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Abstract—This paper presents a method for generating not obvious. This paper presents a method for evolving maps
complex problems that allow multiple non-obvious solutio’s  that have exactly those properties.
for the Physical Travelling Salesman Problem (PTSP). PTSP  1pg tegthed game used is the Physical Travelling Salesman
is a single-player game adaptation of the classical Travetig bl inale-ol d - fth
Salesman Problem that makes use of a simple physics model: Problem (PTSP), a single-player game adaptation of the
the player has to visit a number of waypoints as quickly as classical Travelling Salesman Problem (ﬁm)it makes use
possible by navigating a ship in real time across an obstacle of a simple physics model: the player has to visit a number of
filled two-dimensional map. The difficulty of this game depeds  waypoints as quickly as possible by navigating a ship in real
on the distribution of waypoints and obstacles across the t 4. 2-r0ss an obstacle-filled two-dimensional map. While

dimensional plane. Due to the physics of the game, the shoste . T .
route is not necessarily the fastest, as the ship's momentum abstract, the game retains certain similarities with softtleeo

makes it difficult to turn sharply at speed. This paper proposs ~Most important features of video games: navigation, obestac
an evolutionary approach to obtaining maps where the optima  avoidance, pathfinding, and the real-time component foand i
solution is not immediately obvious. In particular, any opimal  mgost modern games that forces the player to supply an action
route for these maps should differ distinctively from (a) the ooy few milliseconds. Additionally, like in many modern
optimal distance-based TSP route and (b) the route that cor- id h o | ’ h h h
responds to always approaching the nearest waypoint first. @ VId€0-games, the game Is long enough to ensure that the
achieve this, the evolutionary algorithm CMA-ES is employd, outcomes derived from the actions taken by the agent do not
where maps, indirectly represented as vectors of real numbis,  provide enough information to determine if they will lead to
are evolved to differentiate maximally between a game-playg g victory or a loss. The PTSP features in a popular game
agent that follows two or more different routes. The results competition oraanised bv the Game Intelliaence Group at
presented in this paper show that CMA-ES is able to generate P . . 9 y . 9 . P
maps that fulfil the desired conditions. the University of !Essex Where competitors submit software
controllers to navigate a series of unknown maps [19]. The
winner is the controller that manages to visit the most
waypoints in the fewest number of time steps across all maps.
o _ ~ All the maps used in the competition have been designed
Procedural content generation in games is a growingy hand to ensure they are sufficiently interesting and chal-
research field motivated by a real need within game develogmging. However, while successful, this approach is time
ment, and a research goal to enable new kinds of interactigfd labour intensive and lacks flexibility and extensipilit
techniques[26]. Techniques developed in the field, esfieciaautomating the generation of interesting PTSP maps would
evolutionary techniques, have been employed elsewhehe Wiaye much human labour and make it possible to scale up
great success and content generation has even been € competition and its use as a benchmark. However, there
focus of some competitions such as the Mario Al Champire several other good reasons to develop an effective map
onship [22]. Sometimes, procedural content generatiod1eegenerator for PTSP — in particular the following the reasons
to tackle the problem of infeasible solutions: not only musgotivate the current paper:
the content generate_d be goc_>d for the problem _at sta_ke, .bl_Jt 't. Finding maps that require or advantage particular solu-
also needs to be valid material for the domain in which it is . ;
. S . tion strategies and controller types.
applied. In cases where a problem of some k_md IS de_5|gned,. Finding maps where multiple solutions of the same
i 2. el = st o  pusle, e deson 008 =91 o1 very s cualty et Thi s anlogous t
can be sgl ed in different wavs and th%t the best solution is showing that multiple strategies of similar effectiveness
vedind way Ulion 1S exist for a strategy game, something which is generally
Diego Perez, Spyridon Samothrakis, Philipp  Rohlfshagen, cons_ld_ered advantageous.
Simon M. Lucas, (School of Computer Science and Electronic * Clarifying the relative strengths and weaknesses of
Engineering, University of Essex, Colchester CO4 3SQ, Ulkait controllers by finding and analysing maps in which they
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controller B and where controller B beats controller Apuzzles, texts) with none or limited human intervention.

Concretely, the objective is to produce maps where tHeCG has occasionally been featured in video games during
optimal order of waypoints is neither the optimal distancethe last three decades, but it has only become a topic of
based TSP route nor the nearest-city-first route. In oth@cademic interest within the last few years|[26]. This peal
words, a controller that makes some computational effort d& becoming more relevant owing to its wide applicability to
long-term planning should be able to see an improvemertifferent areas within video-games. One of the earliess use
especially if taking the physics of the game into accoungf PCG for games is the space trading gélite (Acornsoft,
against a controller which works in a simple short-tern1984), which employed procedural representation of star
reactive manner. Such maps are relatively easy to constrgstems to reduce memory consumption. More recently, PCG
by hand if the number of waypoints are few and the map8as been used extensively for level or map generation in
size is modest. However, it is clear that a manual approagtmes such aSpelunkyMossmouth, 2012) and those in the
does not scale well. It is also limited if many maps ar&ivilization (Firaxis Games, 2012]piablo (Blizzard, 1998)
required, which is the case in the PTSP competition. andBorderlandqGearbox Software, 2009) game series. PCG

Additionally, it is interesting to find several routes thathas also been used to create literally endless games, with an
obtain similar high quality results following different wa infinite number of levels and open spaces that extend for as
point orders, that are distinct from the optimal distanesdadl long as the player bothers to look. Some examplestdite
and nearest-city-first TSP routes. Designing maps withethe$§Acornsoft, 1984),The Sentine(Geoff Crammond, 1987)
features by hand is a very complicated task, and an automage Malevolence: The Sword of Ahkran@¥isual Outbreak,
solution would open the possibility to a 2-simultaneous2012).
player version of the game where challenging maps can |n academic PCG research, the focus is often on ways of
be used. Furthermore, automatic content generation may &garching a space of game content for artefacts that satisfy
used to personalise the game towards specific gamers (offliggrtain criteria or objectives. For instance, Hastingd.4f8]
or online), or to create specific maps to test the extremgeated weapons in the game Galactic Arms Race (GAR)
behaviour of controllers in the competition. using a collaborative evolutionary algorithm. Whitehe28g][

This paper presents the application of an evolutionaruggests that PCG can improve game aesthetics, and an
algorithm, the Covariance Matrix Adaptation - Evolutiopar example of this use of PCG is given by Liapis et al.|[15],
Strategy (CMA-ES)I[B], to automatically generate conteniyho study the automatic generation of game spaceships
by simulating agents playing the game. The experimentirough interactive neuroevolution. PCG can also be used
described in this research show how by using differenb generate rules in a game or even complete games. This
strategies, from naive to more involved ones, it is possiblgas been extensively addressed by Brownglin [7]. The author
to evolve maps that favour one type of play over othergjescribes a game description language that can be used to
This allows the creation of levels for the game that arepecify the complete rule set that defines a board game,
not trivially solved by simplistic approaches. Given thencluding starting position, valid moves, winning condits,
similarity of constrained content generation for games tgpe of board, number of players, etc. He then proposes
problems in other application areas, especially desigdsijel an evolutionary algorithm that creates complete new games
the techniques developed here are very likely to have diregéing the description language developed.

applicability outside of games. o Adaptation to the type of player is another motivation
This paper is structured as follows. First, in Secfidn I, 3or PCG [29]. There are many different types of players,
summary of related research in automatic content generatipangmg from hardcore to occasional players, and not all

is presented. Sectidnlll describes the game and the framg-yhom play the same types of games. This is especially
work in detail. Then, Sectidn IV describes the technique&lusg, e in the last few years, when new games have focused

to generate maps and the experimental setup, followed by, nore unexplored genres, such as “family” or fitness
the analysis of the results in Sectioh V. Finally, Secfioh Vbames. PCG could be used to adapt the game to the type of

presents the conclusions and future work. player, producing more appropriate content by, for example
adjusting the difficulty to the skill of the player, or the &/p
of challenge to that preferred by the player. We are not aware
We are not aware of any previous work that attempts tgf any published game that employs PCG for such adaptation
create maps for the Physical Travelling Salesman Problei® the player’s abilities, but it is clearly a possible apation
automatically. However, a number of previous papers addrefr these techniques, considering that the latest movesment
the evolution of content for games in general, and thg the industry focus on targeting a broader audience.
generation of maps for 2D games in particular, as described pqiher important motivation for the use of PCG, espe-

in the following section. cially in the development of high-budget commercial video
) games, is the possibility of reducing production time and
A. Procedural content generation costs. An example of this is the SpeedTree software [12], a
Procedural Content Generation (PCG) refers to the getwol for automatic creation of vegetation. This tool hasrbee
eration of game content (e.g. levels, maps, items, questsed in numerous recent games, and some games that employ

Il. RELATED WORK



this algorithm are very popular in the gaming communityevaluation, as agents are used to play PTSP maps.
such asGrand Theft Auto IV(Rockstar Games, 2008) and
Fallout 3 (Bethesda Game Studios, 2008). B. Constrained optimisation

Problems of game content generation share many char- hi h/optimisati bl i .
acteristics with design problems in other application area While many search/optimisation problems differentiate

involving interactive or complex systems. For example, iﬁolution quality on acontiquum,others_featum\§traint§so
circuit board design, logistics, and road network plannin hat some candidate ;oluuons are notjust bad;r‘daasmle?
intricate path networks have to be designed while taking int ©" example, a lv_lano level where some gaps cant be
account constraints relating to order, speed and interéere ridged or a PTSP m_stancg where some waypoints cannpt be
Robot and vehicle design problems involve designing forieached are glgarly mfeas.lble. In evolutlorjary Comp"Fa“ .
dynamical systems with nondeterministic behaviour. Thesseev_ergl s:pemallsed techniques for handling constramts |
characteristics also apply to the PTSP maze generatightimisation have been developed [18]. Several different
problem, reaffirming the potential for such techniques geinappr_oaches_c_an pe dlsc_erned, mpludmg the *naive” approac
applicable to automatically solving other design problems of S|m“ply gnving mfsasmle_ solutions a score .Of Z€ero a_nd
The two key considerations when using evolution or som@°'€ soph|st|cate(_j solutions such as repairing |nfe|aS|b
similar search/optimisation algorithm to generate consea !nd|V|d_uaIs.or .k.eepmg separate populations of feasiblé an
content evaluation (fithess function) and representatfon. |nfeaS|b!e individuals. In sgarch-based procedufal gunte
survey defining these problems, approaches to them, and ffgheration, the tvx{o-populatlon approach has previousiynbe
application of PCG in the literature can be found [in [26]useOI for generafing game content such as platform game

Regarding content representation, this topic is central 48"6'5 (23] and spacesh|ps_ 1141, |-1_5]‘ )
several related fields, and surveys have been written fromThIS paper takes a relatively naive approach to constraint

the perspectives of evolutionary computation][24] and OlFaC?dling,bas cti)lescribed inhsectim-A. Tuis Is ?One in
artificial life [3]. Typically, there are many possible wagé order to be abie to use the CMA'I_ES as the evolutionary
representing some types of game contént [2], ranging fro gorithm. This aIg_onthm has_ prewously_ peep shown to
direct to more indirect approachds [26, p. 4]. For exampl e extremely effective for continuous optimisation [8],t bu

a dungeon could be represented in many different way s not to our best knowledge been applied to procedural
including the following: content generation before. The use of a well-tested off-

1) Grid cell- each element in the game is s eciﬁca"the-shelf continuous optimisation algorithm, rather thean
) laced in. 4 source matrix 9 P )épecifically tailored constraint optimisation algorithcayries
P’ . . S . considerable benefits in terms of ease of experimentatidn an
2) List of positions, orientations, and sizes of areas.

3) Repository of segments ohunksof levels to combine. replicability.
4) Desired properties: number of corridors, rooms, etc. N
5) Random number seed: the level generator createsCa Game Al competitions
level taking only a number as input. In recent years, a number of competitions have been
In this paper, a relatively direct representation of PTSRrranged in association with conferences on Al and games,
maps is employed, corresponding to the second option #uch as the IEEE Conference on Computational Intelligence
the list above. and Games, and the Artificial Intelligence and Interactive
On the other hand, the generator usually needs a procedftigital Entertainment conference. In general these compe-
to evaluate the quality of fitness of the generated levelis THitions work in the following manner: competitors submit
function should rate or rank, in order to be able to sort thergents, written in a programming language such as Java,
from best to worst. There are several different ways thisccouwhich connect to a competition evaluation engine provided
be done: by the competition organisers. The winner is generally the
. Direct evaluation: some objective features are retrievegPMpetitor whose software played the game best. Some of
from the map and a score for the level is provided b€ most popular competitions have been based on well
an evaluation function. nown games, such as Ms. Pac-Manl[21][17], Super Mario
« Simulation-based evaluation: a programmed bot playdros [13], or lesser known games in a well-defined and
the game and a measure of its performance is takepoPUlar genre, such as the car racing game TORCS [16].
which is used to score the maps. This bot can be fullf/owWever, in some competitions the player does not submit a
hand coded or it can imitate a human player usin igh—perfor_ming controller, bgt rather a controller_thdaa){s
machine learning techniques. e game in an as human-like manner as posgple [11], or
« Interactive evaluation: a human plays the game an%ven_alevel gen_eratorthat generates as entertaining lasel
feedback is obtained from him. This can be done eithdtossible for particular players [22].
explicitly, with a questionnaire, or implicitly, measur-
ing features of the gameplay, such as death locationd]l. THE PHYSICAL TRAVELLING SALESMAN PROBLEM
actions taken, distance travelled, etc. The Physical Travelling Salesman Problem (PTSP) is a
The research presented in this paper uses simulation-baseaddification of the well known combinatorial optimisation
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problem, the Travelling Salesman Problem (or TSP). In the Tgiett £

TSP, a set of cities are distributed and the costs of tragglli
from one to any other are known. The objective is to find the
route that takes an agent or salesman to visit all cities once
with the minimum overall cost. The PTSP game, introduced
by Perez et all [19], converts the TSP into a real-time game,

where the player must govern a ship to visit, as quickly as I

possible, a determined number of waypoints scattered droun .
a map full of obstacles. e
|
[ |
A. The problem
The PTSP is a single player real-time game where the .
ship and the waypoints are positioned in a two dimensional =

continuous grid. When the game starts, a tick counter,
initialised at 1000, starts decreasing at a rate of one unit
per time step. The ship must visit one of the remaininﬁ'g' L
waypoints of the map before this counter reache# the

ship is not able to do that, the game ends. Otherwise, and if

there are more waypoints in the map to collect, the count&" travelling from one waypoint to another. Ignoring this
is reset tol000 and the ship must visit another one, until allMay cause the ship to describe suboptimal routes to solve

waypoints have been visited. Hence, the score of the garf® 9ame.

is stated by the number of waypoints visited and the total

number of time steps taken. The objective of the game E Maps

to visit all the waypoints of the map as quickly as possible. The PTSP maps are two dimensional levels where all

One solution is considered to be better than another if ti{Be entities of the game (ship, waypoints and walls) are

number of waypoints visited by the first one is higher thatPcated. The format of the maps is based on the one used by

the number of waypoints visited by the second solution. INathan Sturtevant, from games such as Warcraft, Starcraft

case of a draw, the solution that involves less time spent @ Baldur's gate. These maps have been often used by many

the winner. researchers in the literature [25]. The number of waypoints
Furthermore, the PTSP is a real-time game: an action musta map employed in this study i), although this is not

be supplied everyl0 milliseconds or the ship will apply 2 fixed number and can be changed to create maps with

the default action (idle), and there is an initializatioméi More waypoints. An example of a PTSP map is depicted in

of 1000 milliseconds at the beginning of the game. Théigurel[1.

ship is governed by applying one out of the six available To consider a map a valid PTSP level, the following

actions at a time, resultant of a combination of two différerconditions must be addressed:

inputs: acceleration (that can be on or off) and rotatioft,(le « Connectivity of waypoints: there must be a valid path

right or straight). These actions can be considered asgorce between each pair of waypoints in the map. This can

that change position, velocity and direction of the shipeTh ~ be achieved by computing the A* path between them

physics of the game include inertia, by keeping the ship’s  using the pathfinding library, as shown in Secfion 11I-C.

velocity from one time step to the next, and friction, so the  Initial position for the ship: the position generated to

ship eventually stops if no acceleration actions are sagpli place the ship at the beginning of the game must avoid
Additionally, the levels of the PTSP contain multiple  any collision with close walls.

obstacles that make the navigation an important element ofe Positions for the waypoints: as in the previous case,

the problem to solve. These obstacles do not damage the €ach waypoint's position must be obstacle free.

Example of a PTSP map distributed with the framework.

ship, although they do modify its velocity by reducing the e
speed and producing an elastic collision when the ship hits
the walls.

The PTSP poses a problem at two different levels: solving
the order in which to visit the waypoints, and navigating e
through the map to reach them. A priori, these problems
might sound independent, but the fact is that they are
closely related: solving the TSP using the costs between
the waypoints based exclusively on the distances may obtain

Ship vs. waypoint distance: the initial position of the

ship and all waypoints must be significant to avoid too

quick visits. The minimum distance is set 10 times

the radius of the ship.

Waypoint vs. waypoint distance: the distances between
every pair of waypoints cannot be too low to avoid

multiple visits at once. The minimum distance is set
to 5 times the radius of the ship.

optimal paths that are not the optimal routes for the PTSE. Framework utils
The physics of the ship (especially its inertia), and how the The benchmark includes the possibility of executing dif-
navigation is performed, have a big impact on the time takefierent controllers and maps, which can be read from static



- . Element Data DeSCriptiOn (COOrdinateS)
fI|eS or Created dy a |Ca”y frO data structures. he T ines (107yo,1‘dvyd) * L Starti g al d endi 9 pOSitiO S.

framework includes path finding and line of sight features; Rectangles (z., yo, 74, y2) * 5 | Top-left and bottom-right corners

that are used by the controllers employed in this study. Ship (z,9) Ship’s starting position.
The path finding library builds a grid graph placing nodes Waypointy  (¢w, yw) * 10 Waypoints” positions.

in the navigable parts of the maze. A node will be added to TABLE |

the graph if a certain position is free of obstacles. Stgrtin REPRESENTATION OF AN INDIVIDUAL OR MAR

from the top left corner of the map, different positions are

checked by adding a certain value to the coordinates (granu-

larity), until the bottom right corner is reached. The adjaic

nodes of the graph are linked to each other following agontroller must be seen as the combination of teite

eight-way connectivity scheme: each node can be connectgidnner(which obtains the order of waypoints) and théver

to eight neighbour nodes: up, right, down, left and the fougwhich effectively applies the actions to move the ship).

diagonals. The controller can query the graph for shortest This section of the paper presents the algorithm used to

paths from any position in the map to another. evolve maps in Section IVIA. Then, the route planners are
Regarding the line of sight feature, the framework includegescribed in Sectiol TVAB, followed by the explanation of

a method to find out if there is a clear line of sight betweeRow the proposed routes are evaluated, in Sedfion]IV-C.

two positions in the map. In other words, this means that nEinally, the procedure to evaluate individuals (or maps) is
obstacles are found in a straight line between those positio detailed in Sections IV-D ard TVAE.

considering the radius of the ship as the width of the line.

D. The PTSP Competition A. Evolutionary algorithm: CMA-ES

The PTSP software has been used to run a competition forln this first attempt at automatic generation of maps for
the WCCI (World Congress on Computational Intelligence)he PTSP, an evolutionary algorithm is proposed. This @acti
and CIG (Computational Intelligence and Games) 2012 [19lescribes the algorithm employed and the representation of
In the competition, the participants can download the codmaps as individuals in the population.
and submit a controller that tries to get the best score over aEach one of the maps considered in this study is composed
set of 20 different maps. The objective of the competitionof a set of floating point values that encode the starting
is to see the different approaches that are proposed [gosition of the ship, the waypoints and the location and size
create controllers for this game. These must show a goad obstacles such as lines and rectangles. Table | details th
balance between completeness (visiting as many waypoimtspresentation of an individual of the population. The orde
as possible) and speed (time spent to visit the waypoints)of the rows indicates the order of elements in the string of

Each controller is evaluateglitimes in each one of th20  values.
maps of the final stage of the competition, and only the three As can be observed, two different parameters are needed
best results, considering the number of waypoints visitego define the contents and length of an individual: the
are used to compute the average score in that map. Poiftsmber of lines [) and the number of rectangleR). The
are awarded for each map, depending on the performanggperiments described in this paper are performed with maps
demonstrated, and the participant with the highest sum gfat contain = 15 lines andR = 8 rectangles, although
points wins the competition. initial experimentation shows that it is also possible toles

A total of 64 maps were created manually for the PTSRnaps with different values for these parameters. With these
Competition. This took a significant amount of time andsettings, the length of the individual is thén4, and each
effort in order to create valid and challenging levels. Ohe ne of these genes takes a real value in the rénge, 0.95].
the objectives of this study is to show a way of generatingvhen the genome is read to create a map, these values

PTSP maps automatically, in order to minimise the creatiogre scaled to the size of the map, which for this study is
costs and obtain maps with certain challenging features, astablished t&00 x 500 pixels.

described in Section_IV. An important feature that must be determined for each
individual is whether it encodes a feasible map or not,
IV. EXPERIMENTAL STUDY according to the rules described in secfion 11I-B.

The objective of this research is to obtain maps where Some infeasible maps are able to be repaired. One of the
controllers that invest time in finding a waypoint order thateasons why a map can be invalid is because at least one of
takes the physics of the game into account are most liketiie waypoints or the starting position is in the same pasitio
to obtain better results than others that follow a more naiv@s an obstacle, or too close to one. Another possibility is
approach (nearest waypoint or distance-based TSP routegjhat two of these entities (waypoints and starting posjtion

A solution is obtained by dividing the problem into twoare too close to each other. If a map is invalid because of
very well differentiated tasks: 1) calculate the order obne of these reasonsyegpair mechanisntries to change the
waypoints; and 2) drive the ship to visit the waypoints idocation deterministically, moving one of these entitiesng
the order specified. In the terminology used in this papethe vertical and horizontal axis until a valid position isifal.



It might be the case that this simple repair procedure & to B as the distance of the path given by the graph, which
not able to fix the problem in the map, or that another o calculated using the A* algorithm.
the problems described in sectibn Tll-B is the cause of its Three different variants of route planners have been em-
infeasibility (i.e.: unreachable waypoints). In this catiee ployed in this study:

map is considered invalid and it is flagged as such. « Nearest-first TSP: This TSP solver, and the route it
The evolutionary algorithm employed in this research is  produces, is referred to in this paper 8%sp. The
the Covariance Matrix Adaptation - Evolutionary Strategy  order of waypoints is obtained by applying the nearest
(CMA-ES). CMA-ES is an algorithm specially suited for first algorithm to solve the TSP. That is, from the current
high dimensional continuous domains [8]. CMA-ES is based  |gcation, the algorithm sets the closest waypoint as the

on an iterative process that updates a multivariate normal npext waypoint to visit, repeating this procedure until all
distribution (MND). The population at a given generation  \yaypoints are in the plan.

is obtained by sampling from the distributioh (m, C), . Distance TSP: This TSP solver, and the route it
which is uniquely defined by the distribution meane R" produces, is referred to in this paper Bs-sp. The
(that determines the translation of the distribution) ane t planner uses the Branch and Bound (B&B) algorithm
covariance matrixXC’ € R™*", which defines the shape of the to determine the order of waypoints, using the length
MND. Each individualz; is sampled from this distribution of the A* as the cost between each pair of waypoints.
according to a step-size, so thatz; ~ m + oN(0,C). « Physics TSP:This TSP solver, and the route it pro-
At each iteration, the values of,, c andC are updated in duces, is referred to in this paper &sp. As in the

order to minimize the fitness of the individuals drawn from  previous case, the B&B algorithm is employed for the

the MND. For a more detailed description of the algorithm,  order of waypoints, but in this case the cost between

the interested reader is referred [to [8]. two waypoints is affected by physical conditions such
If an individual happens to be infeasible, the algorithm  speed and orientation of the ship.

creates a new randomly initialized map (drawn from the

MND) and checks for its feasibility again, repeating thiSTSP path, and it would be the perfect choice if certain ptsysic

process ur?tll a feasible one is created. .In t.hls. way, gonditions, such as the ship’s inertia, were not present in
population is always composed only of feasible |nd|V|duaIsthe game. In contrasPhysics TSPhas been prepared in

Therefore, CMA-ES creating infeasible individuals only af rder to take into account the nature of the game. As has

Lects hOWb?”'fk'ﬁth? expenments_ arel rucr;. AIth(_)ugh It r\:vou_l een suggested before, inertia and navigation should ke tak
€ possible 1o design a more Involved repair mechaniSfhy, «qnsigeration to calculate the optimal PTSP route. The

that would reduce the number of rejected individuals, thSverall idea is based on the fact that the ship can benefit from

experiments performed in this research show that the numt{ﬁgmng waypoints that are in the same straight (or quasi-

gf |tpfea3|gle |nd|V|(1Lr1]aIs lsa”PtF;:ed from the mtultlvacr;atetdl-l t_straight) line, even if the distance between them is nottshor
ution reduces as the aigorithm converges towards a solutigg ;¢ way the ship maintains its velocity. In other words,

(thh a rate O.f |nfeta5|ble mtélvrl‘duaLs less thm;%()j' Th|s_ rr|1inimizing changes of direction within the route - that weul
phenomenon 1S Nt New, and has been reported previolzyse the ship to lose inertia and speed - is important when
in the literature([5].

h b f . ¢ h ) i (k:Jomputing the route.
The number of generations of each experiment Is estab-, g case, the cost of the path is obtained by an

lished at a maximum of000 generations, althoughaf'tness'approximation of the time needed to drive the route, as

based stopping criterion can finish the run earlier: if thegea described in Algori . .
. . ) gorithni11. Given an order of waypoints
of the best fitness obtained during the lat+ (30 x N/A) 5 pathp is first obtained where each node is in line of sight

o> s ;
?heneratlops |stsmaller ttt'ld(;@hej\é'_thethexperLTentds_tops. _For with the following in the path (GTINSIGHTPATH (route)
€ experiments presente 1S the probiem diMENSION ¢, +tion). This way, the controller would be able to drive

(114) and A the population sizel()0), so this condition mu;t between each pair of nodes in a straight line. Starting with

hn initial speed of), the algorithm traverses the path whilst
alculating the time taken for the ship to go from one node
0 the next. This calculation uses the real physics of the
game, so the time taken between two nodes is completely
accurate, given the selected action sequence, thoughyusual
H6t optimal.

The overall calculation is, however, an approximation,
owing to the way the speed is kept between each straight
line segment. The dot product of the angle of two consecutive
segments is calculated and used to decrement the speed at

The route planner is in charge of determining the order adach turn. If this value i$ (0 degrees), the penalizatiope(:)
waypoints that the driver must follow during the game. Thealue is1 and the speed does not decrease. The penalization
route planner considers the cost of travelling from positioincreases exponentially with the angle, reachingomplete

The Distance TSProute planner resembles the optimal

criteria, known agolHistFun is a default stopping condition
of CMA-ES, and has been used in the literature before [4
[9]. The default value of the population size in CMA-ES is
443 xlog(N), which for this problem would b&s. However,
the population size used in the experiments presented h
is set t0100, a value determined empirically.

B. Route planners



Algorithm 1 Route cost estimator.

the route, which is not tied to any particular driving style.

function HEURISTICSOLVER(r) An interesting trade off that has been employed in this study
p < GETINSIGHTPATH(r) is to use the estimation for the evolutionary algorithm and,
speed < 0 once the run has finished, play the game using a real driver
for all Noden,; in p do in the maps obtained, in order to verify that the results are
d + EUCLIDEANDISTANCE(n;, ni41) conclusive and the maps obtained have the desired prapertie
t TIMETOIRAVEL(d, sgeed) The driver presented in this study is the Monte Carlo Tree
dot + DOT(V(ni,nit1), V(nit1, nit2)) Search (MCTS) driver, based on an earlier implementation
pen <— GETPENALIZATION (dot) fully described in[[20]. Apart from the fact that this imple-
speed < speed * pen mentation provided good results in the past, MCTS was also
totalTime < totalTime + ¢ used in this game by the winner of both editions of the PTSP
return totalTime competition, and it seems to be, to date, the strongestrdrive

for this game.
MCTS is a stochastic algorithm that combines the strength
stop) when the turn to make is aB0 degrees. The final of Monte Carlo simulations at exploring the search space
estimated cost of the route is the sum of the time taken t@ith a tree search policy that selects among the available

drive all segments of the path given. actions to take. This policy, known as the Upper Confidence
Bounds for Trees (UCT), exploits the most promising parts
C. Evaluating routes: drivers versus estimations of the search space while exploring other actions that do not

The driver is the agent that makes the moves in the gamseeem to lead to optimal solutions. This trade off allows the

trying to visit all waypoints in the order specified by thecre?tlo?tohfan asyr;:metnc tree that grows towards intergsti
route planner. The main problem of evolving maps usin a;rS] 0 (_a”sealrc .tsr;]:)ac.e. divided into f ¢ that
drivers to evaluate the different routes is the computafion € vaniiia agornithm 1S divided Into four steps that are

cost it involves. Two different approaches have been takéﬁp.eated In a loop: f|r_st, in theelection step, the uct
to evaluate the routes provided by the route planners: policy decides a move in the search tree, balancing between

Esti dc ECY Th . d ¢ exploration and exploitation, until the action chosen has n
« Estimated ¢ ost (EC) The estimated cost of a route representative node in the tree. Then, during ékpansion
EC(r), indicates an upfront value that determines _thgtep, a new node is added to the tree and a Monte Carlo

%Simulation is run until the end of the game is reached,

ngorlthmm on”thel rou:]e given. Thgre IS no n(:]edEfgr onstituting thesimulation step. Finally, the reward of the
river to actually play the game to determine the %imulation (win, loss or score) is propagated up to the

a route, and the cost is an estimation of the time takeyy . during theback-propagationstep. A more extensive

by any driver that follows it. d it f the alqorithm. it iant d licasi
« Cost (C): The cost of a route, C(r), is determined by C:zctr)lg ;g[}nz in [e6]a gorithm, s variants and applicasion

using a driver to complete the game following the order The nature of PTSP poses some interesting challenges to

ycle is very limited, and the end of the game is so far away
n time that it is usually impossible to reach within the time
imitation. For this reason, a score function value is used
at the end of each simulation in order to provide a quality
measure of the state reached. This function returns a score
based on the waypoints visited, the time taken during the
game, the distance to the next waypoint in the route and the
C(r) = TotalTime + RemW aypoints * P (1) number of collisions with obstacles. The interested reader

may refer to previous work [20] for details of the MCTS
In both cases, the smaller the values of EC and C, tqﬁiver implementation.

better the route, as they represent the time taken to coenplet

the game. The main advantage of using a driver is that the ) _ ) )

evaluation is reliable in terms of playing the game (on®- Evaluating maps: fitness functions with 3 routes

can be certain that the map obtained produces a determined he first objective of this research is to be able to obtain
output for the driver used to evolve it), while an estimatiormaps where the results obtained with the same driver using
is an abstraction that might contain errors and be inaceuratlistinct routes are different. The quality of a map will
However, using a specific driver impacts on the time needdxk better if it rewards more involved routes than simpler
to evaluate a route and might lead to maps that fit theaypoint orders.

navigation style of that particular driver. The estimation Each individual (or map) of the evolutionary algorithm
the other hand, provides a faster indication of the cost @ evaluated measuring th&C values (as described in

waypoints still to be visited when the game finishe
(RemWaypoinjsand a penalty? equal to the maximum |
time allowed to visit the next waypoint in the route
(1000 time steps). Hence, the coét of driving in a
map using a route is:



Section[IV-C) of the different routes that the route plasnerdriver. If any of these3 routes is followed, the performance
provide. Let us say that in a given map, the three routeust be better than following a route of typ-sp, and this
planners provide three different routeSirsp, Drsp and  should outperform aiNysp route. An initial Prgp route is
Prsp (as defined in Sectidn IVAB). Then, the objective is toobtained with Algorithmi 1L (i.ePrsp = rg), and2-Optand
achieve: 3-Opt operators are employed to derive all routes from this
one. These new routes are sorted by ascending cost (i.e.:
EC(Nrsp) > EC(Drsp) > EC(Prsp) 1, T2, ..., ™m), being Prgp = ro better than all these by
In other words, the estimated cost of using the nearestonstruction. The fitness function is then defined as follows
first TSP route planner is higher than using the distance TSP
;%lggcﬂapggr}ggg trr)lllzncnoesrt. is also worse than employing the fs = —Min(ECx — ECp, ECp — EC(rs)) 4)
In order to achieve this, two different fitness functions are As in the previous section, a fitness for real drivers can be
employed and defined in this section. Given these routes,defined such as:
is possible to define the fithess as the result of the following
equatioff: fi = —Min(Cy — Cp,Cp — C(r2)) (5)

_ By obtaining maps that maximize the cost difference be-
fs = =Min(ECy — ECp, ECp — ECp) (2 tween these three routes, the algorithm provides indivddua

An analogous fitness can be defined using the real cost (§8€re router; is better than routdrsp. As o andr, are
defined in Equatiofil1) of a driver playing the game as: y definition better tham,, the resultant maps aseparating
the costs ofDrsp and the groups@,ry,r2).

fi = —Min(Cy — Cp,Cp — Cp) 3) Th_e experiments described_in_ this_ paper show that it i§
possible to evolve maps that distinguish between threen(as i
CMA-ES is set up to minimize this fitness, so high negaEquatior2) and five (Equatidd 4) routes. Initial experinsent
tive values are better. As this fitness measures the digant¢mve shown that it is also possible to evolve maps With
between the costs of a naive and a more complex route (battiferent orders of waypoints, five of them forming the group
ECN — ECp and ECp — ECp), it must be understood as of Prgp routesrg to ry.
the amount of time steps saved when using a more involved

route instead of a simpler one for solving the problem. V. RESULTS AND ANALYSIS
This section details the results of the experiments per-
E. Evaluating maps: fitness functions with 5 routes formed during this research. A total @b independent runs

.have been executed for each one of the two batches of

Additionally, it is also a purpose of this research to Obta'%xperiments (foB and5 routes). The following parameters
several near-optimal solutions so the best route is not t% ve been set up:

obvious. In other words, the evolutionary algorithm must be . . . I
« CMA-ES as described in Sectibn TMA. The initial mean
able to generate maps where a groupg\ofoutes of the type m of the MND is set t00.5 and the step size — 0.17

Prsp (those obtained with the Physics TSP solver) produce a -~ . .

similar performance among them, but all better thaba p (0 =m/3, in _or(_jer for CMA'.ES to converge W.'t&?’

route, which is still better than aNy.gp one. standard deviations). The size of the populatio®,
' was determined experimentally.

The Prgsp route planner presented in Section TV-B pro- : ]
vides only one route: the best achievable, considering the® Ehree (ltID|fferent route planners are employeds.sp,
TSP, I'TSP-

cost between waypoints, derived from taking the physics of ; . - .
the game into account. However, other routes can be derived” Each route is evaluated using the heuristic cost estimator
from this one appIying.the operaio?sOptandS-Opt These (Algorithm_lj]): no driyer plays the game to evaluate the
operators exchange 2 (or 3, respectively) nodes in the path routes during evolution.
to create a new solution. Hence, M/ additional routes - S
are needed, the first step is to calculate the best one Wf%‘l Heuristic Cost E.st|mat|on. s rputes _ _
Algorithm 1, as usual. Therall possible derivatives from For these experiments, the fitness function usedfis
this route are obtained applyir2sOpt and 3-Opt They are (Equation[2) to evaluate the maps. The three routes used
sorted by ascending cost and thé best ones of this new are the ones provided by the three different route planners.
group of routes are selected. 1) Evolution of fitness:Figure[2 shows the evolution of
The fitness function is similar to the one described ithe averaged fitness during the experiments run. This ictur
Equation[2, substituting the bedtrsp route for thei, shows the average (plus standard e_rror), of the best_mdiinq
one in the group of routes. For instance, let us say that i{9d each generation across all experiments run for thisnggtti
objective is to create maps wheeroutes of typePrsp As can be seen, there is a clear evolution in the fitness of

obtain similar performance when followed by a determinef1® runs. At the beginning of the experiments, the best indi-
viduals obtain a fithess close fg = —100 (as explained ear-

2For the sake of clarityFCxy = EC(X7sp) andCx = C(Xrsp) lier, this represents the minimum difference of cost betwee



[ Map | EC(Npsp) | EC(Drsp) | EC(Prsp) | Fitnessfs |

G , ‘ ‘ 1 1298 1103 1091 12
— Average of best individuals in 40 runs]‘ 2 1010 952 922 -30
- - 3 1032 1001 990 -11
-100 4 1146 1146 1152 6
5 1558 1415 1415 0
6 1197 1269 1121 72
—200} 7 1070 1070 1070 0
‘f 8 1357 1281 1281 0
9 9 1463 1415 1337 -48
& —=00 10 1366 1014 1014 0
w
TABLE 1l
—400} ESTIMATED COSTS f3 ON MAPS OF THE2012 PTSP ©MPETITION.
—500f
0 200 o T 800 1000 with those maps hand-crafted for the WCCI 2012 PTSP

Competition. Tabl&]l shows the estimated costs of the three
Fig. 2. Averaged evolution of the best individuals per getien of the pOSSIbl? rO_UteS anq the fitness aS_SQCIated with each one of th
40 runs executed with the heuristic cost estimator for rowesploying3 ~ Maps distributed with the competition framework. As can be
routes per map. Shadowed area indicates the standard éitw measure. seen, the fitness of the competition maps is very different

from the results obtained at the end of the experiments

presented in this paper. Indeed, sometimes it is even better

each pair of the3 routes used to evaluate the maps.). Byot to follow the routes proposed for the physical TSP route
the end of the executions, the average of the best indisdudllanner.
achieve a fitness of; = —427+9.36. Approximately80% of If all maps from the WCCI 2012 PTSP Competitiof(
the runs were stopped by tAielHistFuntermination criteria, Maps: the ones from the framework and the othkeused to
as explained in Sectioh TVIA, not reaching the maximunfank the entries) are taken into account, the average fitness
number of generations set #100. of the maps using the estimated costfis = —12.06 +
The MCTS driver, defined previously in Section 1V-C, hast.06, showing that it is not straightforward to create maps
been used to drive the best maps of the final generation By hand in which the most involved route planning leads
all experiments. The routes taken have béénsp, Drgp 1O @ clear victory. It is worth mentioning, however, that the
and Prgp, and each one has been played five times (addifgaps designed for the competition were not only created with
up to 3 x 5 x 40 = 600 games played). The averagethe aim of being a challenge, but also with the objective of
fitness, as described in Equatioh 3, obtained by the MCT®aking them aesthetically pleasing, a feature not consitier
driver in these maps ig; = —321.44 + 24.99. This value In this research.
cannot be directly compared with the fitness achieved by It is also interesting to compare how the evolved maps
the estimated cost heuristic, because they are obtained byliffier from randomly created maps. In the case of three
different procedure (playing the game versus not playipg itroutes, the fitness of00 randomly initialized maps (after
However, it does show that the maps obtained are sensibRging repaired) is, using the estimated cost,.24 + 1.95;
the difference of taking any pair of the given routes is of avery different from the—427 shown in Figuré 2.
least321.44 + 24.99 time steps on average. 2) A representative exampl&igure[3 shows the map and
A different way to analyze this result is to compute théhree routes obtained in one of the runs explained in this
relative difference of fithess between the routes takens Théection. The MCTS verification step produced averages of
is done in the following way: if the time spent by driving 2649.75 £ 78.03, 2037.6 + 43.82 and 1658.0 + 37.93 for
route Prgp is taken as a reference, it is possible to calculateach one of the routéSrsp, Drsp andPrgp, respectively.
the increment of time spent by following routdérs» and According to the relative performance, it can be seen that th
Drgp. WhereasPrgp takes a reference value vf0, Drsp  Drsp and Nygp routes spend respectively arouzzly and
obtains a worse performance of43 + 0.032, and Nrsp  59% more time steps tha®,sp to visit all waypoints and
spends even more time to obtain a valuel @92 + 0.038.  complete the game. This picture also backs up a concept pre-
This analysis is interesting because it provides a mongously mentioned in this paper: routes that visit waypsint
detailed view of the time taken per route. As can be seen, tlaestraight (or almost straight) line can take advantage ef th
driver that takes rout®rsp spendg43 +3.2)% more time speed of the ship, even if the distance travelled is higner. |
than following Prsp, and takingNrsp spends69+3.8)%  this case, it can be seen that thesp route has much fewer
more game steps than the physical route. This measure atd@mnges in direction than the other two and a good balance
provides a sense of order, that matches the goal of tihetween travelling a long distance (as tNesp route) and
experiments: taking routBrg p is better than driving through the shortest possible distance (given Dy.sp).
Drsp, which is still better than followingVrgsp. Figure[4 shows the evolution of the fitnegs of the best
The maps obtained by the runs can also be compareadiividual of each generation during this particular runisl
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Fig. 3. Example of a map and its three routes evolved with CEB\-The trajectories, followed by the MCTS driver, are shawthe following order,
from left to right: A) N1tsp route, with an average af649.75 =+ 78.03 time steps; B)Drsp route, with an average &f037.6 + 43.82 time steps; C)
Prgsp route, with an average df658.0 + 37.93 time steps.

A)

0

— Fitness f, of best individual m — Average of best individuals in 40 runsﬂ

=50
—100
=200

_ -150F

—250r —200-

Fitness f,
Fitness f;

=300 =250

=350 —300-

—400 —3501

—450

0 200 400 600 800 1000 _4000 200 400 600 800 1000

Generation Generation

Fig. 4. Evolution of the fitness of the best individual durioige of the40 Fig. 5. Averaged evolution of the best individuals per getien of the
runs performed witt8 routes. 40 runs executed with the heuristic cost estimator for routesploying 5
routes per map. Shadowed area indicates the standard éth@ measure.

easier to observe in this figure, rather than in Fiddre 2, that
during the first half of the generations given, the algorithm As in the3 routes case, there is a clear improvement of the
explores the search space, obtaining very different valuitness. In this case, the average fitness of the best indilgdu
for the f3 measure. During this time, the best individualof the last populationigs = —369412.08. It is interesting to
fitness decreases slowly. Once half the generations arg pagiserve, comparing Figurgk 2 ddd 5, how the fitness obtained
the fitness values become less variable and decrease rapiflythis case is not as good as the ones obtained before for
converging towards a solution and reaching a stable fitheSsoutes. This is logical, owing to the fact that this scenario
value of —430 by the end of the run. is more complex than the previous one, as the quality of the
router, is, by definition, the second best route obtained with
the Prgp solver. Although the progress of fithess is clear and
significant, it visibly converges slower than when thgsp

This section analyzes the results obtained after perfaymirioute is employed to calculate fitness. In this case, around
40 runs of the algorithm to obtain maps that differentiaté0% of the runs converged to a solution before reaching the
amongp routes. The only difference in the setup with respedhaximum of1000 generations.
to the3 route case is that now the fitness function employed As before, a verification phase with the MCTS driver has
is f5 (from Equation[#). As explained in Sectibn TV-E;  been performed to analyze the resultant maps, employing
is the second best route derived frdPasp using the2-Opt  the fitness function declared in Equatibh 5. In this case,
and3-Optparameters. Figufg 5 shows the average of the beke average fitness obtained by the MCTS driverf)js=
individuals on each generation in tH8 runs performed. —196.27423.45, which is again smaller than its counterpart

B. Heuristic Cost Estimation: 5 routes
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| Nrsp | Drsp_ | Prsp | 1 [ ] | Average| Nrsp | Drsp | Prsp | ™ [ r2 |

[ 1.53£0.022 [ 1.39£0.02 | 0.9940.01 [ 1.01£0.01 | 1.0£0.0 | Time 2279.0 1972.2 1626.0 | 1591.75| 1650.2
TABLE Ill Relative 1.38 1.19 0.98 0.96 1.0
RELATIVE AVERAGE PERFORMANCE IN BEST MAPS ORI0 RUNS. TABLE V

PERFORMANCE OF THEMCTSDRIVER IN A RUN WITH 5 ROUTES.

[ Map | EC(Nrsp) | EC(Drsp) | EC(r2) | Fitnessfs |

1 1298 1103 1126 23 1 | (7)=0.891
2 1010 952 1020 68 3 : | 3 I
3 1032 1001 1024 23 b b1l 3 | | D
4 1146 1146 1183 37 St e | A |x(69)=0.819
5 1558 1415 1470 55 [x(92)=0.797
6 1197 1269 1172 72 1 91)=0.719
7 1070 1070 1142 72 0.8 _
8 1357 1281 1368 87 F 108=fens
9 1463 1415 1415 0 8)=0.676
10 1366 1014 1135 121 x(97)=0.623
TABLE IV jpetas)=0.208
ESTIMATED COSTSf5 ON MAPS OF THE2012 PTSP ©OMPETITION. i x(6)=0.58
: x(21)=0.564
(103)=0.522
(24)=0.492

37)=0.462
x(77)=0.448
52)=0.427
| x(90)=0.409
Ix(110)=0.386
I(19)=0.38

for 3 routes, but still demonstrates that the maps obtained
have the desired properties. As before, Table Il shows the
relative average fithess for the results obtained with the
MCTS driver.

In this case, this table also shows the results obtained with
the other2 physical routesrsp andry). It is clear that the
proposed algorithm is able to find maps where three different
routes (given by the physical TSP plannBfisp, 1 andrs)
provide a similar performance, all of them better than the
route planned byDrsp, which is still better thanVrsp.

Gene Average Value

(12)=0.295
\x(67)=0.264
\h(43)=0.195
\Ix(26)=0.127

A comparison with hand-crafted maps from the 2012 0 i i i i ) (78)=0.0555
WCCI PTSP Competition has also been made. Table IV 0 20000 40000 60000 80000 100000

Evaluations

shows the results of the heuristic estimated cost and the

fitness values in the maps distributed with the competitiogg. 7. Evolution of the values of some of thé4 genes of the individual.

framework. If all64 competition maps are to be compared[he average value of each gene is presented (betd:66rand0.95) against

the average fitness !& — 394 4.89, which is a value much the number_of evaluations performed by CMA-ES. The columithenright
. . . .. shows the final values for the meam of the genes shown here.

worse than the one obtained in the experiments described

here.

Again, the results obtained in this section can be compared

with randomly created maps. The fithess of these randoma

. . C yers.
maps, according to the fithness functigy, is 24.0 + 3.45.
It is straightforward to see that the problem withroutes 1) A representative examplétigure[6 shows an example
is more complex than using, as there is a clear difference Of one of the runs withb routes and the map evolved by
between the fithess of random maps on both scenarios. @VMA-ES. After running the MCTS verification step, the
positive value like this indicates that the physics-baseder average fitness obtained is shown in Table V. As can be
1+ is a worse choice than following the nearest waypoint firsieen, the three physical routes provide a similar perfocean
approach. This shows that it is not trivial to create maps witwhile the distance and nearest ones need more time to be
the features desired. completed.

These comparisons are examples of one of the mainFigure[T shows the average of (some of the) genes
advantages of using the technique described in this papef.the individuals during the evaluations performed in the
If map designs are not good enough (as happened in then. It is interesting to see how, during the first half of
PTSP Competition), it may be better to follow a naivehe experiments, these values have a high variance, which
route (Nrsp) and obtain the same results as taking a moreorresponds to the exploratory phase of the algorithm. How-
complex approachlf{rsp), as in map7, or even better, as ever, close to the end of the run, these genes stabilize
in map 6. This can be extrapolated to other games, wherend the standard deviation of each one of them is reduced
simulated based PCG can avoid unfair situations in whicsignificantly, showing that the algorithm is converging on a
simpler players exploit deficiencies in levels to beat lvettesolution.
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Fig. 6. Example of a map and its five routes evolved with CMA-EBe trajectories, followed by the MCTS driver, are showrthia following order,
from left to right, top to bottom: A)Nrgp route, with an average &279.0 £ 50.33 time steps; B)Drgp route, with an average af972.2 + 34.29
time steps; C)Prgp route, with an average df626.0 + 60.96 time steps; D)r1 route, with an average af591.75 & 60.97 time steps; E)2 route,
with an average ol650.2 + 86.1 time steps.

VI. CONCLUSIONS AND FUTURE WORK for each map in order to modify the difficulty of the level.
It would be interesting to attempt to find maps that maxi-

This paper introduced an evolutionary algorithm capablgally differentiate between different controllers. Thisutd
of automatically generating high-quality maps for the PTSkhen be extended to a competitive co-evolution scenario,
game. This is, as far as the authors know, the first attemwhere controllers are evolved to beat the best maps and maps
at creating maps for this game in a procedural mannejre evolved to differentiate between controllers, spagren
Additionally, to the best of our knowledge, this is the firsttorm of arms race.
paper that employs CMA-ES for PCG in general. Another interesting feature to look at, that has not been

The results presented in this research show the succesmtemplated in this research, are the aesthetic aspects of
of our technique, being able to create maps that fulfil ththe map. Seeing some of the maps presented in the figures
conditions required regarding the routes of waypoints thaif this paper, one might argue that they are not aesthsticall
can be followed: naive and simple approaches are easily owery pleasant. The inclusion of new shapes, such as circles
performed by those route planners that take the physicsof ttor even more complicated figures), can lead to other types
game into account when generating the routes. Additionallgf maps through evolution. Another possibility is to inotud
the experiments performed in this research show that it iaore obstacles once the evolutionary process has finished,
possible to generate maps where several trajectoriesd@oviadding different shapes in parts of the maze where the ship
solutions that are far better than the ones obtained by naiigunlikely to go (in order not to disrupt the routes and hence
routes. invalidate the evolved map).

This research can be extended in several ways. For in-Additionally, it would be desirable to undertake a thorough
stance, the number of waypoints that a map contains coudnpirical study of different representations for the obles
be increased, resulting in more challenging maps. Anothef the map, including the ones described here (lines and rect
possibility is to allow the evolutionary algorithm to mogif angles) and others such as Compositional Pattern-Praglucin
slightly the rules of the game. For example, the algorithrletworks (CPPNSs), Bezier curves, cell-based approaches or
could tweak time steps requested to visit each waypoint foartle-based graphics. It would be worthwhile to see how the
a particular map (instead of the defadli00 value). The representation affects the evolution of maps that are able t
map generation algorithm could therefore adjust this valudifferentiate between several controllers.
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