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Abstract. The significant success of MCTS in recent years, particularly in the
game Go, has led to the application of MCTS to numerous other domains. In an
ongoing effort to better understand the performance of MCTSin open-ended real-
time video games, we apply MCTS to the Physical Travelling Salesman Prob-
lem (PTSP). We discuss different approaches to tailor MCTS to this particular
problem domain and subsequently identify and attempt to overcome some of the
apparent shortcomings. Results show that suitable heuristics can boost the per-
formance of MCTS significantly in this domain. However, visualisations of the
search indicate that MCTS is currently seeking solutions ina rather greedy man-
ner, and coercing it to balance short term and long term constraints for the PTSP
remains an open problem.

1 Introduction

Games such as Chess have always been a popular testbed in the field of Artificial In-
telligence to prototype, evaluate and compare novel techniques. The majority of games
considered in the literature are two-player turn-taking zero-sum games of perfect infor-
mation, though in recent years the study of AI for video game agents has seen a sharp
increase. The standard approach to the former type of game isminimaxwith αβ prun-
ing which consistently chooses moves that maximise minimumgain by assuming the
best possible opponent. This technique is optimal given a complete game tree, but in
practice needs to be approximated given time and memory constraints: a value func-
tion may be used to evaluate nodes at depthd. The overall performance ofαβ depends
strictly on the quality of the value function used. This poses problems in games such
as Go where a reliable state value function has been impossible to derive to date. It is
possible to approximate the minimax tree, without the need for a heuristic, using Monte
Carlo Tree Search (MCTS), though in practice MCTS still benefits significantly from
good heuristics in most games.

MCTS is a best-first tree search algorithm that incrementally builds an asymmetric
tree by adding a single node at a time, estimating its game-theoretic value by using self-
play from the state of the node to the end of the game: each iteration starts from the root
and descends the tree using atree policyuntil a leaf node has been reached. The simu-
lated game is then continued along a previously unvisited state, which is subsequently
added to the tree, using thedefault policyuntil the end of the game. The actual outcome
of the game is then back-propagated and used by the tree policy in subsequent roll-outs.



The most popular tree policyπT is UCB1, based on upper confidence bounds for bandit
problems [7]:

πT (si) = argmax
ai∈A(st)

{

Q(st, ai) +K

√

logN(st)

N(st, ai)

}

(1)

whereN(st) is the number of times nodest has been visited,N(st, ai) the number of
times childi of nodest has been visited andQ(st, ai) is the expected reward of that
state.K is a constant that balances between exploitation (left-hand term of the equation)
and exploration (right-hand term). MCTS using UCB1 is generally known as UCT. In
the simplest case, the default policyπD is uniformly random:πD(st) = rand(A(st)).

In this paper we study the performance of MCTS on the single-player real-time
Physical Travelling Salesman Problem (PTSP). This study ispart of an ongoing effort
that explores the applicability of MCTS in the domain of real-time video games: the
PTSP, where one has to visitn cities as quickly as possible by driving a simple point-
mass, provides an excellent case study to better understandthe strengths and weak-
nesses of MCTS in open-ended1 and time-constrained domains. The PTSP also has the
feature that the best possible score for a map is usually unknown. Hence, even assigning
a value to a roll-out that does terminate (cause the salesmanto visit all cities) raises in-
teresting issues. The experimental studies presented in this paper offer new insights into
the behaviour of MCTS in light of these attributes and may be used to create stronger
AI players for more complex video games in the future, or perhaps more importantly,
create intelligent players with very little game-specific programming required.

2 Literature Review

MCTS was first proposed in 2006 (see [3,4]) and rapidly becamepopular due to its
significant success in computer Go [6], where traditional approaches had been failing to
outplay experienced human players. MCTS has since been applied to numerous other
games, including games of uncertain information and general game playing. In this
section we review applications of MCTS to domains most closely related to the PTSP,
including optimisation problems, single-player games (puzzles) and real-time strategy
games.

MCTS and other Monte Carlo (MC) methods have been applied to numerous com-
binatorial optimisation problems, including variations of the classical Travelling Sales-
man Problem (TSP). For instance, Rimmel et al. [9] used a nested MC algorithm to
solve the TSP with time windows, reaching state of the art solutions in problems with
no more than 29 cities. Bnaya et al. [2] obtained near-optimal results using UCT to
solve the Canadian Traveller Problem, a variation of the TSPwhere some edges of the
graph might be blocked with some probability.

Related to optimisation problems are single player games, also known as puzzles.
The Single-Player MCTS (SP-MCTS) was introduced by Shadd etal. [13], where a

1 Open-ended in this context means that many lines of play willnever terminate.



modification of UCT was proposed in order to include the effect of not having an oppo-
nent to play against. The authors found that restarting the seed of the random simula-
tions periodically, while saving the best solution found sofar, increases the performance
of the algorithm for single player games. Another puzzle, SameGame, has also been ad-
dressed by many researchers, including Schadd et al. [13]. They used SP-MCTS with
modified back propagation, parameter tuning and a meta-search extension, to obtain
the highest score ever obtained by any AI player so far. Matsumoto et al. [8] incorpo-
rated domain knowledge to guide the MC roll-outs, obtainingbetter results with a little
more computational effort. Similarly, Björnsson and Finnsson [1] proposed a modifica-
tion of standard UCT in order to include the best results of the simulations (in addition
to average results) to drive the search towards the most promising regions. They also
stored good lines of play found during the search which may beused effectively in
single-player games.

MCTS has also been applied widely toreal-timegames. The game Tron has been a
benchmark for MCTS in several studies. Samothrakis et al. [11] apply a standard imple-
mentation of MCTS, including knowledge to avoid self-entrapment in the MC roll-outs.
The authors found that although MCTS works well a significantnumber of random roll-
outs produce meaningless outcomes due to ineffective play.Den Teuling [5] applied
UCT to Tron with some modifications, such as progressive bias, simultaneous moves,
game-specific simulation policies and heuristics to predict the score of the game with-
out running a complete simulation. The enhancements proposed produce better results
only in certain situations, depending on the board layout. Another real-time game that
has frequently been considered by researchers is Ms. Pac-Man. Robles et al. [10] ex-
pand a tree with the possible moves that Ms. Pac-Man can perform, evaluating the best
moves with hand-coded heuristics, and a flat MC approach for the end game prediction.
Finally, Samothrakis et al. [12] used MCTS with a 5-playermaxn game tree, where
each ghost is treated as an individual player. The authors show how domain knowledge
produced smaller trees and more accurate predictions during the simulations.

3 The Physical Travelling Salesman Problem

The Physical Travelling Salesman Problem (PTSP) is an extension of the Travelling
Salesman Problem (TSP). The TSP is a very well known combinatorial optimisation
problem in which a salesperson has to visitn cities exactly once using the shortest route
possible, returning to the starting point at the end. The PTSP converts the TSP into a
single-player game and was first introduced as a competitionat the Genetic and Evo-
lutionary Computation Conference (GECCO) in 2005. In the PTSP, the player always
starts in the centre of the map and cities are usually distributed uniformly at random
within some rectangular area; the map itself is unbounded.

Although the original PTSP challenge was not time constrained, the goal of the
current PTSP is to find the best solution in real-time. At eachgame tick the agent selects
one of five force vectors to be applied to accelerate a point mass around the map with
the aim of visiting all cities. The optimality of the route isthe time taken to traverse it
which differs from its distance as the point-mass may travelat different speeds. At any
moment in time, a total of 5 actions may be taken: forward, backward, left, right and



Fig. 1: Example of a 6 city problem where the optimal TSP routediffers from the opti-
mal PTSP route: (a) the six cities and starting point (black circle); (b) the optimal TSP
solution to this problem without returning to the start; (c)optimal PTSP route and (d)
equivalent TSP route which is worse than the route shown in (b).

neutral. At each time step, the position and velocity of the point-mass is updated using
Newton’s equations for movement:v = vi + a∆t ands = si + vi∆t+ 1

2a(∆t)2 with
∆t =

√
0.1.

There are at least two high-level approaches to confront this problem: one possi-
bility is to address the order of cities and the navigation (steering) of the point mass
independently. However, it is important to keep in mind thatthe physics of the game
make the PTSP quite different from the TSP. In particular, the optimal order of cities
for a given map which solves the TSP does not usually correspond to the optimal set of
forces that can be followed by an agent in the PTSP. This is illustrated in Figure 1. An-
other possible approach to tackle the PTSP is thus to attemptto determine the optimal
set of forces and order of cities simultaneously.

The PTSP can be seen as an abstract representation of video games characterised
by two game elements: order selection, and steering. Examples of such games include
CrystalQuest, XQuest and Crazy Taxi. In particular, the PTSP has numerous interesting
attributes that are commonly found in these games: players are required to act quickly
as the game progresses at every time step. Furthermore, the game is open-ended as
the point-mass may travel across an unbounded map – it is thushighly unlikely that
MCTS with a uniform random default policy would be able to reach a terminal state.
This requires the algorithm to (a) limit the number of actions to take on each roll-out
(depth); and (b) implement a value function that scores eachstate. Finally, it is important
to note that there is no win/lose outcome which affects the value ofK for the UCB1
policy (see Equation 1).

4 Preliminary Experimental Study

The application of MCTS to the PTSP requires a well-defined set of states, a set of
actions to take for each of those states and a value function that indicates the quality of
each state. Each state is uniquely described by the positionof the point-mass, its veloc-
ity, and the minimum distance ever obtained to all cities. The actions to take are identical



across all states (forward, backward, left, right and neutral). Finally, the value (fitness)
function used is the summation of the valuesvi, based on the minimum distances ever
obtained to all cities, plus some penalty due to travelling outside the boundaries of the
map. The number of steps is also considered. The valuevi is calculated for each city as
follows:

vi =

{

0 if di < cr
fm − fm

di−cr+2 otherwise
(2)

wheredi represents the distance between the point-mass and the cityi, cr is the radius
of each city andfm is the maximum value estimated for the fitness. This equation
forces the algorithm to place more emphasis on the positionsin the map that are very
close to the cities. The score associated with each state is normalised: the maximum
fitness is equivalent to the number of cities multiplied byfm, plus the penalties for
travelling outside the boundaries of the map and the number of steps performed so far.
The normalisation is very important to identify useful values ofK which has been set
to 0.25 in this study following systematic trial and error.

Two default policies have been tested. The first uses uniformrandom action selec-
tion while the second, DRIVEHEURISTIC, includes some domain knowledge to bias
move selection: it penalises actions that do not take the agent closer to any of the unvis-
ited cities. This implies that actions which minimise the fitness value are more likely to
be selected. Four algorithms are considered in this preliminary experiment: the simplest
is 1-ply MC Search which uses uniform random action selection for each of the actions
available from the current state, selecting the best one greedily. A slight modification of
this is Heuristic MC which biases the simulations using the DRIVEHEURISTIC. The first
MCTS variant is using UCB1 as tree policy and uniform random rollouts. The heuristic
MCTS implementation also uses UCB1 as its tree policy, but biases the rollouts using
the DRIVEHEURISTIC.

To compare the different configurations, the following experiments have been car-
ried out on 30 different maps that have been constructed uniformly at random. A mini-
mum distance between cities prevents overlap. The same set of 30 maps has been used
for all experiments and configurations were tested over a total of 300 runs (10 runs per
map). Finally, the time to make a decision at each stage of theproblem has been set to
10 milliseconds.

The results are shown in Table 1.2 It is evident that MCTS outperforms, with respect
to the number of best solutions found, both 1-ply MC Search and MCTS with a heuristic
in the roll-outs. The differences in the average scores are,however, insignificant. The
observation that 1-ply MC Search is achieving similar results to MCTS suggests that
the information obtained by the roll-outs is either not utilised efficiently or is simply
not informative enough. If this is the case, the action selection and/or tree selection
mechanism cannot be effective.

Figures 2 and 3 depict a visualisation of the MCTS tree at a particular iteration: each
position, represented in the figure as a pixel on the map, is drawn using a grey scale
that represents how often this position has been occupied bythe point-mass during
the MC simulations. Lighter colours indicate more presenceof those positions in the
simulations, while darker ones represent positions less utilised. Figure 3 is of a special

2 The experiments were executed on an Intel Core i5 PC, with 2.90GHz and 4GB of memory.



Algorithm Average
Standard

Error
Best count Not solved

Average
simulations

1-ply Monte Carlo Search 539.65 3.295 0 1 816
Heuristic MC 532.63 3.302 3 0 726
MCTS UCB1 531.25 3.522 10 2 878

Heuristic MCTS UCB1 528.77 3.672 2 0 652

Table 1: Results for 10 city maps compared in terms of the number of time steps re-
quired to solve the problem. TheBest countindicates how often the algorithm produced
the overall best solution, whileNot solvedshows the number of trials where the algo-
rithm was unable to find a solution. Finally,Average simulationsindicates how many
simulations were performed, on average, in each execution step.

Fig. 2: Tree exploration at the start. Fig. 3: No cities close to tree explo-
ration

interest: the simulations are taking the point-mass to positions where no cities can be
found. This happens because no other portion of the map (where cities are located) is
explored and thus MCTS is unable to steer the point-mass towards regions of higher
fitness.

5 Extended Experimental Study

The objective of the extended experimental study is to analyse the impact of additional
domain knowledge on the performances of the algorithms. In particular, we exploit the
concept of acentroid, calculated as the centre of all unvisited cities (and the centre of
the map). The idea is to prevent the selection of actions thattake the point-mass away
from that point. However, this penalty cannot be used all thetime, because otherwise
the point-mass would always be drawn towards the centroid, not visiting any cities. In
order to decide when this heuristic is to be enabled, we definea circle with a certain
radiusr, centred on the centroid, to be the centroid’s influence.

The maps depicted in Figures 4 and 5 show a set of cities, the centroid (located near
the center of the map) and the centroid’s area of influence.3 The value ofr used is the

3 Videos of the tree and the CentroidHeuristic may be found at
www.youtube.com/user/MonteCarloTreeSearch.

www.youtube.com/user/MonteCarloTreeSearch


Fig. 4: Centroid and influence. Fig. 5: Centroid and influence update.

distance to the farthest city from the centroid, multipliedby a factore; the value ofe
can be used to modulate how far the point-mass is allowed to gofrom the centroid. In
this study the value is set to1.05.

We define the following new algorithms using the CENTROIDHEURISTIC: theCen-
troid Heuristic MC is identical to theHeuristic MCbut the heuristic used to guide the
MC simulations ignores actions that do not take the point-mass towards the centroid (if
within the centroid influence). Likewise, theCentroid Heuristic MCTSis similar to the
Heuristic MCTSbut uses theCentroidHeuristicduring the default policy. TheCentroid
MCTS only UCTis identical to the standardMCTSalgorithm but uses theCentroid-
Heuristic in the tree policy, by not allowing the selection of those actions that do not
take the point-mass towards the centroid (if within the centroid influence). Finally, the
Centroid MCTS & UCTis similar to theCentroid Heuristic MCTS only UCTusing the
CentroidHeuristicalso in the default policy.

5.1 Random Maps of 10 Cities

The results for random maps of 10 cities are shown in Table 2. It is evident that solution
quality was improved by the CENTROIDHEURISTIC. The average solution quality, us-
ing the centroid heuristic for both the tree selection and MCroll-outs, is481.85, with a
low standard error and a very good count of best solutions found: bothCentroid MCTS
only UCT andCentroid MCTS & UCT, with K = 0.05, achieve more than the50%
of the best scores. The Kolmogorov-Smirnov test confirms that these results are signif-
icant. The test provides ap-valueof 1.98 × 10−22 when comparing1-ply MC Search
andCentroid MCTS only UCT, and1.98× 10−22 for 1-ply Monte Carlo Searchagainst
Centroid MCTS & UCT.

Similar results have been obtained for time steps of 50 milliseconds. In this case,
the 1-ply Monte Carlo Searchalgorithm achieves an average time of514.31, while
MCTS UCB1, Centroid MCTS only UCTandCentroid MCTS & UCTobtain511.87,
556.53 and 469.72 respectively. Several things are worth noting from these results:
first, the algorithms perform better when the time for simulations is increased. Second,
it is interesting to see how the different MCTS configurations (speciallyMCTS UCB1
and Centroid MCTS only UCT) improve more than the MC techniques when going
from 10 to 50ms. The third MCTS configuration, which obtains the best results for



Algorithm Average
Standard

Error
Best count Not solved

Average
simulations

1-ply Monte Carlo Search 539.65 3.295 1 1 816
Heuristic MC 532.63 3.302 1 0 726
MCTS UCB1 531.25 3.522 2 2 878

Heuristic MCTS UCB1 528.77 3.672 1 0 652
Centroid Heuristic MC 552.87 4.158 2 0 915

Centroid Heuristic MCTS 524.13 3.443 2 0 854
Centroid MCTS only UCT 599.38 10.680 6 76 1009
Centroid MCTS & UCT 481.85 6.524 12 0 659

Table 2: 10 city result comparison, 10ms limit.

both time limits, does not improve its solution quality as much as the other algorithms
when increasing the simulation time. However, it is important to note that the results
obtained by this configuration given 10ms are better than thebest solution found by any
other algorithm given 50ms. It is highly significant that thesolutions obtained by this
algorithm are the best ones found for this problem, showing an impressive performance
even when the available time is very limited. This makes the approach very suitable for
time-constrained real-time games.

5.2 Random Maps of 30 Cities

To check if the results of the previous section are consistent, some experiments were
performed with 30 cities. Table 3 shows the results of these algorithms for a time limit
of 10ms. The results are similar to the ones recorded in the 10cities experiments, al-
though in this caseCentroid MCTS only UCTwith K = 0.05 is the algorithm that
solves the problem in the least number of time steps. Figure 6shows the performance
of some of the configurations tested for the different time limits considered. Comparing
1-ply Monte Carlo Searchwith theCentroid MCTS only UCTusing the Kolmogorov-
Smirnov test gives the following p-values for 10ms, 20ms and50ms respectively:0.349,
0.0005 and 1.831×10−7. This confirms significance in the case of 20ms and 50ms, but
not in the case of 10ms.

6 Conclusions

This paper analyses the performance of Monte Carlo Tree Search (MCTS) on the Phys-
ical Travelling Salesman Problem (PTSP), a real-time single player game. The two
experimental studies outlined in this paper focus on the impact of domain knowledge
on the performance of the algorithms investigated and highlight how a good heuristic
can significantly impact the success rate of an algorithm when the time to select a move
is very limited.

The results show that theCentroidHeuristichelps the algorithm to find better solu-
tions, especially when the time allowed is very small (10ms). As shown in the results,



Algorithm Average
Standard

Error
Best count Not solved

Average
simulations

1-ply Monte Carlo Search 1057.01 6.449 2 0 562
Heuristic MC 1133.10 6.581 0 11 319
MCTS UCB1 1049.16 6.246 6 0 501

Heuristic MCTS UCB1 1105.46 5.727 2 3 302
Centroid Heuristic MC 1119.93 6.862 0 1 441

Centroid Heuristic MCTS 1078.51 5.976 1 0 428
Centroid MCTS only UCT 1032.94 6.365 7 14 481
Centroid MCTS & UCT 1070.86 6.684 7 0 418

Table 3: 30 city result comparison, 10ms limit.

Fig. 6: Performance of the algorithms when time limit changes (30 cities).

when the time limit is 10ms, some approaches (like MCTS without domain knowledge)
are not able to provide significantly better results than 1-ply Monte Carlo Search. They
are, however, able to produce superior results when the timelimit is increased. The
main contribution of this research is evidence to show that it is possible to effectively
utilise simple domain knowledge to produce acceptable solutions, even when the time
to compute the next move is heavily constrained.

The off-line version of the problem has also been solved withevolutionary algo-
rithms, notably in the GECCO 2005 PTSP Competition. In fact,the winner of that
competition utilised a genetic algorithm, using a string with the five available forces
as a genome for the individuals (results and algorithms employed can be found at
cswww.essex.ac.uk/staff/sml/gecco/ptsp/Results.html). This PTSP
solution format, a string of forces, is a suitable representation for evolutionary algo-
rithms that may be applied to this problem. A thorough comparison of evolution versus
MCTS for this problem would be interesting future work.

cswww.essex.ac.uk/staff/sml/gecco/ptsp/Results.html


Other ongoing work includes the use of more interesting maps(by introducing ob-
stacles, for instance), modified game-physics to steer a vehicle rather than a point-mass,
and the inclusion of more players that compete for the cities. Competitions based on
these variations are already in preparation. The results ofthese should provide further
insight into how best to apply MCTS to the PTSP, as well as its strengths and weak-
nesses compared to evolutionary and other optimisation methods.

Finally, a particular challenge for MCTS applied to the PTSPis how to persuade it
to make more meaningful simulations that consider the long-term plan of the order in
which to visit the cities, together with the short term plan of how best to steer to the
next city or two.
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