
Neuroevolution for General Video Game Playing

Spyridon Samothrakis, Diego Perez-Liebana, Simon M. Lucas and Maria Fasli
School of Computer Science and Electronic Engineering

University of Essex, Colchester CO4 3SQ, UK
ssamot@essex.ac.uk, dperez@essex.ac.uk, sml@essex.ac.uk, mfasli@essex.ac.uk

Abstract—General Video Game Playing (GVGP) allows for
the fair evaluation of algorithms and agents as it minimizes
the ability of an agent to exploit apriori knowledge in the
form of game specific heuristics. In this paper we compare four
possible combinations of evolutionary learning using Separable
Natural Evolution Strategies as our evolutionary algorithm of
choice; linear function approximation with Softmax search and
ε-greedy policies and neural networks with the same policies.
The algorithms explored in this research play each of the games
during a sequence of 1000 matches, where the score obtained is
used as a measurement of performance. We show that learning
is achieved in 8 out of the 10 games employed in this research,
without introducing any domain specific knowledge, leading the
algorithms to maximize the average score as the number of games
played increases.

I. INTRODUCTION

Learning how to act in unknown environments is often
termed the “Reinforcement Learning” problem [1]. The prob-
lem encapsulates the core of artificial intelligence and has been
studied widely under different contexts. Broadly speaking, an
agents tries to maximize some long term notion of utility or
reward by selecting appropriate actions at each state. Classic
RL assumes that state can somehow be identified by the agent
in a unique fashion, but it is often the case that function
approximators are used to help with state spaces that cannot
be enumerated.

A possible way of attacking the problem in the gen-
eral sense is Neuroevolution (for an example in games see
[2]). Neuroevolution adapts the weights of a local or global
function approximator (in the form of a neural network) in
order to maximize reward. The appeal of Neurovolution over
traditional gradient-based Reinforcement Learning methods
is three-fold. First, the gradient in RL problems might be
unstable and/or hard to approximate, thus requiring extensive
hyper-parameter tuning in order to get any performance. Sec-
ondly, the tournament-ranking schemes used by evolutionary
approaches are robust to outliers, as they are effectively
calculations of medians rather than means. Thirdly, classic
RL algorithms (at least their critic-only versions [3]) can be
greatly impacted by the lack of a perfect Markov state. Sensor
aliasing is a known and common problem in RL under function
approximation.

On one hand, the lack of direct gradient information
limits the possible size of the parameters of the function
approximator to be evolved. If provided with the correct setup
and hyperparameters, RL algorithms might be able to perform
at superhuman level in a number of hard problems. In practical
terms, research into RL has often been coupled with the use of
strong heuristics. General Game Playing allows for completely
arbitrary games, making the easy application of temporal based

methods non-trivial. On the other hand, modern evolutionary
algorithms require minimum fine-tuning and can help greatly
with providing a quick baseline. In this paper we perform
experiments using evolutionary algorithms to learn actors in
the following setup.

Among evolutionary algorithms, for problems with con-
tinuous state variables, a simple yet robust algorithm is Sep-
arable Natural Evolution Strategies (S-NES) [4]. Coupling
the algorithm with different policy schemes and different
approximators yields the experimental methods:

• S-NES using e-greedy policy and a linear function
approximator.

• S-NES using e-greedy policy and a neural network.
• S-NES using softmax policy and a linear function

approximator.
• S-NES using softmax policy and a neural network.

The motivation behind this is to check whether there is
an exploration method which works better in a general sense,
without misguiding the evolution. We will see specifics of this
setup in later sections. In order to make this research easy to
replicate and interesting in its own right, the environmental
substrate is provided by the new track of the General Video
Game Playing AI Competition1. The players evaluated in this
research are tested in this setup.

The paper is structured as follows: Section II does a brief
review of the current state of the art in General Game and
Video Game Playing. Section III analyses the framework
used in this paper for evaluating games. We describe the
algorithms used in Section IV, while in Section V we present
the experimental results. We conclude with a discussion in
Section VI.

II. RELATED RESEARCH

While there has been considerable research in the topic
of both Neuroevolution and General Game Playing (GGP),
GGP [5] was initially mostly concerned with approaches that
included access to a forward model. In this scenario, agents
(or players) have the ability to predict the future to a certain
extent and plan their actions, typically in domains that are
more closely aligned to board games and are of a deterministic
nature.

Recently, a competition termed “The General Video Game
Playing Competition” [6] has focused on similar problems,
but this time in the real-time game domain. The competition
provided the competitors with internal models they could sam-
ple from (but not access to specific future event probabilities),

1www.gvgai.net

www.gvgai.net

while limiting the amount of “thinking” time provided for
an agent to 40ms (imposing an-almost-real-time constraint).
In both contexts, the algorithms that dominated were sample
based search methods [7], [6], also known as Monte Carlo
Tree Search (MCTS). In the case of GVG-AI [6], which allows
for stochastic environments, Open Loop MCTS methods seem
to perform best. A recent paper studies the use of open
loop methods, employing both tree search and evolutionary
algorithms, in this domain [8].

This competition and framework has brought more re-
search in this area during the last months, after the end of
the contest. For instance, B. Ross, in his Master thesis [9],
explores enhancements to the short-sight of MCTS in this
domain by adding a long term goal based approach. Also
recently, T. Nielsen et al. [10] employed different game playing
algorithms to identify well and badly designed games, under
the assumption that good games should differentiate well the
performance of these different agents.

There has also been considerable effort in learning how
to play games in a generic fashion outside competitions,
using the Atari framework [11], which provides a multitude
of games for testing. The games were tackled recently [12]
using a combination of neural networks and Q-learning with
experience replay. The method was widely seen as a success
(though it could still not outperform humans in all games). The
methods for these games operate on a pixel level and require
a significant amount of training, but the results achieved when
successful cover the full AI loop (from vision to actions).

This latest work (by Mihn et al.) is of special interest to
this research, as it tackles the problem in a similar way to
how it is done here. The agents that play those games have
no access to a forward model that allows them to anticipate
the state that will be found after applying an action. Learning
is performed by maximizing the score obtained in the games
after playing them during a number of consecutive trials.

Neuroevolution has been used for real time video
games [2], General Game Playing (see [13]) and playing Atari
games [14], [15], all with varying degrees of success. In the
front of solving Atari games, neuroevolution showed strong
results using HyperNEAT [16], a method that evolves all
network parameters, including the topology of the network.

Note that the approach taken herein has the goal of just
creating a baseline, not to create competitive agents. It is an
ad-hoc method for neurovolution with very limited time and
almost no feature engineering. If however one dedicates the
right effort and fine tunes enough, we expect Reinforcement
Learning (e.g., Q-learning) approaches to outperform the cur-
rent set of agents.

III. THE GVGAI FRAMEWORK

A. The framework

The General Video Game Playing competition and frame-
work (GVG-AI) is built on VGDL (Video Game Description
Language), a framework designed by Ebner et al. [17] and
developed by T. Schaul [18] for GVGP in Python (py-vgdl).
In VGDL, there are several objects that interact in a two-
dimensional rectangular space, with associated coordinates and
with the possibility of moving and colliding with each other.

VGDL defines an ontology that allows the generation of real-
time games and levels with simple text files.

The GVG-AI framework is a Java port of py-vgdl, re-
engineered for the GVG-AI Competition by Perez et al. [6],
which exposes an interface that allows the implementation of
controllers that must determine the actions of the player (also
referred to as the avatar). The VGDL definition of the game
is not provided, so it is the responsibility of the agent to
determine the nature of the game and the actions needed to
achieve victory.

The original version of this framework provided a forward
model, that allowed the agent to simulate actions on the current
state to devise the consequences of the available actions. In this
case, the agents counted on 40ms of CPU time to decide an
action on each game cycle. This version of the framework
was employed by the organizers of the competition to run
what is now called the “planning track” of the contest, which
took part during the Computational Intelligence in Games
(CIG) conference in Dortmund (Germany) in 2014. A complete
description of this competition, framework, rules, entries and
results have been published in [6].

2016 will feature a new track for this competition, named
“learning track”. In this track, controllers do not have access
to a forward model, so they cannot foresee the states reached
after applying any of the available actions of the game. In
contrast, they will be offered the possibility of playing the
game multiple times, with the aim of allowing the agents to
learn how to play each given game. Note that the competition is
not limited by some of the drawbacks related to using Atari as
an approach (e.g., no true stochasticity [19]) and that it allows
for games that can be customised easily, and also allows for
great flexibility in the choice of interface between the game
andthe AI agent, which could be vision based (as with ALE)
or game-object based (as with the current experiments). Thus,
we think, it provides different challenges than Atari General
Game Playing.

Information is given regarding the state of the game to the
controllers at three different stages: at initialization, each game
step (act call, called repeatedly, until the game is finished) and
at termination. Table I summarizes the information given to the
agent and at which stages this is passed.

B. Games

The games employed for this research are the ones from
the training set of the GVG-AI competition. These games are
described in detail here:

1) Aliens: Similar to traditional Space Invaders, Aliens fea-
tures the player (avatar) at the bottom of the screen, shooting
upwards at aliens that approach Earth, who also shoot back at
the avatar. The player loses if any alien touches it, and wins if
all the aliens are eliminated. Scoring: 1 point is awarded for
each alien or protective structure destroyed by the avatar, and
−1 point is given if the player is hit.

2) Boulderdash: The avatar must dig in a cave to find at
least 10 diamonds, with the aid of a shovel, before exiting
through a door. Some heavy rocks may fall while digging,
killing the player if it is hit from above. There are enemies
in the cave that might kill the player, but if two different

Information Description Possible Values Init Act End
Game Information

Score Score of the game. [0..N] ∈ N X X X
Game tick Current game tick. [0..1000] ∈ N X X X
Game winner Indicates the result of the game for the player. {won, lost, ongoing} X X X
Is game over Indicates if the game is over. {true, false} X X X
World’s dimension (width) Width of the level (in pixels). [0..N] ∈ R X
World’s dimension (height) Height of the level (in pixels). [0..N] ∈ R X
Block size (bs) Number of pixels each grid cell has. [0..N] ∈ N X

Actions Information
Actions Available actions of the game. A subset of {nil, up, down, left, right, use} X

Avatar Information
Avatar position (x) x coordinate (in pixels) of the avatar’s position. [0..N] ∈ R X X X
Avatar position (y) y coordinate (in pixels) of the avatar’s position. [0..N] ∈ R X X X
Avatar orientation (x) x coordinate of the avatar’s orientation. {−1, 0, 1} X X X
Avatar orientation (y) y coordinate of the avatar’s orientation.. {−1, 0, 1} X X X
Avatar speed Speed of the avatar (pixels/tick). [0..N] ∈ N X X X
Avatar last action Last action played by the avatar. One of {nil, up, down, left, right, use} X X X

Avatar resources Collections of pairs < K,V >, where K is the
type of resource and V is the amount owned. {< K1, V1 >,< K2, V2 >, ...} ;Ki, Vi ∈ N X X X

Grid Information (for each type of sprite)
Sprite type Sprite identifier. [0..N] ∈ N X X X

Grid Bitmap Presence array of the sprite type on the grid.
1 means presence, 0 means absence. Array {0, 1} of size [width/bs, height/bs] X X X

TABLE I: Information given to the controllers for action decision. The controller of the agent receives this information on the
three different calls: Init (at the beginning of the game), Act (at every game cycle) and End (when the game is over). Pieces of
information that are only sent on the Init call are constant throughout the game played.

enemies collide, a new diamond is spawned. Scoring: 2 points
are awarded for each diamond collected, and 1 point every
time a new diamond is spawned. Also, −1 point is given if
the avatar is killed by a rock or an enemy.

3) Butterflies: The avatar must capture butterflies that move
randomly around the level. If a butterfly touches a cocoon,
more butterflies are spawned. The player wins if it collects
all butterflies, but loses if all cocoons are opened. Scoring: 2
points are awarded for each butterfly captured.

4) Chase: The avatar must chase and kill scared goats that
flee from the player. If a goat finds another goat’s corpse, it
becomes angry and chases the player. The player wins if all
scared goats are dead, but it loses if is hit by an angry goat.
Scoring: 1 point for killing a goat and −1 point for being hit
by an angry goat.

5) Frogs: The avatar is a frog that must cross a road full
of tracks and a river, only traversable by logs, to reach a goal.
The player wins if the goal is reached, but loses if it is hit by
a truck or falls into the water. Scoring: 1 point for reaching
the goal, and −2 points for being hit by a truck.

6) Missile Command: The avatar must shoot at several
missiles that fall from the sky before they reach the cities they
are directed towards. The player wins if it is able to save at
least one city, and loses if all cities are hit. Scoring: 2 points
are given for destroying a missile and −1 point for each city
hit.

7) Portals: The avatar must find the goal while avoiding
lasers that kill it. There are many portals that teleport the player
from one location to another. The player wins if the goal is
reached, and loses if killed by a laser. Scoring: 1 point is given
for reaching the goal.

8) Sokoban: The avatar must push boxes so they fall into
holes. The player wins if all boxes are made to disappear, and

loses when the timer runs out. Scoring: 1 point is given for
each box pushed into a hole.

9) Survive Zombies: The avatar must stay alive while being
attacked by spawned zombies. It may collect honey, dropped
by bees, in order to avoid being killed by zombies. The player
wins if the timer runs out, and loses if hit by a zombie while
having no honey (otherwise, the zombie dies). Scoring: 1 point
is given for collecting one piece of honey, and also for killing
a zombie. Additionally, −1 point if the avatar is killed or it
falls into the zombie spawn point.

10)Zelda: The avatar must find a key in a maze to open a
door and exit. The player is also equipped with a sword to kill
enemies existing in the maze. The player wins if it exits the
maze, and loses if it is hit by an enemy. Scoring: 2 points for
killing an enemy, 1 for collecting the key, and another point
for reaching the door with it. −1 point is given if the avatar
is killed.

In order to show the diversity of these games, Table II
shows the features of each one of them. In this table, the
Score System indicates how the reward is given to the
avatar by means of a numeric score. This system can be either
binary (B) or incremental (I). In the former case, the score
of the game will always be 0 until victory is achieved, when
the reward will become 1. In the latter scenario, points are
regularly awarded throughout the course of the game.

The second column, NPC Types, indicates the sort of
other moving entities that can be found in the game. Friendly
refers to the Non Player Characters (NPC) that do not harm the
player, whereas Enemies refer to those NPCs that pose some
hazard in the game. Additionally, one game also features more
than one type of enemy (Boulderdash).

Resources indicates if the game contains sprites that
can be picked up by the player or not, and Terminations
relates to how the game can end. A game can finish either

Game Score System NPC Types Resouces Terminations Action SetFriendly Enemies > 1 type Counters Exit Door Timeout

Aliens I X X A2
Boulderdash I X X X X A0

Butterflies I X X A1
Chase I X X X A1
Frogs B X A1

Missile Command I X X A0
Portals B X A1

Sokoban I X A1
Survive Zombies I X X X X A1

Zelda I X X X A0

TABLE II: Games feature comparative, showing all games employed in this study. Legend: I: Incremental; B: Binary; A0: All
moves; A1: Only directional; A2: Left, right and use. Check Section III-B for a full description of the meaning of all terms in
this table.

by creating or destroying one or more sprites of a given type
(column Counters), reaching a goal (Exit Door) or when a
timer runs out (Timeout). Independently, all games can finish
eventually (with a loss) it the maximum number of game steps
that can be played, set to 1000 for all games, is reached. This
limit is introduced in order to avoid degenerate players from
never finishing the game.

Finally, each one of these games provides a different
set of available actions to the player. The games labelled
in Table II as a0 provide the complete set of actions
({nil, up, down, left, right, use}). A1 games are those where
the actions are only directional (this is, the complete set
without the use action). Finally, A2 indicates the subset
composed by {nil, left, right, use}.

It is worthwhile highlighting that the variety of these games
poses a serious hazard to the playing agents. The learning
algorithm needs to learn how the game has to be played in
order to achieve victory and maximize score. It is important
to realize that the description of the game is not passed
to the agent at any time, thus the only way the agent can
learn how to play the game is to analyze the game state
(maybe by extracting features) and build relations between the
observations and the games played.

Of course, one could try to identify the game that is being
played and act consequently. However, this is of a limited
research interest, as the long term objective is to find agents
that can learn any game (rather than building an agent that
uses a database of known games, heuristically prepared to
play these). Figure 1 shows screenshots of four of the games
employed in this research.

IV. APPROACHES

A. Learning Algorithms

As stated in the introduction, we coupled two different
kinds of function approximators with two different exploration
policies, and evolved their weights. Assuming input features φ
and a set of actions A (with each action a ∈ A), we evolved
a set of weights for each action wa:

• plineara = w0
a · φ for the linear function approximator.

• pnna = w0
a · max (w1 · φ, 0) for the rectifier neural

network [20].

The types of exploration used are Softmax and ε-greedy. We
normalise all inputs on the function approximators between
-1 and 1. Notice that the output layer of weights w0

a for the
neural network approximator is the same for all actions and set
to 20 (i.e., the total number of hidden neurons). The number of
neurons used is mostly an ad-hoc choice, however it is small
enough to be evolved online.

Using pa we define two different policies:

• πε(φ, a) =

{
1− ε+ ε/|A| if a = argmax

a∈A
pa

ε/|A| otherwise

• πsoftmax(φ, a) = epa/
∑
b∈A

pb

These two policies were chosen because of their ease of
implementation and their popularity - they are the two most
common exploration policies. For all our experiments, ε is
always set to 0.1. All four possible combinations of polices and
function approximators are used in the experiments. Training
the function approximators involves learning the weights w.
We use Separable Natural Evolution Strategies (S-NES) for
this [4]. Since we used at least 7 features for each action, and
GVG-AI supports 4 actions, we would have a 28 dimensional
problem for the linear approximator and a 220 dimensional
problem for the neural network appoximator at the very
minimum. Since S-NES is an evolution strategy that follows
the natural gradient (which can be seen as a gradient that uses
KL-divergence as a measure of distance instead of euclidean
distance). It assumes that the search parameters come from a
multi-variate Gaussian distribution and tries to adapt the Gaus-
sian’s mean and covariance-matrix using the natural gradient.
The natural gradient allows for information on the uncertainty
of the estimates to be incorporated in the gradient search,
as well as making the search invariant to transformation. A
further transformation on the fitness structure of the problem
also takes place; using a population of samples, the fitness
is transformed to [0, 1] using a ranking scheme, which makes
the algorithm invariant to transformations of the target function
as long as these transformations do not impact ranking order.
The “Separable” element of the algorithm used here refers
to adapting only the diagonal elements of the covariance
matrix. This speeds up learning significantly, allowing the S-
NES to scale linearly to problems of arbitrary size (instead of
quadratically), making the algorithm practical for our situation.
For a more detailed explanation of the algorithm, the reader is

Fig. 1: Four of the ten training set games: from top to bottom, left to right, Butterflies, Portals, Sokoban and Zelda.

referred to [4].

B. Game features

All algorithms employed in this experimental study use the
same set of features φ for learning. These features are extracted
from the game state, which is received in the format explained
in Section III-A and Table I. The features employed in this
research are all of a numeric nature, and they are detailed
next:

• Game score.
• Game tick.
• Game winner (−1 if game is still ongoing, 0 if the

player lost and 1 if the player won).
• Game over (1 if game is over, 0 otherwise).
• Resources: list of the amount of resources owned by

the avatar2.
• List with the Euclidean distances to the closest sprite

of each type.
• Speed of the avatar.

Note that the features are common in all games and are
very general (i.e. they do not change from game to game). It
is possible however that one might not want to use any features
- there is indeed an option and one could use the underlying
object structure directly.

2In order to have a fixed number of features, the length of this list is set to
5 (the number of avatar resources can vary from game to game, from none to
N types).

V. EXPERIMENTS

The algorithms proposed in the previous section have been
tested in the games described previously in Section III-B. For
each one of the 10 present games, the first available level has
been used for a learning process where each algorithm played
1000 consecutive times. For each game, 50 experiments where
run, and the average of the progression of the score is plotted
in Figures 2 and 3.

These figures show the average of score, including the
standard error (shadowed area), as it progresses with the
number of matches, for each one of the games played. The
first aspect to realize is that learning can be appreciated in 8
out of the 10 games employed in the experimental study. It is
not possible to declare any of the algorithms as an overall best
option, as it generally depends on the game played.

It seems clear that in some games (such as Aliens, Mis-
sileCommand or SurviveZombies) the algorithms with an ε-
greedy policy learn better, while in others (such as Frogs
or Zelda) it is the algorithms with a Softmax policy the
ones with a better performance. For instance, in the game
Frogs, ε-greedy algorithms are not able to survive (a score
of −2 reflects that the player is killed by a truck), while
Softmax approaches are capable of learning how to avoid these.
Regarding the approximations used, even when the difference
is small, the results suggest that the linear approximator works
better than the neural network, for both policies tested and
most of the games. A possible explanation for this is that the
neural network operates in a larger search space, which can
potentially inhibit its learning capabilities in the short term.

0 200 400 600 800 1000

Trial

10

15

20

25

30

35

40

45

A
v
e
ra

g
e
 s

co
re

 o
n
 a

lie
n
s

eGreedyLinear
SoftmaxLinear
eGreedyNN
SoftmaxNN

(a) Aliens

0 200 400 600 800 1000

Trial

0.2

0.1

0.0

0.1

0.2

0.3

0.4

A
v
e
ra

g
e
 s

co
re

 o
n
 b

o
u
ld

e
rd

a
sh

eGreedyLinear
SoftmaxLinear
eGreedyNN
SoftmaxNN

(b) Boulderdash

0 200 400 600 800 1000

Trial

10

12

14

16

18

20

22

24

A
v
e
ra

g
e
 s

co
re

 o
n
 b

u
tt

e
rf

lie
s

eGreedyLinear
SoftmaxLinear
eGreedyNN
SoftmaxNN

(c) Butterflies

0 200 400 600 800 1000

Trial

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
v
e
ra

g
e
 s

co
re

 o
n
 c

h
a
se

eGreedyLinear
SoftmaxLinear
eGreedyNN
SoftmaxNN

(d) Chase

0 200 400 600 800 1000

Trial

2.0

1.5

1.0

0.5

0.0

A
v
e
ra

g
e
 s

co
re

 o
n
 f

ro
g
s

eGreedyLinear
SoftmaxLinear
eGreedyNN
SoftmaxNN

(e) Frogs

0 200 400 600 800 1000

Trial

3.0

2.8

2.6

2.4

2.2

2.0

1.8

A
v
e
ra

g
e
 s

co
re

 o
n
 m

is
si

le
co

m
m

a
n
d

eGreedyLinear
SoftmaxLinear
eGreedyNN
SoftmaxNN

(f) Missile Command

Fig. 2: Progression of the average score during 1000 trials. Horizontal axis denotes the trial, while the vertical axis shows the
average score. Shadowed area indicates the standard error of the measure. From left to right, top to bottom, the games are Aliens,
Boulderdash, Butterflies, Chase, Frogs and MissileCommand.

The cases were learning cannot be achieved by any of the
algorithms tested here happen in the games Portals (where

the score is 0 through the whole process) and Sokoban (with
an interesting jagged curve). The low performance of all

0 200 400 600 800 1000

Trial

1.0

0.5

0.0

0.5

1.0

A
v
e
ra

g
e
 s

co
re

 o
n
 p

o
rt

a
ls

eGreedyLinear
SoftmaxLinear
eGreedyNN
SoftmaxNN

(a) Portals

0 200 400 600 800 1000

Trial

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

A
v
e
ra

g
e
 s

co
re

 o
n
 s

o
ko

b
a
n

eGreedyLinear
SoftmaxLinear
eGreedyNN
SoftmaxNN

(b) Sokoban

0 200 400 600 800 1000

Trial

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
v
e
ra

g
e
 s

co
re

 o
n
 s

u
rv

iv
e
zo

m
b
ie

s

eGreedyLinear
SoftmaxLinear
eGreedyNN
SoftmaxNN

(c) Survival Zombies

0 200 400 600 800 1000

Trial

1.0

0.5

0.0

0.5

1.0

1.5

2.0

A
v
e
ra

g
e
 s

co
re

 o
n
 z

e
ld

a

eGreedyLinear
SoftmaxLinear
eGreedyNN
SoftmaxNN

(d) Zelda

Fig. 3: Progression of the average score during 1000 trials. Horizontal axis denotes the trial, while vertical axis shows the
average score. Shadowed area indicates the standard error of the measure. From left to right, top to bottom, the games are
Portals, Sokoban, SurviveZombies and Zelda.

algorithms in these two games can be due to different reasons.

In the case of Portals, the game requires a long sequence
of movements (traversing portals) before reaching the goal,
which is the only moment where the agent receives positive
feedback. As reaching the exit is extremely unlikely, the flat
landscape of rewards inhibits the agent from learning how to
score points in the game. Interestingly, the hazards in the game
that kill the player are well avoided in general. The results
show that the time spent in the game (a measure not depicted
here for clarity) is close to 60 and 100% of the maximum time
allowed (for algorithms with ε-greedy and Softmax policies,
respectively). This means that the algorithms, specially the
ones with a Softmax policy, are able to learn very quickly
how to survive in this game, albeit ending with a score of 0.

An explanation for the strange results on Sokoban may be
related to the features used for learning. In this game, score is
awarded when a box is introduced into a hole in the level. With
the features extracted from the game state (see Section IV-B),
this can be related to minimizing distances between the avatar

and the closest box, and between the avatar and the closest
hole, both at the same time. The problem is that these
minimizations must happen simultaneously, having the avatar
pushing in the right direction and with the presence of a hole at
the other side of the box. These situations happen rarely, and it
is reflected in this game’s plot with picks along the curve. As
the features only allow the algorithms to determine distances
(and not the supplementary needed requirements), they are
not able to learn properly and their performance decreases.
The game of Sokoban has been traditionally one of the most
difficult ones from the GVGAI framework and competition [6],
as it requires long term plans for its completion.

It is also worthwhile highlighting that in some games, after
the 1000 matches, the improvement on the score average has
not stopped, which suggests that better results can be found
with longer execution trials.

VI. CONCLUSIONS

This paper shows a first comparison of different policies
(ε-greedy and Softmax) and function approximators, using an
evolutionary algorithm (S-NES) as a learning scheme. The
objective of the agents that implement these algorithms is to
learn how to maximize the score in 10 different games, without
the help of any domain specific-heuristic, something that was
(at least partially) achieved. Additionally, all these games have
different characteristics, which allows us to examine under
what conditions learning is performed better. What we have
shown is that under most scenarios, using a ε-greedy algorithm
coupled with a linear function approximator is the fastest,
surest way to get reasonably good results. This is not that
unintuitive, as there are fewer variables to learn and a more
“greedy” version of learning can take place, compared to
softmax.

In this study, the algorithms tested are able to learn in most
of the games tested. In particular, linear function approximators
seem to perform best in this setup, although results may vary
from game to game, with different algorithms providing a
distinct performance. Results also suggest that games requiring
a long term plan (such as Sokoban or Portals) may require a
different approach for getting learning to work, one that might
include substantial exploration, as the lack of any learning
signal proves fatal.

Although the robustness of evolutionary computation is
commendable, it might be worth attacking the same problems
using more traditional, gradient-based approaches (e.g, Monte
Carlo methods, SARSA/Q Learning). This would allow for the
training of deeper networks which could possibly help. This
could be coupled without using features at all, but rather using
the raw bitplanes as input. It is also obvious that more training
would be very beneficial for a number of games.

Finally, an important point to make here is that effectively
testing and learning are happening on the same levels. Includ-
ing more levels (and also increasing the size of the game
set used for experiments) for each game will bring further
details about how general the algorithms tested in this research
are, and will allow for a deeper analysis on their learning
abilities in the domain of General Video Game Playing. This
highlights the difficulty of the domain where one has to learn
extremely quickly, without much access to heuristics and/or an
environmental model.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning.
MIT Press, 1998.

[2] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neu-
roevolution in the nero video game,” Evolutionary Computation, IEEE
Transactions on, vol. 9, no. 6, pp. 653–668, 2005.

[3] S. P. Singh, T. Jaakkola, and M. I. Jordan, “Learning without state-
estimation in partially observable markovian decision processes.” in
ICML, 1994, pp. 284–292.

[4] T. Schaul, T. Glasmachers, and J. Schmidhuber, “High dimensions and
heavy tails for natural evolution strategies,” in Proceedings of the 13th
annual conference on Genetic and evolutionary computation. ACM,
2011, pp. 845–852.

[5] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the aaai competition,” AI magazine, vol. 26, no. 2, p. 62, 2005.

[6] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas, A. Couëtoux,
J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General Video
Game Playing Competition,” IEEE Transactions on Computational
Intelligence and AI in Games, p. (to appear) DOI: 10.1109/TCI-
AIG.2015.2402393, 2015.

[7] H. Finnsson and Y. Björnsson, “Simulation-based approach to general
game playing.” in AAAI, vol. 8, 2008, pp. 259–264.

[8] D. Perez, J. Dieskau, M. Hünermund, S. Mostaghim, and S. Lucas,
“Open Loop Search for General Video Game Playing,” in Proc. of the
Conference on Genetic and Evolutionary Computation (GECCO), 2015,
p. (to appear).

[9] B. Ross, “General Video Game Playing with Goal Orientation,” Master’s
thesis, University of Strathclyde, September 2014.

[10] T. S. Nielsen, G. Barros, J. Togelius, and M. J. Nelson, “General Video
Game Evaluation Using Relative Algorithm Performance Profiles,” in
Proceedings of EvoApplications, 2015.

[11] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,”
Journal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[13] J. Reisinger, E. Bahçeci, I. Karpov, and R. Miikkulainen, “Coevolving
strategies for general game playing,” in Computational Intelligence and
Games, 2007. CIG 2007. IEEE Symposium on. IEEE, 2007, pp. 320–
327.

[14] M. Hausknecht, P. Khandelwal, R. Miikkulainen, and P. Stone,
“Hyperneat-ggp: A hyperneat-based atari general game player,” in
Proceedings of the 14th annual conference on Genetic and evolutionary
computation. ACM, 2012, pp. 217–224.

[15] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone, “A neu-
roevolution approach to general atari game playing,” Computational
Intelligence and AI in Games, IEEE Transactions on, vol. 6, no. 4, pp.
355–366, 2014.

[16] J. Gauci and K. O. Stanley, “Autonomous evolution of topographic
regularities in artificial neural networks,” Neural computation, vol. 22,
no. 7, pp. 1860–1898, 2010.

[17] M. Ebner, J. Levine, S. Lucas, T. Schaul, T. Thompson, and J. Togelius,
“Towards a Video Game Description Language.” Dagstuhl Follow-up,
vol. 6, pp. 85–100, 2013.

[18] T. Schaul, “A Video Game Description Language for Model-based
or Interactive Learning,” in Proceedings of the IEEE Conference on
Computational Intelligence in Games. Niagara Falls: IEEE Press, 2013,
pp. 193–200.

[19] M. Hausknecht and P. Stone, “The impact of determinism on learning
atari 2600 games,” in Workshops at the Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

[20] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier networks,”
in Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics. JMLR W&CP Volume, vol. 15, 2011, pp.
315–323.

