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Abstract—Designing agents that are able to achieve different
play-styles while maintaining a competitive level of play is
a difficult task, especially for games for which the research
community has not found super-human performance yet, like
strategy games. These require the AI to deal with large action
spaces, long-term planning and partial observability, among other
well-known factors that make decision-making a hard problem.
On top of this, achieving distinct play-styles using a general
algorithm without reducing playing strength is not trivial. In
this paper, we propose Portfolio Monte Carlo Tree Search with
Progressive Unpruning for playing a turn-based strategy game
(Tribes) and show how it can be parameterized so a quality-
diversity algorithm (MAP-Elites) is used to achieve different play-
styles while keeping a competitive level of play. Our results show
that this algorithm is capable of achieving these goals even for an
extensive collection of game levels beyond those used for training.

I. INTRODUCTION

A large body of the current research on game playing AI
agents is driven by the same performance metric: achieving
a high win rate. From Go [1] to StarCraft [2], [3], including
works on different general video-game systems like the Arcade
Learning Environment [4] and the General Video Game AI
framework [5], the objective is to achieve the highest level
of play possible. This is not different in complex strategy
games, where the decision-making problem is far from trivial.
Examples of these games are the already mentioned StarCraft,
or other turn-based strategy games such as Blood Bowl [6]
and Tribes [7]. In this game genre, winning is a hard enough
problem, but not the only one. When looking at games from
the angle of the entertainment (an angle specially appealing to
the games industry), there is a particular interest in creating
AI opponents that are not only challenging, but also fun to
play against. It is often the case that a game designer tries
to achieve this by having games in which players can follow
different strategies to achieve victory.

This paper tackles both issues at once: we study how a
known algorithm (Monte Carlo Tree Search - MCTS [8]) can
be modified to incorporate different play-styles while being
competitive. We first present an adaptation of MCTS that
incorporates a portfolio of scripts coupled with Progressive
Unpruning for managing the large action space of a turn-based
strategy game (Tribes [7]). Although similar work exists about

using a top-level search algorithm like MCTS with a portfolio of
scripts [9], [10], our paper incorporates progressive unpruning
and its parameterization to achieve different and competitive
play-styles. The latter is done via a quality-diversity method
(MAP-Elites [11]), which explores diverse play-styles by
extracting different game-play traits, extending the evaluation
to game levels that have not been used for training.

Section II describes Tribes and the relevant algorithms;
Section III explains our proposed Portfolio MCTS agent, and
Section IV the implementation of MAP-Elites. Section V shows
our experimental setting and results, and the paper finishes in
Section VI with conclusions and ideas for future work.

II. BACKGROUND

A. Tribes

Tribes [7] is an open source implementation of the award-
wining mobile game “The Battle of Polytopia” (Midjiwan AB,
2016). It is a turn-based strategy game where two or more
factions (or tribes) compete to be the last player standing (by
capturing all the opponents’ capital cities) or becoming the
player with the highest score at turn 50. Factions must master
technology research, economy management and combat to win.
The combination of these factors requires effective decision-
making and allows for different strategies and play-styles.

The game takes place in a two-dimensional grid of N ×N
cells, with each player starting with a capital city and a single
unit. Each tile is of a particular terrain type, may hold a resource
type or contain a city (owned by a player or a neutral village
that can be captured). During the game, each player controls
multiple units with different characteristics, recruitment costs,
and abilities. They can be melee (warriors, riders, defenders,
swordsmen and knights), ranged (archers and catapults) or
special units (mind benders and superunits). Each city owned
by a player gives control of the surrounding land, which permits
the city to gather resources and construct buildings to increase
the city’s population. Increasing the population of a city will
progressively allow the city to level up, which increments the
number of stars (the game’s currency) the city provides at
the start of each turn. This increments the tribe’s capability to
conduct research, construct more buildings and spawn combat
units. Which buildings and units are available depend on which
of the 24 available technologies on the research tree have been
completed so far by the tribe.
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Tribes is implemented in Java and provides an API for agents
with access to a Forward Model (FM). The framework includes
different agents, among which Monte Carlo Tree Search
(MCTS; [8]) and Rolling Horizon Evolutionary Algorithm
(RHEA; [12]) are relevant to and used in this study.

There are 21 types of actions available in the game for
each one of the units, cities and factions (see Table III at the
end of this paper). Each turn a player can execute many of
these actions as long as they have enough stars to pay for
them and there are available units to move. [7] highlights
the complexity of this game: in a typical game, the strongest
agents in the framework (RHEA, RB and MCTS, in this order),
show an average of 54.47 possible actions to choose from
at every decision point. The turn branching factor averages
107 and 1023 (for early and end game, respectively), with
winning bots normally reaching 1032 in the last 5 turns of
the game. The size of the game tree, for 2 players and 50
turns, is approximately 101500. For a more complete definition
of the game, the implemented agents, their relative playing
performance and game complexity, the reader is referred to [7].

B. Statistical Forward Planning Agents for Strategy Games

Implementing AI agents for strategy games is a tough
challenge due to the unique properties of this genre. Rule-
based AI agents usually implement a set of basic strategies
to be followed for each of the game-playing components, e.g.
fighting, research, and economy. Since those rule-based agents
need to be specifically developed for each game, much research
has been put into statistical forward planning agents which,
given a forward model, should be able to play the game without
further knowledge [13]. However, the complexities that strategy
games bring still need to be addressed, such as huge branching
factors or the needs for long-term planning.

The statistical forward planning algorithm MCTS has suc-
cessfully been applied to many problem domains including
strategy games such as Starcraft 1 & 2 [3] and Stratega [14].
MCTS is a tree search based approach which focuses on
promising parts of the tree for further simulations. To select
tree nodes, MCTS uses Upper Confidence Bounds (UCB),
a policy that balances between exploration and exploitation
during the search. While the use of UCB has been proven to
converge to the optimal decision [8], the process can be slow
in terms of required simulations. Strategies such as progressive
bias [15], hard pruning [16] and progressive widening [17]
have shown effective in improving the algorithm’s performance
by incorporating domain knowledge into the search tree or
focusing the search on a few promising nodes. These are
explained in Section III-B, where our agent is described.

Rolling Horizon Evolutionary Algorithms (RHEA) have
shown effective in playing a wide range of games [12]. RHEA
agents create a population of possible action sequences and
evolve those over the course of multiple generations. Due to
its known performance in other strategy games [14], we use
the RHEA agent as a baseline in our evaluations.

To address the huge branching factor of strategy games,
action abstraction methods can be used to reduce the number of

available actions to a promising subset. Portfolio methods have
shown to perform well in the context of strategy games [18]. In
contrast to algorithms that search for the best action, portfolio
methods reduce the search space to a set of scripts, with each
one selecting an action for a given game-state or unit. Portfolios
have been used in conjunction with various search algorithms.
The simplest instance is Portfolio Greedy Search (PGS) which
uses hill-climbing to optimize a set of script assignments [19].
While PGS iteratively optimizes the opponent’s and the player’s
script assignment, Nested-Greedy Search (NGS) [20] evaluates
the player’s script assignment according to the best possible
opponent’s script assignment. Further reductions of the search
space have been achieved by Stratified Strategy Selection
(SSS) [21]. Instead of assigning a script to a single unit, units
are first grouped into types, then each type is assigned a script.

While portfolio algorithms are able to reduce the search
space considerably, they may also ignore solutions that are not
returned by any script. Methods for asymmetric abstraction [22]
apply the abstraction only for certain parts of the game-state.
This principle has been used in the A3N algorithm [23],
which groups units into unrestricted and restricted units. While
unrestricted units can be assigned all legal unit-actions only
the actions returned by a set of scripts will be considered
for restricted units. In a survey by Lelis [13], the above
portfolio methods have been compared and unified in the
General Combinatorial Search for Exponential Action Spaces
(GEX) algorithm. Seeing how those different algorithms emerge
as instances from a unifying framework allows to easily explore
further variants of action abstracting search algorithms.

C. MAP-Elites

The previous algorithms focus on maximizing the agent’s
win-rate in strategy games. Next to improving the quality of an
agent, we are interested in the optimization of diverse agents
with unique play-styles. The Multi-dimensional Archive of
Phenotypic Elites (MAP-Elites) [11]) is a quality-diversity
algorithm that has recently been used to create a diverse set
of game-playing agents [24] and game-play elements [25].

The algorithm uses a behaviour-function that returns a vector
representing the agent’s behaviour, corresponding to a set of
N phenotypical features. This behaviour-space is split into a
grid, according to discretizations of these features, to group
similar solutions into one set. MAP-Elites uses an evolutionary
algorithm to produce and evolve new solutions, which are
tested for their performance and to retrieve the values for
their behavioural features. MAP-Elites keeps track of the best
solution of each cell (elite) and, over multiple generations,
produces high-performing solutions corresponding to different
locations in the grid. Implicitly, MAP-Elites performs a quality-
diversity optimization, as the distinction of cells enforces
diversity of solutions and keeping the elites guarantees storing
the best individuals found for each cell. This is especially
interesting for the generation of agents with different play-
styles (e.g. evolved vectors could represent the agent’s preferred
army composition, which will naturally yield different fighting
styles).



III. GAME PLAYING AGENT

A. Scripts
Portfolio methods have a collection of scripts σi ∈ Σ. In

Tribes, for a player p, each actor (i.e. the tribe, or any of its
cities or units) λi ∈ Λ has a collection of actions available
at a particular decision-making step. The set of all available
actions A at a given step can be seen as the sum of the actions
of all the entities that can still make a move in that turn.

In this work, scripts are closely tied to the action type they
are used for. We employ 3 different types of scripts attending to
the nature of the action: wrapper, best-choice and style-choice
scripts. Wrapper scripts are the simplest, returning the only
possible action that can be executed for their actor. In other
words, there is only one way of executing (or not) that action.
Examples of these are Capture (a unit can only capture an
enemy or neutral city if it is located at the same tile as the
city is), Upgrade (a boat to a ship) or Ending the turn.

In contrast, all other actions have a choice. For instance,
a unit may have multiple places to move to, or a city may
have multiple locations to construct a building. For these cases,
the script can be a best-choice or a style-choice script. While
the former scripts pick the best action possible among the
possible options available for that actor, the latter offer different
possibilities according to distinct ways of playing the game.

Each script receives a current game state and the set of
available actions of the given action type (e.g. all possible
target units for an attack) for the actor. The script returns the
best action among the available ones and a value for that action,
v(a) ∈ [0, 1] for a script σ, determined by domain knowledge.
v(a) is arbitrarily set to 0.5 for all wrapper scripts, given there
is only one action available to choose from.

B. Portfolio MCTS Variants
1) Portfolio MCTS (P-MCTS): The modification required

to turn the MCTS agent into a Portfolio MCTS (P-MCTS) is
simple: in MCTS, the action that links one node to the next is
one of the possible actions that can be executed in the original
game state. A superset of the actions available is the cross
product of all action types (see second column of Table III)
by all existing actors that have not completed their move in
the current turn, considering only the valid actions.

In P-MCTS, nodes are linked by action assignments, which
are tuples of the form τ =< σ, λ, a, v(a), wσ >: a script σ is
assigned to an actor λ, producing an action a to execute, with
a value v(a) ∈ [0, 1] as provided by the script. wσ is a weight
associated with the script σ, which for the moment may be
ignored (by default, wσ = 0.5 ∀σ ∈ Σ). Action assignments
are created in the Expansion phase of MCTS and the action
that leads to the new state is automatically computed by the
script and fixed for the rest of iterations of the algorithm. There
is no differentiation for the opponent’s turn with respect to
processing the action scripts: all are computed assuming the
current player is the max player. Then, the selection step in
MCTS inverts the UCT values as in default 2-player MCTS.

Table III lists the 57 scripts used in this study. This high
number of scripts, as shown in the results (Section V), permits

the design of a competitive agent while allowing for diverse
play-styles. Wrapper and best-choice scripts filter out weak
actions, generally providing a stronger level of play, while
style-choice scripts not only eliminate poor choices, but also
permit different ways of carrying out good choices.

2) P-MCTS with Progressive Bias (P-MCTS (B)): Progres-
sive Bias [15] is an MCTS enhancement that modifies the
selection step of the algorithm to add domain knowledge in
order to prioritize actions preferred by a heuristic. The default
UCB policy is modified to be computed as in Equation 1.

argmax
a∈A

Q(s, a) + C

√
lnN(s)

N(s, a)
+ φ (1)

The first two terms are the classical components of UCB:
Q(s, a) is the exploitation term, estimate of how good action
a is for state s based on the rewards observed. The second
expression is the exploration term, which gives more weight
to states that have been explored less. N(s) is the number
of visits of the state s and N(s, a) indicates the number of
times a has been selected from s. The constant C balances
between these two terms. Progressive bias adds the third term,
φ = h(s,a)

1+N(s,a) , defining a heuristic expression h(s, a) for action
a in state s, which is inspired by expert domain knowledge.

In this work, the heuristic function for progressive bias is
associated with the action assignment, and it is defined as
in Equation 2. The heuristic value of a move in a state is
determined by the value given by the script, multiplied by the
weight assigned to that script.

φ =
h(τ)

1 +N(s, a)
=

v(a)× wσ
1 +N(s, a)

(2)

3) P-MCTS with Progressive Unpruning (P-MCTS (PU)):
Progressive Unpruning (PU; [15]) is an MCTS enhancement
especially designed for problems with high branching factors.
PU first reduces the branching factor artificially for every node
for the selection step of MCTS: When N(s) > T , it prunes all
nodes except the k0 nodes with the highest value h(·). Then, as
the number of iterations through this node increases, the best
pruned node as indicated by h(·), is unpruned according to the
schedule β2βk−k01 (where k is the kth node to be unpruned).
The original PU algorithm uses constants for the parameters
T , β1, β2 and k0. This may be appropriate for problems with
an uniform action space size, but tuning these in a turn-based
strategy game which such a variable action space |A(s)| is
not trivial. Thus, we opted for a version that can dynamically
adapt to the size of the changing action space: for P-MCTS,
k0 = |A(s)|×αk, T = |A(s)|×αt and β1 = |A(s)|×αβ . We
tuned αk = 0.5, αt = 2.0, αβ = 3.0 and β2 = 1.3 to provide
a flexible pruning schedule that depends on |A(s)|.

IV. MAP-ELITES FOR EXPLORING COMPETITIVE
PLAY-STYLES

Our implementation of MAP-Elites maps from the vector
space W = {wσ1

, wσ2
, . . . wσn

} to a two-dimensional feature
space. Each script has an associated weight wσ which, by



default, is set to 0.5. MAP-Elites evolves vectors within the
space of weights W , which in turn determine how P-MCTS
(PU) prioritizes scripts to execute, prune and unprune. A log
is kept that records gameplay statistics to be used for inferring
the MAP-Elites dimensions, including (in total and per turn)
score, actions executed, number of units, buildings and cities,
tiles owned, production and technologies researched.

Algorithm 1 shows the pseudocode of MAP-Elites for
generating diverse players with P-MCTS (PU). This pseudocode
shows two functions: EvaluateIndividual and MAP-Elites.
EvaluateIndividual (lines 1 to 10) receives a set of weights that
are used to initialize the player P (line 3), which is then used
to play |L|×RL games, where L is a set of training levels and
RL the number of repetitions each level is played. Gameplay
statistics are accumulated for all these games (line 7), which
are then used to extract the desired phenotypical features for
MAP-Elites (line 8). These features φ1, φ2 are used to identify
the cell in the MAP-Elites grid that this individual belongs
to. At most 1 individual is kept in each cell: if the evaluated
individual is better than the one currently in the grid (or if
there’s none), it enters the map in that position (lines 9 and 10).
In our design, an individual is better than another if it achieves
a higher win rate over the |L| ×RL games played, using the
highest average score as a tie breaker.

The function EvaluateIndividual is used by Map-Elites
(lines 11 to 24) to populate a map with individuals. The process
is simple and divided into three blocks. First, an initial mapping
of the multidimensional input space is performed by evaluating
individuals which have only one weight wσi

= 1.0, with
wσj

= 0.0 ∀i 6= j (lines 13 to 16). This is done for all weights
wσi

in the vector, aiming to have a diverse initialization of
the grid. The second step is to evaluate RM random vectors
(lines 17 to 19). Finally, the existing population of individuals
is evolved, during IM iterations, generating new individuals
mutating existing ones. In this work, we employ a simple
Stochastic Hill Climber, which takes an individual at random
from the map (line 21), mutates one weight uniformly at random
(line 22) and evaluates the resulting weight vector (line 23).

V. EXPERIMENTAL WORK AND RESULTS

A. Weighted Progressive Unpruning

Table I shows the performance of the different versions
of Portfolio MCTS (P-MCTS, P-MCTS (B) and P-MCTS
(PU)) versus other agents in the framework: default MCTS
and RHEA. Each row shows the result of 500 two-player
games of Tribes indicating, from left to right: win rate, score,
percentage of the technology tree researched, number of cities
and production at the end of the game. The 500 games are
distributed among 25 different levels played 20 times each,
with agents alternating positions to account for potentially
unbalanced maps. These levels are the same as those used
in [7], to allow for a direct comparison. The parameters of the
algorithms are also equivalent to those from [7]: play-out and
individual length of all MCTS, Portfolio MCTS and RHEA
agents is 20; tree selection constant C =

√
2; rewards bounded

Algorithm 1 Pseudocude of the MAP-Elites algorithm for
generating diverse Play-Styles with P-MCTS (PU).

Input: L: set of levels {l1, l2, . . . , lm}.
Input: RL: level repetitions.
Input: P : P-MCTS (PU) player.
Input: RM : MAP-Elites Random Initializations.
Input: IM : MAP-Elites Number of iterations.
Input: NW : Number of weights to evolve.
Input: Φ: Gameplay features for MAP-Elites.
Output: MAP : final map of elite individuals.

1: function EVALUATEINDIVIDUAL(W)
2: GameplayStats← ∅
3: P .init(W) . Init P-MCTS (PU) w/ weights W
4: for level li in L do . play L levels
5: for all reps in RL do . RL times each
6: log ← PlayGame(li)
7: GameplayStats.Add (log)
8: φ1, φ2 ← GameplayStats.ExtractFeatures(Φ)
9: if MAP [φ1, φ2].FoundBetter(GameplayStats) then

10: MAP [φ1, φ2]←W . Substitute elite if better
11: function MAP-ELITES
12: MAP ← ∅
13: for weight wi in NW do . Initial Mapping
14: W ← Array(0.0) . Set of weights, all 0.0
15: W[wi]← 1.0 . Only one weight set at 1.0
16: EvaluateIndividual(W)

17: for iteration i in RM do . Random Initialization
18: W ← RandomArray(0.0, 0.1)
19: EvaluateIndividual(W)

20: for iteration i in IM do . Main algorithm iterations
21: W1 ←MAP.RandomElite()
22: W2 ←W1.Mutate() . Generate new weight set
23: EvaluateIndividual(W2)

24: return MAP

in the [0, 1] interval; decision budget per action decision-
making is 2000 usages of the forward model; population size
of RHEA is 1. States are valued by a linear combination of
state features, computed as differential variables (production,
researched technologies, cities owned, units, etc.) between
starting and end states in a play-out or individual. See [7] for
a full description of this state evaluation function and level
seeds, as well as in the public repository1. Results clearly
show that the inclusion of the portfolio significantly improves
the win rate with respect to MCTS. In direct comparison, P-
MCTS beats MCTS 65.60% of the time. When playing against
RHEA, P-MCTS also obtains a higher win rate than MCTS,
showing an improvement also in the other indicators shown in
the table. In particular, the gain in win rate against RHEA is
very substantial with the portfolio. Despite the high number of

1https://github.com/GAIGResearch/Tribes/tree/portfolio



Table I
PERFORMANCE OF VARIANTS OF PORTFOLIO MCTS AND PRUNING

METHODS. STATISTICS FOR ALL GAMES ARE AVERAGED ACROSS 500
GAMES. VALUES BETWEEN BRACKETS INDICATE STANDARD ERROR.

Agent Wins Score Techs Cities Production
vs MCTS

P-MCTS 65.60%
(2.93)

7237.36
(323.66)

93.02%
(4.16)

3.01
(0.13)

18.25
(0.82)

P-MCTS (B) 65.40%
(2.92)

7290.61
(326.05)

92.94%
(4.16)

3.03
(0.14)

18.92
(0.85)

P-MCTS (PU) 68.60%
(3.07)

6330.35
(283.10)

83.29%
(3.72)

3.23
(0.14)

16.95
(0.76)

vs RHEA

MCTS 37.00%
(2.16)

4274.10
(191.14)

84.17%
(3.76)

1.69
(0.08)

13.13
(0.59)

P-MCTS 56.40%
(2.52)

6734.93
(301.20)

89.38%
(4.00)

2.73
(0.12)

15.62
(0.70)

P-MCTS (B) 55.60%
(2.49)

6745.07
(301.65)

90.11%
(4.03)

2.66
(0.12)

15.19
(0.68)

P-MCTS (PU) 67.80%
(3.03)

5916.11
(264.58)

77.01%
(3.44)

3.17
(0.14)

15.66
(0.70)

scripts, the branching factor is reduced considerably, because
n actions for an actor and action type are substituted with one
single script. The average turn branching factor in P-MCTS
is 103 for early and 1010 for end game, which constitutes a
reduction of several orders of magnitude compared to MCTS.

Progressive bias alone does not show an improvement in win
rate, but the addition of (un)pruning does improve this indicator
across the board. Table I shows an interesting consequence
of progressive unpruning in MCTS against all agents: while
many indicators such as the score, percentage of technologies
and the cities owned at the end are lower, win rate increases.
This shows the effectiveness of P-MCTS (PU): to win, a player
does not need to achieve the highest production or research
all technologies - only to capture the opponent’s capital.

B. Generating Diverse Play-styles

The following set of experiments shows how we use MAP-
Elites to generate diverse play-styles, using the algorithm
explained in Section IV. All games run for this experimental
setup are played between a P-MCTS (PU) player and the default
MCTS player, using the same agent parameterizations described
above. The evaluation of an individual for MAP-Elites can
be computationally expensive if different levels and a high
number of repetitions are used. Running 500 per individual,
as done for the tests described in Section V-A, is unfeasible.
Thus, we select a reduced set of levels to run MAP-Elites
evaluations, but picking those for which the win-rate observed
in the previous experiments between P-MCTS (PU) and MCTS
is closer to the overall win-rate across the 25 levels. We pick
the top 5 levels, which are played 4 times each, resulting in
|L| ×RL = 5× 4 = 20 games played per individual.

For this work, not all weights of the space W are evolved,
as this would create individuals of length 57, making this
evolutionary process very slow. Instead, we only evolved the
weights corresponding to the Research and Spawn action types
(σ15 to σ19 and σ36 to σ41), which can substantially influence
the player’s strategy. The rest of the weights are set to their

Table II
FEATURES OF INDIVIDUALS OBTAINED WITH MAP-ELITES (COL. 3) AND

VALIDATION PROCESS (COL. 4). EACH ROW REPRESENTS ONE INDIVIDUAL,
ITS USE CASE (I, II, III) AND THEIR CELL IN THE MAP.

MAP-Elites
Cell Feature MAP-Elites

Result Validation

I: [14:4]
Win Rate 60% 55.2%

φ1 : # Attacks 12.6 13.83
φ2 : Support Unit 3.65 3.792

I: [6:-1]
Win Rate 75% 70.2%

φ1 : # Attacks 5.4 9.7
φ2 : Support Unit -0.75 -0.726

II: [0:25]
Win Rate 75% 75.2%

φ1 : Defender Spawns 0.4 0.8
φ2 : Win Turn 23.1 22.9

II: [7:40]
Win Rate 60% 62%

φ1 : Defender Spawns 6.5 4.6
φ2 : Win Turn 39.5 21.6

III: [0.6:0.6]
Win Rate 50% 58.1 %

φ1 : Research Progress 0.63 0.43
φ2 : Tile Dominance 0.664 0.44

III: [1.2:1.0]
Win Rate 85% 74.37 %

φ1 : Research Progress 1.05 0.7
φ2 : Tile Dominance 0.87 0.65

default value of 0.5. Picking these weights to evolve gives
an individual length of NW = 11. Each weight can have 5
different values: [0.0, 0.25, 0.5, 0.75, 1.0], which opens a
search space of 511 ≈ 5× 107 points. With this space we aim
to show that, even in relatively not very large search spaces,
we are able to obtain a varied set of different play-styles.
We hypothesize that a more diverse set of behaviours can be
achieved with a higher search space, at the expense of a higher
computational expense. For all our use-cases, we randomly
initialize the map with RM = 40 individuals and perform a
total of IM = 500 iterations of MAP-Elites.

We have run three different use-cases to illustrate the results
that can be achieved with our proposed approach, which
corresponds to different pairs of features (the two dimensions
Φ of MAP-Elites) extracted from game-play data and used to
assign the individuals to a cell in the map.

I) # Attacks vs Support Units: In this use-case we map
the number of attack actions executed (φ1) and the type of
support units (φ2) used by P-MCTS (PU). For the latter, we
define two groups of units that complement Warrior units,
which form the backbone of the army. One group is melee (M :
formed by Knights and Swordsmen) and the other is ranged
(R: Archers and Catapults). This feature corresponds to the
difference of spawn units between these two groups, so that
φ2 = |R|− |M |. A positive value shows the player relies more
on ranged support units, while a negative number generates
more melee units. The final map can be seen in Figure 1
(left). The coloured cells indicate positions in the final map
that hold an individual, and the indicated value corresponds
to the win rate of the P-MCTS (PU) agent. The map uses
φ1 ∈ [0, 20] with increments of 2, and φ2 ∈ [−5, 5] with
increments of 1, which resulted in 30 different individuals.
Note that the evolved win rates may be higher than the one
shown in Table I: this is a direct consequence of MAP-Elites



Figure 1. Final maps as evolved by MAP-Elites for use-cases I (left), II (centre) and III (right). Axis are MAP-Elites features and the percentage indicated in
each elite (cell) is the win rate of the P-MCTS (PU) agent versus MCTS. These plots only show the inhabited portion of the MAP-Elites grids.

Figure 2. Example and screenshots of two games from the map evolved for use-case I. Circled units highlight melee support (left) and ranged support (right)
units. Weights (in the order σ15 to σ19 and σ36 to σ41 as per Table III), features and performance is also indicated for each one of these elites.

keeping the best individual ever found for each cell and also
optimizing against a fixed agent. Figure 2 shows an example
of two individuals obtained by this run, including screenshots
of the games, evolved weights, MAP-Elite feature values and
individual performance. In order to validate that the individuals
evolved by MAP-Elites do showcase different characteristics
of game-play, we have run an extensive experimentation of 500
games, same as in Section V-A, to confirm that the expressed
behaviour extends to the rest of the levels of the game. Table II
compares the performance of the MAP-Elites and the validation
runs for two individuals of each use-case, corresponding to
opposite corners of the resulting map. As can be seen, there is
a clear correlation of values for both features (first two rows)
between the evolution and the validation results.

II) Defender Spawns vs Winning Turn: In our second use
case, we record the number of spawns of the Defender unit
type (φ1) and the average turn at which P-MCTS (UP) achieves
victory (φ2). The rationale behind this is to explore different
play-styles with respect to having a more or less Defender
units and the ability to win the game after fewer or more turns.
The resultant map is shown in Figure 1 (centre), eliciting 23
different individuals. It’s worth observing the distribution of
these configurations in the map, showing a lack of individuals
in the upper right corner. This result is sensible: that part of

the map corresponds to winning the game quickly (35 turns or
less) while spawning many defensive units (≥ 5). The more
defensive the strategy is, the harder is to win the game quickly.
In any case, the agents obtained are still able to keep a high
win rate independently of this strategy.

Rows 3 and 4 of Table II show the validation results for two
individuals of this map. Although the features again present
similar values, it’s worth mentioning that (φ2) for the individual
in row 4 achieves victories much quickly in validation than
in the results from MAP-Elites. Our interpretation of this
divergence is that the feature Win Turn is intrinsically related
to the win rate: the number of sample points for this average is
lower than for other features (only 60% in this case: 12 of the
20 games played). This increases the variance of the measure
and may lead to inaccurate evaluations. One solution could be
to increase the number of evaluations where this situation can
happen, or to redefine how elites are kept considering their
fitness variance. Another one, which inspired the following
use-case, is to look for other ways of representing progress rate
towards victory that do not depend on the winning condition.

III) Research Progress vs Tile Dominance: This final use-
case compares features that relate to how fast progress is made
towards victory. Two aspects are considered: research progress
(φ1) and tile dominance (φ2). Their values are computed



as the the slope of the function that represents the number
of technologies researched (for φ1) and board tiles owned
(for φ2) per turn, calculated with a linear regression. These
features will have a value of 1.0 if the P-MCTS (PU) agent
researches one technology (or acquires control of a new tile,
respectively) per turn. Figure 1 (right) shows the map obtained
for this run, with 14 individuals distributed across the cells.
Not surprisingly, win rates are higher when both features are
also higher. This is corroborated in the validation shown in
the last two rows of Table II, which also shows that the values
for these features consistently present a higher progression for
dominance and research according to their respective cells. This
example also reveals an interesting application of this method:
setting opponent AI difficulty levels by picking individuals
from different cells in the evolved grid.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a variation of MCTS that uses a portfolio
of scripts and Progressive Unpruning (PU) to tackle large action
spaces in turn-based strategy games. Rather than focusing only
on the playing strength of the final agent, we explore how
different yet still competitive behaviours can be obtained from
the portfolio MCTS agent using MAP-Elites. Results show
two clear outcomes: first, that our implementation of Portfolio
MCTS with PU clearly outperforms the MCTS agent in this
game. Section V-A and Table I show that the improvement
comes both from i) using a portfolio of scripts to reduce
the action space; and ii) pruning, which improves win rate
when compared to non-pruned Portfolio MCTS. Secondly, our
results show that it’s possible to parameterize Portfolio MCTS
to bias pruning in order to achieve different play-styles that
are still competitive. Our use-cases show that MAP-Elites
allows to explore and differentiate resulting behaviours, which
are mapped to different pairs of gameplay features. The 3
use-cases shown in this paper are just some of the possible
features that can be used for identifying different play-styles,
but there is a wider space of possibilities to alter these. Not
only other features can be constructed according to different
needs, but also other weights could be evolved in order to
achieve diverse behaviours. The examples presented here show
two-dimensional MAP-Elites, but it is also possible to map
behaviours across more features. Preliminary tests (not included
here due to space limitations) show that diverse behaviours
can also be obtained with three behavioural features. Finally,
our work shows the importance of identifying which features
may capture a desired behaviour, and how they may affect the
validation of the evolved behaviours in a larger setting.

We identify two immediate lines of future work. First, to
investigate if other quality-diversity algorithms (like constrained
MAP-Elites [25]) are able to expand the diversity of achievable
behaviours, or to maximize the occupancy of the final map
with individuals that accurately reflect specific game-play traits.
Given the stochastic nature of these evaluations, one possibility
is to substitute our Stochastic Hill Climber for a method suited
to deal with noisy environments, like the N-Tuple Bandit
Evolutionary Algorithm [26]. Another interesting line of work

is to explore the influence of the evolved weights for the scripts
on the final behaviours. Not only to infer which scripts are more
relevant for which play-styles (which may be quite specific to
each game), but also to devise mechanisms to automatically
estimate the sensitivity of the different weights and which ones
are more relevant to achieve which behaviours. This could
have interesting consequences for game designers, as it would
open the possibility of identifying which scripts (and therefore
actions) have a greater impact on the game-playing strategies.
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Table III
SCRIPTS FOR TRIBES, GROUPED BY TYPE. FROM LEFT TO RIGHT: SCRIPT TYPE, ACTION TYPE (T: TRIBE ACTION, C: CITY ACTION, U: UNIT ACTION),

PLAY-STYLE SCRIPT (FOR STYLE-CHOICE SCRIPTS ONLY) AND SCRIPT ID PLUS BRIEF DESCRIPTION.

Script Type Action Type Script σi: Description

Wrapper

End Turn (T) σ1: Ends the current turn.
Destroy (C) σ2: Destroys a target building owned by the tribe.
Examine (U) σ3: Explores ruins for a bonus.

Heal Others (U) σ4: Heal other units around this one (Mind Bender only).
Recover (U) σ5: Recover hit points and finish movement.

Upgrade Boat (U) σ6: Upgrades a boat to a ship.
Upgrade Ship (U) σ7: Upgrades a ship to a battleship.
Make Veteran (U) σ8: Makes this unit a veteran (after killing three units).

Capture (U) σ9: Captures an enemy city or a neutral village.
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Best-choice
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Script Type Action Type Play-Style Script Script σi: Description

Style-choice

Research (T)
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