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Abstract—Multi-objective optimization has been traditionally
a matter of study in domains like engineering or finance, with
little impact on games research. However, action-decision based
on multi-objective evaluation may be beneficial in order to obtain
a high quality level of play. This paper presents a Multi-objective
Monte Carlo Tree Search algorithm for planning and control in
real-time game domains, those where the time budget to decide
the next move to make is close to 40ms. A comparison is made
between the proposed algorithm, a single-objective version of
Monte Carlo Tree Search and a rolling horizon implementation
of Non-dominated Sorting Evolutionary Algorithm II (NSGA-II).
Two different benchmarks are employed, Deep Sea Treasure and
the Multi-Objective Physical Travelling Salesman Problem. Using
the same heuristics on each game, the analysis is focused on how
well the algorithms explore the search space. Results show that
the algorithm proposed outperforms NSGA-II. Additionally, it is
also shown that the algorithm is able to converge to different
optimal solutions or the optimal Pareto front (if achieved during
search).

I. INTRODUCTION

Multi-objective optimization has been a field of study in
manufacturing, engineering [1] and finance [2], while having
little impact on games research. This paper shows that multi-
objective optimization has much to offer in developing game
strategies that allow for a fine-grained control of alternative
policies. The application of such approaches to this field can
provide interesting results, especially in games that are long
or complex enough that long-term planning is not trivial, and
achieving a good level of play requires balancing strategies.

At their most basic, many competitive games can be viewed
as simply two or more opponents having the single objective of
winning. Achieving victory is usually complex in interesting
games, and successful approaches normally assign some form
of value to a state, value being long term expected reward
(i.e. expectation of victory). Due to a massive search space,
heuristics are often used for this value function. An example
is a chess heuristic that assigns different weights to each piece
according to an estimated value.

Multi-objective approaches can be applied to scenarios
where several factors must be taken into account to achieve
victory. The algorithms can balance between different objec-
tives, in order to provide a wide range of strategies well suited
to the different stages of the game being played, or to face
existing opponents. Application of such approaches could be
real-time strategy games, where long term planning must be
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carried out in order to balance aspects such as attack units,
defensive structures and resource gathering. This should allow
smart balancing of heuristics.

This paper proposes a multi-objective real-time algorithm
version of Monte Carlo Tree Search (MCTS), a popular rein-
forcement learning approach that emerged in the last decade.
The proposed algorithm is tested in two different games: a
real-time version of the Deep Sea Treasure (DST; a classical
multi-objective problem), and the Multi-Objective Physical
Travelling Salesman Problem (MO-PTSP). The algorithm is
also compared with another two approaches: a single-objective
MCTS (that uses a weighted sum of features to value the state)
and a rolling horizon Non-dominated Sorting Evolutionary
Algorithm II (NSGA-II). This paper extends and formalizes
our previous work described in [3].

Two main goals can be identified in this paper: first, the
proposed algorithm must be applicable to real-time domains
(those where the next move to make must be decided within
a small time budget) and it should obtain better or at least the
same performance than the other algorithms. It is important
to highlight that all three algorithms tested employ the same
heuristic functions to evaluate the features of a given game
state. Thus, the focus of this research is set on how the
algorithm explores the search space, instead of providing the
best possible solution to each given problem.

Secondly, the algorithm must be able to provide solutions
across the multi-objective spectrum: by parametrizing the
algorithm, it must be possible to prioritize one objective over
the others and therefore converge to solutions according to
these preferences. Therefore, the main contribution of this
paper is the proposal of a multi-objective version of MCTS
that is applicable to real-time domains and is able to provide
different solutions across the multi-objective spectrum.

The paper is structured as follows. First, Sections II and III
provide the necessary background for MCTS and multi-
objective optimization, respectively. The algorithm proposed
in this research is described in detail in Section IV. Then,
Section V defines the games used to test the algorithms, with
the results discussed in Section VI. Finally, some conclusions
and possible extensions of this work are drawn in Section VII.

II. MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a tree search algorithm
that was originally applied to board games, gaining momentum
and popularity in the game of Go. This game is played in
a square grid board, with a size of 19 × 19 in the original
game, and 9×9 in its reduced version. The game is played in
turns, and the objective is to surround the opponent’s stones
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Fig. 1: MCTS algorithm steps.

by placing stones in any available position on the board. Due
to the very large branching factor of the game and the absence
of clear heuristics to tackle it, Go became object of study for
many researchers. MCTS was the first algorithm able to reach
professional level play in the reduced board size version [4].
After its success in Go, MCTS has been used extensively by
many researchers in this and different domains. An extensive
survey of MCTS methods, variations and applications, has
been written by Browne et al. [5].

MCTS is considered to be an anytime algorithm, as it is
able to provide a valid next move to choose at any moment
in time. This is true independently from how many iterations
the algorithm is able to make (although, in general, more iter-
ations usually produce better results). This differs from other
algorithms (such as A* in single player games, and standard
Min-Max for two player games) that normally provide the
next play only after they have finished. This makes MCTS a
suitable candidate for real-time domains, where the decision
time budget is limited, affecting the number of iterations that
can be performed.

MCTS is an algorithm that builds a tree in memory. Each
node in the tree maintains statistics that indicate how often a
move is played from a given state (N(s, a)), how many times
each move is played from there (N(s)) and the average reward
(Q(s, a)) obtained after applying move a in state s. The tree
is built iteratively by simulating actions in the game, making
move choices based on statistics stored in the nodes.

Each iteration of MCTS can be divided into several steps,
as introduced by G. Chaslot et al. [6]: Tree selection, Ex-
pansion, Monte Carlo simulation and Back-propagation (all
summarized in Figure 1). When the algorithm starts, the tree
is formed only by the root node, which holds the current state
of the game. During the selection step, the tree is navigated
from the root until a maximum depth or the end of the game
has been reached.

In every one of these action decisions, MCTS balances be-
tween exploitation and exploration. In other words, it chooses
between taking an action that leads to states with the best
outcome found so far, and performing a move to go to less
explored game states, respectively. In order to achieve this,
Kocsis and Szepesvári [7] applied Upper Confidence Bound
(UCB1, see Equation 1) as a Tree Policy.

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

The balance between exploration and exploitation can be
tempered by modifying C. Higher values of C give added
weight to the second term of the UCB1 Equation 1, giving
preference to those actions that have been explored less, at
the expense of taking actions with the highest average reward
Q(s, a). A commonly used value for single-player games
is
√

2, as it balances both facets of the search when the
rewards are normalized between 0 and 1. The value of C is
application dependant, and it may vary from game to game.
It is worth noting that MCTS, when combined with UCB1,
reaches asymptotically logarithmic regret on each node of the
tree [8].

If, during the tree selection phase, a node has fewer children
than the available number of actions from a given position, a
new node is added as a child of the current one (expansion
phase) and the simulation step starts. At this point, MCTS
executes a Monte Carlo simulation (or roll-out; default policy)
from the expanded node. This is performed by choosing
random (either uniformly random, or biased) actions until the
game end or a pre-defined depth is reached, where the state
of the game is evaluated.

Finally, during the back-propagation step, the statistics
N(s), N(s, a) and Q(s, a) are updated for each node visited,
using the reward obtained in the evaluation of the state. These
steps are executed in a loop until a termination criteria is met
(such as number of iterations).

MCTS has been employed extensively in real-time games.
An example of this is the popular real-time game Ms. PacMan.
The objective of this game is to control Ms. PacMan to clear
the maze by eating all pills, without being captured by the
ghosts. An important feature of this game is that it is open-
ended, as an end game situation is, most of the time, far ahead
in the future and can not be devised by the algorithm during
its iterations. The consequence of this is that MCTS, in its
vanilla form, it is not able to know if a given ply will lead to
a win or a loss in the end game state. Robles et al. [9] solved
this problem by including hand-coded heuristics that guided
search towards more promising portions of the search space.
This approach enabled the addition of heuristics knowledge to
MCTS, as in [10], [11].

MCTS has also been applied to single-player games, like
SameGame [12], where the player’s goal is to destroy con-
tiguous tiles of the same colour, distributed in a rectangular
grid. Another use of MCTS is in the popular puzzle Morpion
Solitaire [13], a connection game where the goal is to link
nodes of a graph with straight lines that must contain at least
five vertices. Finally, the PTSP has also been addressed by
MCTS, both in the single-objective [14], [15] and the multi-
objective versions [16]. These papers describe the entries that
won both editions of the PTSP Competition.

It is worthwhile mentioning that in most cases found in the
literature, MCTS techniques have been used with some kind
of heuristic that guides the Monte Carlo simulations or the
tree selection policy. In the algorithm proposed in this paper,
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Fig. 2: Decision and objective spaces in a MOP with two
variables (x1 and x2) and two objectives (f1 and f2). In the
objective space, yellow dots are non-optimal objective vectors,
while blue dots form a non-dominated set. From [17].

simulations are purely random, as the objective is to compare
the search abilities of the different algorithms. The intention is
therefore to keep the heuristics to a minimum, and the existing
pieces of domain knowledge are shared by all the algorithms
presented (as in the case of the score function for MO-PTSP,
described later).

III. MULTI-OBJECTIVE OPTIMIZATION

A multi-objective optimization problem (MOP) represents
a scenario where two or more conflicting objective functions
are to be optimized at the same time and is defined as:

optimize {f1(~x), f2(~x), · · · , fm(~x)} (2)

subject to ~x ∈ Ω, involving m(≥ 2) conflicting objec-
tive functions fi : <n → <. The decision vectors ~x =
(x1, x2, · · · , xn)T belong to the feasible region Ω ⊂ <n. We
denote the image of the feasible region by Z ⊂ <m and call
it a feasible objective region. The elements of Z are called
objective vectors and they consist of m objective (function)
values ~f(~x) = (f1(~x), f2(~x), · · · , fm(~x)). Therefore, each
solution ~x provides m different scores (or rewards, or fitness)
that are meant to be optimized. Without loss of generality, it is
assumed from now on that all objectives are to be maximized.

It is said that a solution ~x dominates another solution ~y if
and only if:

1) fi(~x) is not worse than fi(~y), ∀i = 1, 2, . . . ,m.
2) For at least one objective j: fj(~x) is better than its

analogous counterpart in fj(~y).
When these two conditions apply, it is said that ~x � ~y

(~x dominates ~y). The dominance condition provides a partial
ordering between solutions in the objective space.

However, there are some cases where it cannot be said that
~x � ~y or ~y � ~x. In this case, it is said that these solutions are
indifferent to each other. Solutions that are not dominated can
be grouped in a non-dominated set. Given a non-dominated
set P , it is said that P is the Pareto-set if there is no other
solution in the decision space that dominates any member
of P . The corresponding objective vectors of the members
in the Pareto-set build a so called Pareto-front. The relations
between decision and objective space, dominance and the non-
dominated set are depicted in Figure 2.

There are many different algorithms in the literature that are
proposed to tackle multi-objective optimization problems [18].

Algorithm 1 NSGA-II Algorithm [21]
1: Input: MOP, N
2: Output: Non-dominated Set F0

3: t = 0
4: Pop(t) = NewRandomPopulation
5: Q(t) = breed(Pop(t)) % Generate offspring
6: while Termination criterion not met do
7: U(t) = Pop(t) ∪Q(t)
8: F = FASTNONDOMINATEDSORT(U(t))
9: Pop(t+ 1) = ∅, i = 0

10: while |Pop(t+ 1)|+ |Fi| ≤ N do
11: CROWDINGDISTANCEASSIGNMENT(Fi)
12: Pop(t+ 1) = Pop(t+ 1) ∪ Fi

13: i = i+ 1

14: SORT(Pop(t+ 1))
15: Pop(t+ 1) = Pop(t+ 1)∪Fi[1 : (N −|Pop(t+ 1)|)]
16: Q(t+ 1) = breed(Pop(t+ 1))
17: t = t+ 1

return F0

A weighted-sum approach is one of the traditional methods in
which the objectives are weighted according to user prefer-
ence. The sum of the weighted objectives builds one objective
function to be optimized. The solution to this single-objective
problem is one certain solution, ideally on a Pareto-front. By
varying the weights, it is possible to converge to different
optimal solutions. Such linear scalarization approaches fail
to find optimal solutions for problems with non-convex-shape
Pareto-fronts [18].

A popular choice for multi-objective optimization prob-
lems are evolutionary multi-objective optimization (EMO)
algorithms [19], [20]. The goal of EMO algorithms is to find
a set of optimal solutions with a good convergence to the
Pareto-front as well as a good spread and diversity along
the Pareto-front. One of the most well-known algorithms
in the literature is the Non-dominated Sorting Evolutionary
Algorithm II (NSGA-II) [21], the pseudocode of which is
shown in Algorithm 1. NSGA-II is known to deliver solutions
with very good diversity and convergence to the Pareto-front
for 2-objective problems. However, for problems with more
than 3 objectives, other approaches such as NSGA-III [22],
SMS-EMOA [23] and MOEA/D [24] are shown to outperform
NSGA-II. As in any evolutionary algorithm, NSGA-II evolves
a set of N individuals in a population denoted as Pop with
the difference that they are ranked according to a dominance
criterion and a crowding distance measure, which are used to
maintain a good diversity of solutions. After each iteration of
the algorithm, only the best N individuals according to this
ranking are maintained to the next generation.

The three main pillars of the NSGA-II algorithm are:
• Fast non-dominated sorting: The function F =

FASTNONDOMINATEDSORT(U(t)) performs a non-
dominated sorting and ranks the individuals stored in a
set U into several non-dominated fronts denoted as Fi,
where the solutions in F0 are the non-dominated solutions
in the entire set. Fi is the set of non-dominated solutions
in R \ (F0 ∪ · · · ∪ Fi−1).
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• Crowding distance: The function
CROWDINGDISTANCEASSIGNMENT(Fi) assigns to
each one of the individuals in Fi a crowding distance
value, which is the distance between the individual
and its neighbours. The individuals with the smallest
crowding distances are selected with a lower probability
than the ones with larger values.

• Elitism: The individuals from the first front F0 are always
ranked first, according to the dominance criterion and
their crowding distance.

For more details about EMO approaches, please refer to
[18].

A. Multi-objective Reinforcement Learning (MORL)

Reinforcement Learning (RL) algorithms have also been
used with MOPs. RL [25] is a broad field in Machine Learning
that studies real-time planning and control situations where an
agent has to find the actions (or sequences of actions) that
should be used in order to maximize the reward from the
environment.

The dynamics of an RL problem are usually captured by a
Markov Decision Process (MDP) which is a tuple (S,A, T,R),
in which S is the set of possible states in the problem (or
game), and s0 is the initial state. A is the set of available
actions the agent can make at any given time, and the transition
model T (si, ai, si+1) determines the probability of reaching
the state si+1 when action ai is applied in state si. The
reward function R(si) provides a single value (reward) that
the agent must optimize, representing the desirability of the
state si reached. Finally, a policy π(si) = ai determines which
actions ai must be chosen from each state si ∈ S1. One of
the most important challenges in RL, as shown in Section II,
is the trade-off between exploration and exploitation while
trying to act. While learning, a policy must choose between
selecting the actions that provided good rewards in the past
and exploring new parts of the search space by selecting new
actions.

Multi-objective Reinforcement Learning (MORL) [26]
changes this definition by using a vector R = r1, . . . , rm as
rewards of the problem (instead of a scalar). Thus, MORL
problems differ from RL in having more than one objective
(here m) that must be maximized. If the objectives are
independent or non-conflicting, scalarization approaches such
as the weighted sum approach, could be suitable to tackle the
problem. Essentially, this would mean using a conventional
RL algorithm on a single objective where the global reward
is obtained from a weighted-sum of the multiple rewards.
However, this is not always the case, as usually the objectives
are conflicting and the policy π must balance among them.

Vamplew et al. [26] propose a single-policy algorithm which
uses a preference order in the objectives (either given by the
user or by the nature of the problem). An example of this type
of algorithm can be found at [27], where the authors introduce
an order of preference in the objectives and constrain the value
of the desired rewards. Scalarization approaches would also

1This is a deterministic policy and only valid during acting, not learning

Fig. 3: HV (P ) of a given Pareto-front P

fit in this category, as shown in the work performed by S.
Natarajan et al. [28].

The second type of algorithms, multiple-policy, aims to
approximate the optimal Pareto-front of the problem. This is
the aim of the algorithm proposed in this paper. An example of
this type of algorithm is the one given by L. Barrett [29], who
proposes the Convex Hull Iteration Algorithm. This algorithm
provides the optimal policy for any linear preference function,
by learning all policies that define the convex hull of the
Pareto-front.

B. Metrics

The quality of an obtained non-dominated set can be
measured using different diversity or/and convergence met-
rics [18]. The Hypervolume Indicator (HV) is a popular metric
for measuring both the diversity and convergence of non-
dominated solutions [30]. This approach can be additionally
used to compare different non-dominated sets. Given a Pareto
front P , HV (P ) is defined as the volume of the objective
space dominated by P . More formally, HV (P ) = µ(x ∈ Rd :
∃r ∈ P s.t r � x), where µ is the de Lebesgue measure
on Rd. If the objectives are to be maximized, the higher the
HV (P ), the better the front calculated. Figure 3 shows an
example of HV (P ) where the objective dimension space is
m = 2.

IV. MULTI-OBJECTIVE MONTE CARLO TREE SEARCH

Adapting MCTS into Multi-Objective Monte Carlo Tree
Search (MO-MCTS) requires the obvious modification of
dealing with multiple rewards instead of just one. As these
are collected at the end of a Monte Carlo simulation, the
reward value r now becomes a vector R = r0, r1, . . . , rm,
where m is the number of objectives to optimize. Derived
from this change, the average value Q(s, a) becomes a vector
that stores the average reward of each objective. Note that the
other statistics (N(s, a) and N(s)) do not need to change, as
these are just node and action counters. The important question
to answer next is how to adapt the vector Q(s, a) to use it in
the UCB1 formula (Equation 1).

An initial attempt at Multi-Objective MCTS was addressed
by W. Wang and Michele Sebag [31], [32]. In their work, the



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

Fig. 4: rpx is the projection of the rx value on the piecewise
linear surface (discontinuous line). The shadowed surface
represents HV (P ). From [31].

authors employ a mechanism, based on the HV calculation,
to replace the UCB1 equation. The algorithm keeps a Pareto
archive (P) with the best solutions found in end game states.
Every node in the tree defines rsa as a vector of UCB1 values,
in which each rsa,i is the result of calculating UCB1 for each
particular objective i.

The next step is to define the value for each state and action
pair, V (s, a), as in Equation 3. rpsa is the projection of rsa into
the piecewise linear surface defined by the Pareto archive P
(see Figure 4). Then, HV (P ∪ rsa) is declared as the HV of
P plus the point rsa. If rsa is dominated by P, the distance
between rsa and rpsa is subtracted from the HV calculation.
The tree policy selects actions based on a maximization of the
value of V (s, a).

V (s, a) =

{
HV (P ∪ rsa)− dist(rpsa, rsa) Otherwise
HV (P ∪ rsa) if rsa � P

(3)
The proposed algorithm was employed successfully in two

domains: the DST and the Grid Scheduling problem. In both
cases, the results matched the state-of-the-art, albeit at the
expense of a high computational cost.

As mentioned before, one of the objectives of this paper is
to propose an MO-MCTS algorithm that is suitable for real-
time domains. Therefore, an approach different from Wang’s
is needed, in order to overcome the high computational cost
involved in their approach.

In the algorithm proposed in this paper, the reward vector
r that was obtained at the end of a Monte Carlo simulation is
back-propagated through the nodes visited in the last iteration
until the root is reached. In the vanilla algorithm, each node
would use this vector r to update its own accumulated reward
vector R. In the algorithm proposed here, each node in
the MO-MCTS algorithm also keeps a local Pareto front
approximation (P ), updated at each iteration with the reward
vector r obtained at the end of the simulation. Algorithm 2
describes how the node statistics are updated in MO-MCTS.

Here, if r is not dominated by the local Pareto front
approximation, it is added to the front and r is propagated

Algorithm 2 Pareto MO-MCTS node update.
1: function UPDATE(node, r, dominated = false)
2: node.V isits = node.V isits+ 1
3: node.R = node.R+ r
4: if !dominated then
5: if node.P � r then
6: dominated = true
7: else
8: node.P = node.P ∪ r
9: UPDATE(node.parent, r, dominated)

to its parent. It may also happen that r dominates all or
some solutions of the local front, in which case the new
solution is included and the dominated solutions are removed
from the Pareto front approximation. If r is dominated by
the node’s Pareto front approximation, it does not change and
there is no need to maintain this propagation up the tree. Three
observations can be made about the mechanism described here:

• Each node in the tree has an estimate of the quality of
the solutions reachable from there, both as an average (as
in the baseline MCTS) and as the best case scenario (by
keeping the non-dominated front P ).

• By construction, if a reward r is dominated by the local
front of a node, it is a given that it will be dominated by
the nodes above in the tree, so there is no need to update
the fronts of the upper nodes, producing little impact on
the computational cost of the algorithm.

• It is easy to infer, from the last point, that the Pareto front
approximation of a node cannot be worse than the front
of its children (in other words, the front of a child will
never dominate that of its parent). Therefore, the root of
the tree contains the best non-dominated front ever found
during the search.

This last detail is important for two main reasons. First
of all, the algorithm allows the root to store information as
to which action to take in order to converge to any specific
solution in the front discovered. This information can be used,
when all iterations have been performed, to select the move
to perform next. If weights for the different objectives are
provided, these weights can be used to select the desired
solution in the Pareto front approximation of the root node, and
hence select the action that leads to that point. Secondly, the
root’s Pareto front can be used to measure the global quality
of the search using the hypervolume calculation.

Finally, the information stored at each node regarding the
local Pareto front approximation can be used to substitute
Q(s, a) in the UCB1 equation. The quality of a given pair
(s, a) can be obtained by measuring the HV of the Pareto
front stored in the node reached from state s after applying
action a. This can be defined as Q(s, a) = HV (P )/N(s),
and the Upper Confidence Bound equation, referred to here as
MO − UCB, is described as in Equation 4).

a∗ = arg max
a∈A(s)

{
HV (P )/N(s) + C

√
lnN(s)

N(s, a)

}
(4)
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This algorithm, similar to NSGA-II due to their multi-
objective nature, provides a non-dominated front as a solution.
However, in planning and control scenarios like the games
analyzed in this research, an action must be provided to
perform a move in the next step. The question that arises is
how to choose the move to make based on the information
available.

As shown before, it is straightforward to discover which
actions lead to what points in the front given as a solution:
the first gene in the best NSGA-II individual, a root’s child
in MO-MCTS. Hence, by identifying the point in the Pareto
front approximation that the algorithm should converge to, it
is possible to execute the action that leads to that point.

In order to select a point in the Pareto front, a weight vector
W can be defined, with a dimension m equal to the number
of objectives (W = (w1, w2, . . . , wm);

∑m
i wi = 1). Two

different mechanisms are proposed, for reasons that will be
explained in the experiments section (VI):
• Weighted Sum: the action chosen is the one that maxi-

mizes the weighted sum of the reward vector multiplied
by W , for each point in the front.

• Euclidean distance: the euclidean distance from each
point in the Pareto front approximation (normalized in
[0, 1]) to the vector W is calculated. The action to choose
would be the one that leads to the point in the Pareto front
with the shortest distance to W .

Note that, in the vanilla MCTS, there is no Pareto front
obtained as a solution. Typically, in this case, rewards are
calculated as a weighted sum of the objectives and a weight
vector W . The action is then chosen following any of the
mechanisms usually employed in the literature: the action
taken more often from the root; the one that leads to the best
reward found; the move with the highest expected reward; or
the action that maximizes Equation 1 in the root.

V. BENCHMARKS

Two different games are used in this research to analyze the
performance of the algorithm proposed.

A. Deep Sea Treasure

The Deep Sea Treasure (DST) is a popular multi-objective
problem introduced by Vamplew et al. [26]. In this single-
player puzzle, the agent controls a submarine with the objec-
tive of finding a treasure located at the bottom of the sea. The
world is divided into a grid of 10 rows and 11 columns, and
the vessel starts at the top left board position. There are three
types of cells: empty cells (or water), that the submarine can
traverse; ground cells that, as the edges of the grid, cannot
be traversed; and treasure cells, that provide different rewards
and finish the game. Figure 5 shows the DST environment.

The ship can perform four different moves: up, down, right
and left. If the action applied takes the ship off the grid or into
the sea floor, the vessel’s position will not change. There are
two objectives in this game: the number of moves performed
by the ship, which must be minimized, and the value of the
treasure found, which should be maximized. As can be seen in

Fig. 5: Environment of the Deep Sea Treasure (from [26]):
grey squares represent the treasure (with their different values)
available in the map. The black cells are the sea floor and the
white ones are the positions that the vessel can occupy freely.
The game ends when the submarine picks one of the treasures.

Fig. 6: Optimal Pareto Front of the Deep Sea Treasure, with
both objectives to be maximized.

Figure 5, the most valuable treasures are at a greater distance
from the initial position, so the objectives are in conflict.

Additionally, the agent can only make up to 100 plies or
moves. This allows the problem to be defined as the maximiza-
tion of two rewards: (ρp, ρv) = (100−plies, treasureV alue).
Should the ship perform all moves without reaching a treasure,
the result would be (0,0). At each step, the score of a location
with no treasure is (−1, 0).

The optimal Pareto front of the DST is shown in Figure 6.
There are 10 non-dominated solutions in this front, one per
each treasure in the board. The front is globally concave, with
local concavities at the second (83, 74), fourth (87, 24) and
sixth (92, 8) points from the left. The HV value of the optimal
front is 10455.

Section III introduced the problems of linear scalarization
approaches when facing non-convex optimal Pareto fronts. The
concave shape of the DST’s optimal front means that those ap-
proximations converge to the non dominated solutions located
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Fig. 7: Example of two different sequences of actions (R:
Right, D: Down) that lie in the same position in the map,
but at a different node in the tree.

at the edges of the Pareto front: (81, 124) and (99, 1). Note
that this happens independently from the weights chosen for
the linear approximation: some solutions of the front just can’t
be reached with these approaches. Thus, successful approaches
should be able to find all elements of the optimal Pareto front
and converge to any of the non dominated solutions.

B. Heuristics for DST

The DST is a problem especially suited for the use of Trans-
position Tables (TT) [33] within MCTS. TT is a technique
used to optimize tree search-based algorithms when two or
more states can be found at different locations in the tree.
It consists of sharing information between these equivalent
states in a centralized manner, in order to avoid managing
these positions as completely different states. Figure 7 shows
an example of this situation in the DST.

In this example, the submarine starts in the initial position
(P1, root of the tree) and makes a sequence of moves that
places it in P2. From this location, two optimal trajectories
to move to P3 would be route a and b. In a tree that does
not use TT, there would be two different nodes to represent
P3, although the location and number of moves performed up
to this point are the same (thus, the states are equivalent). It
is worthwhile highlighting that the coordinates of the vessel
are not enough to identify two equivalent states, the number
of moves is also needed: imagine a third route from P2 to
P3 with the moves: Up, Right, Right, Down, Down. As the
submarine performs 5 moves, the states are not the same, and
the node where the ship is in P3 now would be two levels
deeper in the tree.

TT tables are implemented in the MCTS algorithms tested in
this benchmark by using hash tables that store a representative
node for each pair (position,moves) found. The key of the
hash map then needs to be obtained from three values: position
coordinates x and y of the ship in the board, and number of
moves, indicated by the depth of the node in the tree. Hence,
transpositions can only happen at the same depth within the
tree, a feature that has been successfully tried before in the
literature [34].

As DST has two different objectives, number of moves and
value of the treasure, the quality of a state can be assessed
by two rewards, ρp and ρv , for each objective respectively.

ρp is adjusted to be maximized using the maximum number
of moves in the game, while ρv is simply the value of the
cell that holds the treasure. Therefore, the reward vector to
maximize is defined as r = {ρp, ρv}. Equation 5 summarizes
these rewards:

ρp = 100−moves
ρv = treasureV alue

(5)

C. Multi-Objective PTSP

The Multi-Objective Physical Travelling Salesman Problem
(MO-PTSP) is a game that was employed in a competition
held at the IEEE Conference on Computational Intelligence in
Games (CIG) in 2013. This was a modification of the Physical
Travelling Salesman Problem (PTSP), previously introduced
by Perez et al. [35]. The MO-PTSP is a real-time game
where the agent navigates a ship and must visit 10 waypoints
scattered around the maze. All waypoints must be visited
to consider a game as complete, and a game-tick counter
is reset every time a waypoint is collected, finishing the
game prematurely (and unsuccessfully) if 800 game steps are
reached before visiting another waypoint.

This needs to be accomplished while optimizing three differ-
ent objectives: 1) Time: the player must collect all waypoints
scattered around the maze in as few time steps as possible;
2) Fuel: the fuel consumption by the end of the game must
be minimized; and 3) Damage: the ship should end the game
with as little damage as possible.

In the game, the agent must provide an action every 40
milliseconds. The available actions are combinations of two
different inputs: throttle (that could be on or off ) and steering
(that could be straight, left or right). This allows for 6
different actions that modify the ship’s position, velocity and
orientation. These vectors are kept from one step to the next,
keeping the inertia of the ship, and making the navigation task
not trivial.

The ship starts with 5000 units of fuel, and one unit is
spent every time an action supplied has the throttle input on.
There are, however, two ways of collecting fuel: each waypoint
visited grants the ship 50 more units of fuel; and there are also
fuel canisters scattered around the maze that provide 250 more
units.

Regarding the third objective, the ship can suffer damage
in two different ways: by colliding with obstacles and driving
through lava. In the former case, the ship can collide with
normal obstacles (that subtract 10 units of damage) and espe-
cially damaging obstacles (30 units). In the latter, lava lakes
are abundant in MO-PTSP levels and, in contrast with normal
surfaces, they deal one unit of damage for each time step the
ship spends over this type of surface. All these subtractions
are deducted from an initial counter of 5000 points of damage.

Figure 8 shows an example of an MO-PTSP map, as drawn
by the framework. Waypoints not yet visited are painted as
blue circles, while those already collected are depicted as
empty circles. The green ellipses represent fuel canisters,
normal surfaces are drawn in brown and lava lakes are printed
as red-dotted yellow surfaces. Normal obstacles are black and
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Fig. 8: Sample MO-PTSP map.

damaging obstacles are drawn in red. Blue obstacles are elastic
walls that produce no damage to the ship. The vessel is drawn
as a blue polygon and its trajectory is traced with a black line.

D. Heuristics for MO-PTSP

All the algorithms tested in the MO-PTSP in this research
employ macro-actions, a concept that can be used for coars-
ening the action space by applying the action chosen by the
control algorithm in several consecutive cycles, instead of just
in the next one.

Previous research in PTSP [14], [36] suggests that using
macro-actions for real-time navigation domains increases the
performance of the algorithms, and it has been used in the
previous PTSP competitions by the winner and other entries.

A macro-action of length L is defined as a repetition of a
given action during L consecutive time steps. The main ad-
vantage of macro-actions is that the control algorithms can see
further in the future, and then reduce the implication of open-
endedness in real-time games (see Section II). As this reduces
the search space significantly, a better algorithm performance
is allowed. A consequence of using macro-actions is also that
the algorithm can employ L consecutive steps to plan the next
move (the next macro-action) to make. Therefore, instead of
spending 40 milliseconds, as in MO-PTSP, to define the next
action, the algorithm can employ 40×L milliseconds for this
task, and hence perform a more extensive search.

In MO-PTSP, the macro-action size is L = 15, a value
that has shown its proficiency before in PTSP. For more
information about macro-actions and their application to real-
time navigation problems such as the PTSP, the reader is
referred to [14].

In order to evaluate a game state in MO-PTSP, three
different measures or rewards are taken, ρt, ρf , ρd, one for
each one of the objectives: time, fuel and damage, respectively.
All these rewards are defined so they have to be maximized.
The first reward uses a measure of distance for the time
objective, as indicated in Equation 6:

ρt = 1− dt/dM (6)

The MO-PTSP framework includes a path-finding library
that allows controllers to query the shortest distance of a
route of waypoints. dt indicates the distance from the current
position until the last waypoint, following the desired route,
and dM is the distance of the whole route from the starting
position. Minimizing the distance to the last waypoint will
lead to the end of the game.

Equation 7 shows how the value of the fuel objective, ρf ,
is obtained:

ρf = (1− (λt/λ0))× α+ ρt × (1− α) (7)

λt is the fuel consumed so far, and λ0 is the initial fuel
at the start of the game. α is a value that balances between
the fuel component and the time objective from Equation 6.
Note that, as waypoints need to keep being visited, it is
necessary to include a distance measure for this reward.
Otherwise, an approach that prioritizes this objective would
not minimize distance to waypoints at all (the ship could just
stand still: no fuel consumed is optimal), and therefore would
not complete the game. The value of α has been determined
empirically, in order to provide a good balance between these
two components, and is set to 0.66.

Finally, Equation 8 gives the method used to calculate the
damage objective, ρd:

ρd =

{
(1− (gt/gM ))× β1 + ρt × (1− β1), sp > γ

(1− (gt/gM ))× β2 + ρt × (1− β2), sp ≤ γ
(8)

gt is the damage suffered so far in the game, and gM is
the maximum damage the ship can take. In this case, three
different variables are used to regulate the behaviour of this
objective: γ, β1 and β2. Both β1 and β2 have the same role
as α in Equation 7: they balance between the time objective
and the damage measure. The difference is that β1 is used in
high speeds, while β2 is employed with low velocities. This
is distinguished by the parameter γ, that can be seen as a
threshold value for the ship’s speed (sp). This differentiation
is made in order to avoid low speeds in lava lakes, as this
significantly increases the damage suffered. The values for
these variables have also been determined empirically, and
they are set to γ = 0.8, β1 = 0.75 and β2 = 0.25.

The final reward vector to be maximized is therefore
r = {ρt, ρf , ρd}. It is important to highlight again that these
three rewards are the same for all the algorithms tested in the
experiments.

VI. EXPERIMENTATION

The experiments performed in this research compare three
different algorithms in the two benchmarks presented in Sec-
tion V: a single objective MCTS (referred to here simply
as MCTS), the Multi-Objective MCTS (MO-MCTS) and a
rolling horizon version of the NSGA-II algorithm described
in Section III (NSGA-II). This NSGA-II version evolves a
population where the individuals are sequences of actions
(macro-actions in the MO-PTSP case), obtaining the fitness
from the state of the game after applying the sequence. The
population sizes, determined empirically, were set to 20 and
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50 individuals for DST and MO-PTSP respectively. The value
of C in Equation 1 and 4 is set to

√
2.

All the algorithms have a limited number of evaluations
before providing an action to perform. In order for these
games to be real-time, the time budget allowed is close to 40
milliseconds. With the objective of avoiding congestion peaks
at the machine where the experiments are run, the average
number of evaluations possible in 40 ms is calculated and
employed in the tests. This leads to 4500 evaluations in the
DST, and 500 evaluations for MO-PTSP, using the same server
where the PTSP and MO-PTSP competitions were run2.

A. Results in DST

As the optimal Pareto front of the DST is known, a measure
of performance can be obtained by observing the percentage of
times these solutions are found by the players. As the solution
that the algorithms converge to depends on the weights vector
employed during the search (see end of Section IV), the
approach taken here is to provide different weight vectors W
and analyze them separately.

The weight vector for DST has two dimensions. This vector
is here referred to as W = (wp, wv), where wp weights moves;
and wv weights the treasure value (wv = 1 − wp). wp takes
values between 0 and 1, with a precision of 0.01, and 100 runs
have been performed for each pair (wp, wv). Hence, the game
has been played a total of 10000 times, for each algorithm.

Figure 9 shows the results obtained after these experiments
were performed. The first point to note is that MCTS only
converges (mostly) to the two optimal points located at the
edges of the optimal Pareto front (OPT-1 and OPT-10, see also
Figure 6). This is an expected result, as K. Deb. suggested
in [18] and was also discussed before in Section III: linear
scalarization approaches only converge to the edges of the
optimal Pareto front if its shape is non-convex.

The results show clearly how approximating the optimal
Pareto front allows for finding all possible solutions. Both the
NSGA-II and MO-MCTS approaches are able to converge to
any solution in the front given the appropriate weight vector.
It is important to highlight that these two algorithms employed
the Euclidean distance action selection (see Section IV). Other
experiments, not included in this paper, showed that weighted
sum action selection provides similar results to MCTS (that is,
convergence to the edges of the front). The crucial distinction
to make here is that both algorithms, NSGA-II and MO-
MCTS, allow for better action selection mechanisms, which
are able to overcome this problem by approximating a global
Pareto front.

Finally, in the comparison between NSGA-II and MO-
MCTS, the latter algorithm obtains higher percentages for
each one of the points in the front. This result suggests that,
with a limited number of iterations/evaluations, the proposed
algorithm is able to explore the search space more efficiently
than a rolling horizon version of NSGA-II.

2Intel Core i5, 2.90GHz, 4GB of RAM.

B. Results in MO-PTSP

The same three algorithms have been tested in the MO-
PTSP domain. The experiments are performed in the 10 maps
available within the framework 3. In this case, the optimal
Pareto front is not known in advance, and normally differs
from one map to another. Hence, the mechanisms to compare
the performance of the algorithms tested need to be different
than the one used for DST.

The idea is as follows. First of all, 4 different weight vectors
are tested: W1 = (0.33, 0.33, 0.33), W2 = (0.1, 0.3, 0.6),
W3 = (0.1, 0.6, 0.3) and W4 = (0.6, 0.1, 0.3), where each wi

corresponds to the weight for an objective (wt for time, wf for
fuel and wd for damage, in this order). W1 treats all objectives
as having the same weight, while the other three give more
relevance to different objectives. These vectors then provide
a wide spectrum for weights in this benchmark. In this case,
MO-MCTS uses these weights to select an action based on a
weighted sum, which in preliminary experiments has shown
better performance than the Euclidean distance mechanism.

The first point to check is if the different weight vectors
affect the solutions obtained by MO-MCTS. Table I shows
the results of executing the MO-MCTS controller during 30
games in each one of the 10 maps of the MO-PTSP, for every
weight vector. This table includes the averages and standard
errors obtained. Results in bold are those with an independent
t-test p-value smaller than 0.01, comparing the results of the
objective with the highest weight with the result from the
default weight vector W1 = (0.33, 0.33, 0.33) in the same
map. It can be seen that the highest weight in W leads, in
most of the cases, to the best solution in that objective in the
map.

Some exceptions can be explained by analysing the specific
maps: in map 1, a fuel canister is always collected near the
end, restoring the fuel level to its maximum. This leaves too
few cycles to make a difference in the controller (note also
that this is the map with the smallest fuel consumption). Also,
in map 10, there is no difference in the damage objective,
however map 10 is a map with no obstacles to damage the
ship (thus only lava lakes deal damage). This also results in
this map being the one with the lowest overall damage. It can
also be seen that, in those maps where time has priority, the
results for this objective are not as dominant as the other two.
This can be explained by the fact that the time heuristic is
actually part of the fuel and damage heuristics (Equation 6 in
Eqs. 7 and 8).

These results suggest that the weights effectively work
on making the algorithm converge to different points in the
Pareto front approximated by the algorithm. Now, it is time
to compare these results with the other algorithms. In order to
do this, the same number of runs is performed for NSGA-II
and MCTS in the 10 maps of the benchmark.

In order to compare the several algorithms, the results are
examined in pairs, in terms of dominance. The procedure is
as follows: once all games on a single map have been run,
the Mann-Whitney-Wilcoxon non-parametric test with 95%

3Available at www.ptsp-game.net

www.ptsp-game.net
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Fig. 9: Results in DST: percentages of each optima found during 100 games played with different weight vectors. Scalarization
approaches converge to the edges of the optimal front, whereas Pareto approaches are able to find all optimal solutions. The
proposed algorithm, MO-MCTS, finds these solutions significantly more often than NSGA-II.

Map W : (wt, wf , wd) Time Fuel Damage

Map 1
(0.33, 0.33, 0.33) 1654 (7) 131 (2) 846 (13)
(0.1, 0.3, 0.6) 1657 (8) 130 (2) 773(11)
(0.1, 0.6, 0.3) 1681 (11) 131 (2) 837 (15)
(0.6, 0.1, 0.3) 1649 (8) 132 (2) 833 (13)

Map 2
(0.33, 0.33, 0.33) 1409 (7) 235 (4) 364 (3)
(0.1, 0.3, 0.6) 1402 (6) 236 (5) 354(2)
(0.1, 0.6, 0.3) 1416 (8) 219(4) 360 (3)
(0.6, 0.1, 0.3) 1396 (8) 245 (5) 361 (2)

Map 3
(0.33, 0.33, 0.33) 1373 (6) 221 (3) 301 (7)
(0.1, 0.3, 0.6) 1378 (5) 211 (3) 268(5)
(0.1, 0.6, 0.3) 1385 (6) 203(4) 291 (7)
(0.6, 0.1, 0.3) 1363 (4) 229 (4) 285 (7)

Map 4
(0.33, 0.33, 0.33) 1383 (6) 291 (5) 565 (5)
(0.1, 0.3, 0.6) 1385 (7) 304 (4) 542(4)
(0.1, 0.6, 0.3) 1423 (6) 273(4) 583 (5)
(0.6, 0.1, 0.3) 1388 (6) 309 (4) 559 (5)

Map 5
(0.33, 0.33, 0.33) 1405 (7) 467 (4) 559 (4)
(0.1, 0.3, 0.6) 1431 (9) 447 (4) 541(4)
(0.1, 0.6, 0.3) 1467 (9) 411(5) 567 (5)
(0.6, 0.1, 0.3) 1399 (9) 469 (4) 547 (3)

Map 6
(0.33, 0.33, 0.33) 1575 (7) 549 (5) 303 (4)
(0.1, 0.3, 0.6) 1626 (9) 540 (6) 286 (5)
(0.1, 0.6, 0.3) 1703 (11) 499(4) 316 (7)
(0.6, 0.1, 0.3) 1571 (7) 559 (5) 294 (4)

Map 7
(0.33, 0.33, 0.33) 1434 (5) 599 (6) 284 (6)
(0.1, 0.3, 0.6) 1475 (10) 602 (5) 243 (6)
(0.1, 0.6, 0.3) 1489 (12) 549(3) 264 (6)
(0.6, 0.1, 0.3) 1407(8) 618 (5) 270 (6)

Map 8
(0.33, 0.33, 0.33) 1761 (9) 254 (5) 382 (3)
(0.1, 0.3, 0.6) 1804 (10) 269 (4) 357(4)
(0.1, 0.6, 0.3) 1826 (10) 230 (3) 392 (7)
(0.6, 0.1, 0.3) 1732 (9) 311 (8) 379 (6)

Map 9
(0.33, 0.33, 0.33) 2501 (14) 926 (6) 574 (9)
(0.1, 0.3, 0.6) 2503 (10) 921 (10) 524(8)
(0.1, 0.6, 0.3) 2641 (14) 833(5) 574 (14)
(0.6, 0.1, 0.3) 2470 (9) 956 (5) 573 (8)

Map 10
(0.33, 0.33, 0.33) 1430 (8) 630 (4) 205 (2)
(0.1, 0.3, 0.6) 1493 (13) 615 (4) 209 (2)
(0.1, 0.6, 0.3) 1542 (10) 554(4) 229 (5)
(0.6, 0.1, 0.3) 1378(5) 663 (6) 202 (4)

TABLE I: MO-PTSP averages (plus standard error) with dif-
ferent weight vectors. Results in bold obtained an independent
t-test p-value < 0.01.

confidence is calculated on the three objectives. If the mea-
sures on all objectives are assumed to be drawn from different
distributions, their averages are compared for a dominance test
(if not, then no dominance relationship can be derived from
the results). If one result dominates another, then the algorithm
dominates the other in that particular map.

Extending this comparison to all maps, each pair of
algorithms ends with a triplet (D,Ø, d). D is the number of
maps where the first algorithm dominates the second. Ø is
the amount of maps where no dominance can be established,
either because the Mann-Whitney-Wilcoxon non-parametric
test failed, or because there is no dominance according to
the dominance rules described in Section III. Finally, d states
the number of maps where the first is dominated by the
second. For example, a triplet (D,Ø, d) = (8, 2, 0) comparing
algorithms A and B would mean that the results obtained by
A dominate those from B in 8 of the 10 maps, and that it is
not possible to derive any dominance in the other 2. Table II
summarizes these results for all the algorithms tested.

One of the first things to notice is that MO-MCTS dominates
MCTS and NSGA-II in most of the maps, and it is never
dominated in any. In particular, the dominance of MO-MCTS
over MCTS is outstanding, even dominating in all 10 maps for
two of the weight vectors. MO-MCTS also dominates NSGA-
II in more maps than in those where there is no dominance,
and is never dominated by NSGA-II in any map.

It is also interesting to see that NSGA-II dominates the
weighted sum version of MCTS, although for the vector W2

there is a technical draw, as they dominate each other in 4
different maps each and there is no dominance in the other 2.

Additionally, Table II contains a fourth entry,
PurofMovio, that the algorithms are compared against.
PurofMovio was the winning entry of the 2013 MO-PTSP
competition, a controller based on a weighted-sum MCTS
approach (see [16] for details of its implementation). As
can be seen, PurofMovio obtains better results than the
algorithm proposed in this paper.

However, it is very important to highlight that
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W : (wt, wf , wd) MO-MCTS (D,Ø, d) MCTS (D,Ø, d) NSGA-II (D,Ø, d) PurofMovio (D,Ø, d)

MO-MCTS
W1 : (0.33, 0.33, 0.33)

−
(8, 2, 0) (8, 2, 0) (0, 5, 5)

W2 : (0.1, 0.3, 0.6) (10, 0, 0) (4, 6, 0) (0, 6, 4)
W3 : (0.1, 0.6, 0.3) (8, 2, 0) (7, 3, 0) (0, 5, 5)
W4 : (0.6, 0.1, 0.3) (10, 0, 0) (3, 7, 0) (0, 3, 7)

MCTS
W1 : (0.33, 0.33, 0.33) (0, 8, 2)

−
(0, 2, 8) (0, 2, 8)

W2 : (0.1, 0.3, 0.6) (0, 0, 10) (4, 2, 4) (0, 3, 7)
W3 : (0.1, 0.6, 0.3) (0, 2, 8) (0, 1, 9) (0, 6, 4)
W4 : (0.6, 0.1, 0.3) (0, 0, 10) (3, 3, 4) (0, 1, 9)

NSGA-II
W1 : (0.33, 0.33, 0.33) (0, 2, 8) (8, 2, 0)

−
(0, 4, 6)

W2 : (0.1, 0.3, 0.6) (0, 6, 4) (4, 2, 4) (0, 4, 6)
W3 : (0.1, 0.6, 0.3) (0, 3, 7) (9, 1, 0) (0, 5, 5)
W4 : (0.6, 0.1, 0.3) (0, 7, 3) (4, 3, 3) (0, 4, 6)

PurofMovio
W1 : (0.33, 0.33, 0.33) (5, 5, 0) (8, 2, 0) (6, 4, 0)

−W2 : (0.1, 0.6, 0.3) (4, 6, 0) (7, 3, 0) (6, 4, 0)
W3 : (0.1, 0.3, 0.6) (5, 5, 0) (6, 4, 0) (5, 5, 0)
W4 : (0.6, 0.1, 0.3) (7, 3, 0) (9, 1, 0) (6, 4, 0)

TABLE II: Results in MO-PTSP: Each cell indicates the triplet (D,Ø, d), where D is the number of maps where the row
algorithm dominates the column one, Ø is the amount of maps where no dominance can be established, and d states the
number of maps where the row algorithm is dominated by the column one. All the algorithms followed the same route (order
of waypoints and fuel canisters) in every map tested.

PurofMovio is not using the same heuristics as the
ones presented in this research. Hence, nothing can be
concluded from making pairwise comparisons directly with
the winning entry of the competition. It is likely that
PurofMovio’s heuristics are more efficient than the ones
presented here, but the goal of this paper is not to develop
the best heuristics for the MO-PTSP, but to provide an insight
into how a multi-objective version of MCTS compares to
other algorithms using the same heuristics.

Nonetheless, the inclusion of PurofMovio in this compar-
ison is not pointless: it is possible to assess the quality of the
three algorithms tested here by comparing their performance
relatively, against this high quality entry. Attending to this
criteria, it can be seen how MO-MCTS is the algorithm that
is dominated less often by PurofMovio, producing similar
results on an average of 4.75 out of the 10 maps, and being
dominated in 5.25 maps. MCTS and NSGA-II are dominated
more often than MO-MCTS, being dominated in an average
of 7.5 and 5.75 of the maps, respectively. This comparative
result shows again that MO-MCTS is achieving the best results
among the three algorithms compared here.

C. A step further in MO-PTSP: segments and weights

There is another aspect that can be further improved in
the MO-PTSP benchmark, and is also applicable to other
domains. It is naive to think that a unique weight vector will
be the ideal one for the whole game. Specifically in the MO-
PTSP, there are regions of the map where there are more
obstacles or lava lakes, hence the ship is most likely to suffer
higher damage there. Also, the route followed during the game
affects the relative ideal speed between waypoints, or perhaps
a fuel canister may be picked up, which will affect how the
fuel objective will be managed. In general, many real-time
games go through different phases, with different objectives
and priorities.

A way to provide different weights at different times in MO-
PTSP is straightforward. Given the route of waypoints (and
fuel canisters) being followed, one can divide it into segments,

where each segment starts and ends with a waypoint (or fuel
canister). Then, each segment can be assigned a particular
weight vector W .

The question is then how to assign these weight vectors.
Three different ways can be devised:
• Manually set the weight vectors. This was attempted and

it proved to be a non trivial task.
• Setting the appropriate weight for each segment dy-

namically, based on the segment’s characteristics. This
involves the creation or discovery of features and some
kind of function approximation to assign the values.

• Learn, for each specific map, the combination of weight
vectors that produces better results.

This section shows some initial results obtained when test-
ing the third variant, using a stochastic hill climbing algorithm
on each map. The goal is to check if, by varying the weight
vectors between segments, better solutions can be achieved.

An individual is identified by a string of integers, where
each integer refers to one of the weight vectors utilized
in the previous sections ( 1 = W1 = (0.33, 0.33, 0.33),
2 = W2 = (0.1, 0.3, 0.6) and 3 = W3 = (0.1, 0.6, 0.3). W4

has been left out of this experiment, as it has shown to be
the least influential weight vector). The solution is evaluated
playing a particular map 10 times, and its fitness is obtained
by calculating the average of those runs. A population of 10
individuals is kept, and the solutions of the initial population
are created either randomly, or mutated from base individuals.
These base individuals all have segments with the same weight
vector W1, W2, or W3.

The best solution, determined by dominance, is kept and
promoted to the next generation, where it is mutated to
generate other individuals of the population. Also, a portion
of the individuals of the next population is created uniformly
at random at every generation, until the end of the algorithm,
which is established at 50 generations.

Table III shows the results obtained on each run, one per
map. Each row corresponds to a run in the associated map, and
it provides different results depending on the weights vector.
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Map Weight genome Time Fuel Damage D

Map 1
11111111111111 1654 (7) 131 (2) 846 (13) �
22222222222222 1657 (8) 130 (2) 773 (11) �
33333333333333 1681 (11) 131 (2) 837 (15) �
32312212331112 1619 (12) 130 (2) 744 (15)

Map 2
11111111111111 1409 (7) 235 (4) 364 (3) �
22222222222222 1402 (6) 236 (5) 354 (2) �
33333333333333 1416 (8) 219 (4) 360 (3) �
23131312323213 1390 (10) 210 (3) 353 (3)

Map 3
11111111111111 1373 (6) 221 (3) 301 (7) �
22222222222222 1378 (5) 211 (3) 268 (5) �
33333333333333 1385 (6) 203 (4) 291 (7) Ø
11122222112231 1358 (9) 219 (7) 263 (12)

Map 4
11111111111111 1383 (6) 291 (5) 565 (5) �
22222222222222 1385 (7) 304 (4) 542 (4) �
33333333333333 1423 (6) 273 (4) 583 (5) Ø
11121131212112 1360 (4) 282 (5) 540 (4)

Map 5
11111111111111 1405 (7) 467 (4) 559 (4) �
22222222222222 1431 (9) 447 (4) 541 (4) �
33333333333333 1467 (9) 411 (5) 567 (5) Ø
21311213111211 1397 (11) 448 (10) 535 (5)

Map 6
11111111111111 1575 (7) 549 (5) 303 (4) �
22222222222222 1626 (9) 540 (6) 286 (5) �
33333333333333 1703 (11) 499 (4) 316 (7) Ø
31121312111111 1570 (16) 535 (10) 266 (6)

Map 7
11111111111111 1434 (5) 599 (6) 284 (6) �
22222222222222 1475 (10) 602 (5) 243 (6) �
33333333333333 1489 (12) 549 (3) 264 (6) Ø
11332211321332 1401 (12) 563 (4) 230 (12)

Map 8
11111111111111 1761 (9) 254 (5) 382 (3) �
22222222222222 1804 (10) 269 (4) 357 (4) �
33333333333333 1826 (10) 230 (3) 392 (7) Ø
23221131313323 1747 (11) 247 (9) 363 (9)

Map 9
11111111111111 2501 (14) 926 (6) 574 (9) �
22222222222222 2503 (10) 921 (10) 524 (8) �
33333333333333 2641 (14) 833 (5) 574 (14) Ø
21132331333223 2463 (19) 891 (8) 523 (9)

Map 10
11111111111111 1430 (8) 630 (4) 205 (2) �
22222222222222 1493 (13) 615 (4) 209 (2) �
33333333333333 1542 (10) 554 (4) 229 (5) Ø
11311111322231 1418 (9) 623 (9) 197 (2)

TABLE III: MO-PTSP Results with different weights. The last
column indicates if the evolved individual dominates (�) or
not (Ø) each one of the base genomes for that particular map.

The top three are the base individuals, taken from Table II
for comparison. The forth result on each row is the best one
after the run. Each genome is a string of the form abc . . . z,
that represents WaWbWc . . .Wz , where each element is a
weight vector used in that particular segment. The last column
indicates if the evolved individual dominates (�) or not (Ø)
each one of the base genomes for that particular map.

The results suggest some interesting ideas. First of all,
it is indeed possible to obtain better results by varying the
weights of the objectives along the route: in 22 out of the
30 comparisons made, the evolved solution dominates the
base individuals and, in the other 8, both solutions in the
comparison would be in the same Pareto front of solutions.

If the focus is set on what particular weights are more
successful, it is interesting to see that the best configurations
found are better, in all maps, than the base individuals with all
weights equal to W1 (wt = 0.33, wf = 0.33, wd = 0.33) and
W2 (wt = 0.1, wf = 0.3, wd = 0.6). In other words, it was
always possible to find a combination of weight vectors that
performed better than approaches that gave the same weight

to all objectives, and also better than the ones that prioritize
low damage.

It is also worthwhile mentioning that in those cases where
dominance over the base individual was not achieved, the base
was the one that prioritized fuel. Actually, it can be seen that
in these cases, the result in the fuel objective is the one that
prevents the dominance from happening, obtaining a better
value than the evolved solution in this particular objective.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a multi-objective version of Monte
Carlo Tree Search (MO-MCTS) for real-time games: scenarios
where the time budget allowed for finding out the best possible
action to apply next is close to 40ms. MO-MCTS is tested,
in comparison with a single-objective MCTS algorithm and
a rolling horizon NSGA-II, in two different real-time games,
the Deep Sea Treasure (DST) and the Multi-Objective Physical
Travelling Salesman Problem (MO-PTSP). This comparison is
made by using the same heuristics that determine the value of
a given state, so the focus is set on how the algorithms explore
the search space on each problem.

The results obtained in this study show the strength of the
algorithm proposed, as it provides better solutions than the
ones obtained by the other algorithms in comparison. Also, the
MO-MCTS approach samples successfully across the different
solutions in the Pareto front (optimal front in the DST, the
best found in MO-PTSP), depending on the weights provided
for each objective. Finally, some initial results are obtained
applying the idea of using distinct weight vectors for the
objectives in different situations within the game, showing that
it is possible to improve the performance of the algorithms.

The stochastic hill climbing algorithm used for creating
strings of weight vectors for the MO-PTSP is relatively simple,
although it was able to obtain very good results in few
iterations. However, it could be desirable to model behaviours
that dynamically change the weight vectors according to
measurements of the game state, instead of evolving a different
solution for each particular map. A possible extension for this
work is to analyse and discover features in the game state
that allows the establishment of relationships between game
situations and the weight vectors to use for each objective.
This mechanism would be general enough to be applicable to
many different maps without requiring specific learning in any
particular level.

Finally, the results described in this paper allow us to
assume that multi-objective approaches can provide a high
quality level of play in real-time games. Multi-objective prob-
lems pop up in different settings and by using MCTS we
can balance not only between exploration and exploitation but
between multiple objectives as well.
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