40 times
and the average results are shown in Figure 4.

One initial result to note is that all algorithms but one are
able to converge to the optimal, NSGA-II (in both versions)
and Pareto-MO-MCTS. The first to achieve the optimal pareto
front is Pareto-MO-MCTS, in ∼ 8000 training steps. NSGA-
II with 100 population size performs very well, getting to a
hypervolume indicator of 10400 in around ∼ 2500 iterations.
However, it does not get to the optimum until reaching ∼
19000 steps. If the population size is reduced to 50, NSGA-II is
not able to converge to the optimum before 100000 iterations.

It is worthwhile highlighting that HV-MO-MCTS is the
algorithm whose HV indicator grows the fastest, until a maxi-
mum (HV ∼ 6800), which is quite far from the optimal. Both
MO-MCTS algorithms produce higher HV indicators than the
NSGA-II ones in early stages of the runs, although only Pareto-
MO-MCTS is able to find the optimal pareto front.

Another interesting comparison is the performance ob-
tained with the Pareto-MO-MCTS algorithm presented here
and the one from W. Wang and M. Sebag [15], described in
section III-A. The approach presented in their paper converges
to the optimal HV indicator beyond 100000 iterations (aver-
aged over 11 independent runs). Pareto-MO-MCTS seems to
converge faster as well, Table I shows an approximation of the
HV indicators obtained in these approaches.

Fig. 5: Linear scalarization for move selection. Percentage of
optimal points found for values of weights in [0,1].

B. Online learning: DST

In this and the following sections, the algorithms are tested
in a different way: each approach has 40ms to spend in a
training phase before deciding a move to make. When the
submarine has moved, the process repeats, re-planning again
the next move within another 40ms (The experiments were
run in an Intel Core i5, 230GHz, 4GB of RAM). For NSGA-
II (resp. Pareto-MO-MCTS), the population (resp. the tree) is
reset at every game cycle.

Both algorithms, NSGA-II and Pareto-MO-MCTS, provide
the following information at the time an action needs to be
chosen: a non-dominated front; and which actions (first gene
in a NSGA-II individual, a root’s child in MCTS) lead to
what points in the front. The usage of evolutionary algorithms
for online learning in games is not new, and it has shown
promising results [12].

The question is how actions must be chosen to make the
next move. A straightforward idea could be to use values to
weight both objectives, and then choose the action that leads
to the point in the discovered pareto front that maximizes the
weighted sum. However, as explained earlier in Section V-A,
the optimal pareto front of the problem is non convex, so
a linear scalarization approach would not find all solutions
in the pareto front (even if they were all discovered by the
algorithm!). Figure 5 shows an example of this phenomenon,
with Pareto-MO-MCTS executed in an online fashion with
40ms per move (similar results are obtained with NSGA-II).
100 games are executed for each value of the weights that
range from 0 to 1 in increments of 0.01. There are clearly two
points where the submarine ends the game, OPT-1 (99,1) and
OPT-10 (81, 124), which are the edges of the optimal pareto
front of the DST, as foreseen in Section V-A. Rewards are
normalized in the range (0,1) to perform the weighted sum.

In order to overcome this problem, the following move
selection algorithm has been implemented: using the non
dominated front provided by the algorithm, it is possible to
define a pair of weights V = (v1, v2), linear-normalized in
the range (0, 1), and calculate the distance from V to each
point in the pareto front. The action to choose would be the



Fig. 6: Distance based move selection in Pareto-MO-MCTS:
Percentage of optima points found for weights in [0,1].

Fig. 7: Percentage of optima found in DST against weights.

one that leads to the point in the pareto front with the smaller
Euclidean distance to V . The results obtained by applying this
action selection mechanism to Pareto-MO-MCTS are depicted
in Figure 6. As can be seen, all points in the optimal pareto
front are found in the range of the values of V chosen.

The optimal pareto fronts 1 to 8 are obtained with a very
high rate, while the optima 9 and 10 are achieved 90% and
70% of the time with the appropriate weights. The explanation
for this is that optima points 9 and 10 are the ones furthest from
the starting location of the submarine, and hence more moves
are needed to find the optima. Another interesting feature is
the fact that not all objectives are found with the same number
of possible weights, which is a consequence of the shape of
the optimal front.

Figure 7 shows a comparison between Pareto-MO-MCTS
and NSGA-II. To make this picture clearer, the image rep-
resents the optima found without making distinctions as to
which optima the vessel ends in. Instead, the picture shows
the accumulated percentage of all optima achieved for each
weight value.

With the 40ms of allocated time for the training phase,
Pareto-MO-MCTS clearly outperforms NSGA-II, driving the
submarine to points in the pareto optima front more often.
This result is due to the better performance of Pareto-MO-
MCTS versus NSGA-II. In 40ms, Pareto-MO-MCTS is able
to execute ∼ 4500 iterations, while NSGA-II performs ∼ 1250
evaluations.

C. Online learning: Puddle Driver

As described earlier, the search space of the Puddle Driver
is so vast that it is not possible to plan the full trajectory to
follow in real-time (i.e. offline learning is infeasible). Hence,
this problem has been used as a secondary (and harder) test for
the algorithm presented in this paper. The optimal pareto front
for this problem is unknown, so the focus in these experiments
is on how different weights provide different solutions, and the
comparison between the results obtained by each one of the
algorithms presented here.

In order to evaluate the performance of these algorithms in
the Puddle Driver, 10 different maps are created with 25 puddle
squares, of 25 × 25 pixels, uniformly randomly distributed
in them. Each algorithm is executed 10 times on each map,
providing a total of 100 executions for each one of the weights
employed. For this problem, the weights range from 0 to 1 in
increments of 0.1.

The population size for NSGA-II has been set to 50, a
value determined empirically. Both algorithms execute N = 8
macro-actions per evaluation (i.e. in NSGA-II, the length of
the individual’s genome is 8), where the macro-action length
is L = 15, leading to 8 × 15 = 120 single actions applied to
evaluate the individual.

Figure 8 shows the average rewards (with standard error)
obtained by NSGA-II and Pareto-MO-MCTS for each one of
the values tested for the weights. As can be seen, the total time
spent (upper sub-figure from Figure 8) decreases as long as this
objective gets a higher reward, while the contrary happens with
the damage taken in puddle regions (lower plot). In most cases,
Pareto-MO-MCTS obtains better rewards than NSGA-II.

Figure 9 shows the averages of the solutions found in a two-
dimensional view. It can be observed that the Pareto-MCTS
algorithm obtains better solutions than the online version
of NSGA-II, providing a more diverse range of solutions
weighting between both objectives.

VII. CONCLUSIONS

This paper presented a new Multi-Objective MCTS algo-
rithm for games. It has been tested in two different domains
(Deep Sea Treasure and Puddle Driver), using two different
approaches (online and offline learning), and compared against
a state of the art multi-objective algorithms (NSGA-II) and a
previously published algorithm for MO-MCTS. The latter one
is only tested in the offline scenario, as this approach is not
suited for the real-time constraints present in the online cases,
because of its high computational cost.

The algorithm presented here shows its proficiency in all
the scenarios tested. For the offline case, tested on the DST, it
provides comparable performance to one of the NSGA-II ver-
sions and improves the results obtained by previous research in
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to MO-MCTS by providing a faster learning rate. In the online
scenario, the algorithm presented here obtains better results
than NSGA-II, showing better planning capabilities when the
time given to make a move is reduced. Two different versions
of the same algorithm are analyzed in this paper. Pareto-
MO-MCTS produces better results in the offline scenario than
HV-MO-MCTS, although both of them have shown a similar
performance in the online case.

Immediate future work to continue this research would
be to explore a more complex and challenging scenario. For
instance, the Multi-Objective Physical Travelling Problem 3,
a game that features in a competition in the 2013 IEEE
Conference on Computational Intelligence and Games (CIG),
would be a perfect choice for this. It is also possible that
the differences between Pareto-MO-MCTS and HV-MO-MCTS
become bigger when the benchmark used is more complex.

The algorithm itself is also a matter for future work.
For instance, the gaps present in Figures 6 and 7 suggest

3www.ptsp-game.net

that some optima points in the DST are not accessible if
determined weights are given. Maybe an alternative procedure
for choosing the action to make at each game step could avoid
this phenomenon. Another possibility is to incorporate the
concept of crowding distance into the algorithm, as algorithms
such as NSGA-II do, in order to provide a better distribution
of solutions on the Pareto front of each node.
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