Monte-Carlo Tree Search for the
Physical Travelling Salesman Problem

Diego Perez, Philipp Rohlfshagen, and Simon M. Lucas

School of Computer Science and Electronic Engineering
University of Essex, Colchester CO4 3SQ, United Kingdom
{dperez, prohlf, sn}i@essex.ac.uk

Abstract. The significant success of MCTS in recent years, partiquiarthe
game Go, has led to the application of MCTS to humerous otberaéhs. In an
ongoing effort to better understand the performance of M@iTen-ended real-
time video games, we apply MCTS to the Physical TravellinteSaan Prob-
lem (PTSP). We discuss different approaches to tailor MQY shis particular
problem domain and subsequently identify and attempt tocovee some of the
apparent shortcomings. Results show that suitable hiegrisan boost the per-
formance of MCTS significantly in this domain. However, \afisations of the
search indicate that MCTS is currently seeking solutiores iather greedy man-
ner, and coercing it to balance short term and long term caings$ for the PTSP
remains an open problem.

1 Introduction

Games such as Chess have always been a popular testbed eldhaf frtificial In-
telligence to prototype, evaluate and compare novel tegctas. The majority of games
considered in the literature are two-player turn-takingzgum games of perfect infor-
mation, though in recent years the study of Al for video gagenas has seen a sharp
increase. The standard approach to the former type of gammismaxwith o5 prun-
ing which consistently chooses moves that maximise minirgam by assuming the
best possible opponent. This technique is optimal givennapbete game tree, but in
practice needs to be approximated given time and memontredms: a value func-
tion may be used to evaluate nodes at depffihe overall performance ef5 depends
strictly on the quality of the value function used. This popeoblems in games such
as Go where a reliable state value function has been impedsillerive to date. It is
possible to approximate the minimax tree, without the need heuristic, using Monte
Carlo Tree Search (MCTS), though in practice MCTS still Bgaaignificantly from
good heuristics in most games.

MCTS is a best-first tree search algorithm that incremgnhalilds an asymmetric
tree by adding a single node at a time, estimating its gamerétic value by using self-
play from the state of the node to the end of the game: eadtitarstarts from the root
and descends the tree usingee policyuntil a leaf node has been reached. The simu-
lated game is then continued along a previously unvisitet® stvhich is subsequently
added to the tree, using tdefault policyuntil the end of the game. The actual outcome
of the game is then back-propagated and used by the treg pofiabsequent roll-outs.

The most popular tree polieyr is UCB1, based on upper confidence bounds for bandit
problems|[7]:

mr(s;) = arg max {Q(Stv ai) + K 1)

a;€A(st)

log N (51)
N(st,a;)

whereN (s;) is the number of times nodg has been visitedy (s;, a;) the number of
times childi of nodes; has been visited an@(s;, a;) is the expected reward of that
state.K is a constant that balances between exploitation (leftHenm of the equation)
and exploration (right-hand term). MCTS using UCBL1 is gafigkknown as UCT. In
the simplest case, the default policy is uniformly randomirp(s¢) = rand(A(s:)).

In this paper we study the performance of MCTS on the sintdgep real-time
Physical Travelling Salesman Problem (PTSP). This stughait of an ongoing effort
that explores the applicability of MCTS in the domain of réiale video games: the
PTSP, where one has to visitcities as quickly as possible by driving a simple point-
mass, provides an excellent case study to better underiitarstrengths and weak-
nesses of MCTS in open-enﬂ]&d"nd time-constrained domains. The PTSP also has the
feature that the best possible score for a map is usuallyavakrHence, even assigning
a value to a roll-out that does terminate (cause the saletmasit all cities) raises in-
teresting issues. The experimental studies presentetsipdper offer new insights into
the behaviour of MCTS in light of these attributes and may &eduto create stronger
Al players for more complex video games in the future, or ppghmore importantly,
create intelligent players with very little game-specifiogramming required.

2 Literature Review

MCTS was first proposed in 2006 (se€ [3,4]) and rapidly becpopilar due to its
significant success in computer Go [6], where traditiongkapches had been failing to
outplay experienced human players. MCTS has since beeredpplnumerous other
games, including games of uncertain information and gérgnae playing. In this
section we review applications of MCTS to domains most dfosdated to the PTSP,
including optimisation problems, single-player games@hes) and real-time strategy
games.

MCTS and other Monte Carlo (MC) methods have been appliedimoemous com-
binatorial optimisation problems, including variatiorfgtee classical Travelling Sales-
man Problem (TSP). For instance, Rimmel etal. [9] used aeddgtC algorithm to
solve the TSP with time windows, reaching state of the axdtgmis in problems with
no more than 29 cities. Bnaya et all [2] obtained near-optiesults using UCT to
solve the Canadian Traveller Problem, a variation of the IWBBre some edges of the
graph might be blocked with some probability.

Related to optimisation problems are single player ganisg,lkaown as puzzles.
The Single-Player MCTS (SP-MCTS) was introduced by Shadal.€tL3], where a

! Open-ended in this context means that many lines of playnailer terminate.

modification of UCT was proposed in order to include the affémot having an oppo-
nent to play against. The authors found that restarting ¢lee sf the random simula-
tions periodically, while saving the best solution foundagincreases the performance
of the algorithm for single player games. Another puzzlen&aame, has also been ad-
dressed by many researchers, including Schadd et al. [h&}y tised SP-MCTS with
modified back propagation, parameter tuning and a metaisestension, to obtain
the highest score ever obtained by any Al player so far. Matga et al. [8] incorpo-
rated domain knowledge to guide the MC roll-outs, obtaireter results with a little
more computational effort. Similarly, Bjornsson and Fsan[[1] proposed a modifica-
tion of standard UCT in order to include the best results efdimulations (in addition
to average results) to drive the search towards the mostigiranregions. They also
stored good lines of play found during the search which mayde effectively in
single-player games.

MCTS has also been applied widelyreal-timegames. The game Tron has been a
benchmark for MCTS in several studies. Samothrakis et &].dfiply a standard imple-
mentation of MCTS, including knowledge to avoid self-eptraent in the MC roll-outs.
The authors found that although MCTS works well a significamhber of random roll-
outs produce meaningless outcomes due to ineffective play. Teuling [5] applied
UCT to Tron with some modifications, such as progressive, siasultaneous moves,
game-specific simulation policies and heuristics to ptettlie score of the game with-
out running a complete simulation. The enhancements peapeoduce better results
only in certain situations, depending on the board layoubther real-time game that
has frequently been considered by researchers is Ms. PacRédbles et al/ [10] ex-
pand a tree with the possible moves that Ms. Pac-Man canmpgrévaluating the best
moves with hand-coded heuristics, and a flat MC approaciméend game prediction.
Finally, Samothrakis et all_[12] used MCTS with a 5-playetx™ game tree, where
each ghost is treated as an individual player. The authoms bbw domain knowledge
produced smaller trees and more accurate predictionsgitivnsimulations.

3 ThePhysical Travelling Salesman Problem

The Physical Travelling Salesman Problem (PTSP) is an skterof the Travelling
Salesman Problem (TSP). The TSP is a very well known comtnilahbptimisation
problem in which a salesperson has to visdities exactly once using the shortest route
possible, returning to the starting point at the end. TheRPE&hverts the TSP into a
single-player game and was first introduced as a competitidthe Genetic and Evo-
lutionary Computation Conference (GECCO) in 2005. In th&P;Tthe player always
starts in the centre of the map and cities are usually digei uniformly at random
within some rectangular area; the map itself is unbounded.

Although the original PTSP challenge was not time constéirthe goal of the
current PTSP is to find the best solution in real-time. At egenfme tick the agent selects
one of five force vectors to be applied to accelerate a poiissrasound the map with
the aim of visiting all cities. The optimality of the routetise time taken to traverse it
which differs from its distance as the point-mass may travelifferent speeds. At any
moment in time, a total of 5 actions may be taken: forwardkhaed, left, right and

Fig. 1: Example of a 6 city problem where the optimal TSP rdliffers from the opti-
mal PTSP route: (a) the six cities and starting point (blaoHe); (b) the optimal TSP
solution to this problem without returning to the start; ¢ptimal PTSP route and (d)
equivalent TSP route which is worse than the route shown)in (b

neutral. At each time step, the position and velocity of thempmass is updated using
Newton’s equations for movement:= v; + aAt ands = s; + v; At + %a(Azf)2 with
At =+1/0.1.

There are at least two high-level approaches to confroatghoblem: one possi-
bility is to address the order of cities and the navigatidegsng) of the point mass
independently. However, it is important to keep in mind tthegt physics of the game
make the PTSP quite different from the TSP. In particula,dptimal order of cities
for a given map which solves the TSP does not usually corresfmthe optimal set of
forces that can be followed by an agent in the PTSP. Thislistithted in Figurg]1. An-
other possible approach to tackle the PTSP is thus to atteng@termine the optimal
set of forces and order of cities simultaneously.

The PTSP can be seen as an abstract representation of videxs gaaracterised
by two game elements: order selection, and steering. Exangblsuch games include
CrystalQuest, XQuest and Crazy Taxi. In particular, the PTi&s numerous interesting
attributes that are commonly found in these games: playerseguired to act quickly
as the game progresses at every time step. Furthermoreathe ig open-ended as
the point-mass may travel across an unbounded map — it ishighgy unlikely that
MCTS with a uniform random default policy would be able toalea terminal state.
This requires the algorithm to (a) limit the number of actida take on each roll-out
(depth); and (b) implement a value function that scores stath. Finally, itis important
to note that there is no win/lose outcome which affects tHeevaf K for the UCB1
policy (see Equatiop]1).

4 Preliminary Experimental Study

The application of MCTS to the PTSP requires a well-definedetates, a set of
actions to take for each of those states and a value funttadrirtdicates the quality of
each state. Each state is uniquely described by the posititie point-mass, its veloc-
ity, and the minimum distance ever obtained to all cities &btions to take are identical

across all states (forward, backward, left, right and redutFinally, the value (fithess)
function used is the summation of the valugsbased on the minimum distances ever
obtained to all cities, plus some penalty due to travellintsime the boundaries of the
map. The number of steps is also considered. The vglisecalculated for each city as

follows:
{0 if d; <c,
v =

fm :
fm — ;) otherwise

whered; represents the distance between the point-mass and the gitis the radius

of each city andf,, is the maximum value estimated for the fithess. This equation
forces the algorithm to place more emphasis on the positiotiee map that are very
close to the cities. The score associated with each staterisatised: the maximum
fithess is equivalent to the number of cities multiplied fjy, plus the penalties for
travelling outside the boundaries of the map and the numisteps performed so far.
The normalisation is very important to identify useful veduf K which has been set

to 0.25 in this study following systematic trial and error.

Two default policies have been tested. The first uses unifandom action selec-
tion while the second, BIVEHEURISTIC, includes some domain knowledge to bias
move selection: it penalises actions that do not take thetaj@ser to any of the unvis-
ited cities. This implies that actions which minimise thadits value are more likely to
be selected. Four algorithms are considered in this pnetingiexperiment: the simplest
is 1-ply MC Search which uses uniform random action seledtio each of the actions
available from the current state, selecting the best onediye A slight modification of
this is Heuristic MC which biases the simulations using tlre\iEHEURISTIC. The first
MCTS variant is using UCBL1 as tree policy and uniform randofiouts. The heuristic
MCTS implementation also uses UCBL as its tree policy, basds the rollouts using
the DRIVEHEURISTIC.

To compare the different configurations, the following expents have been car-
ried out on 30 different maps that have been constructedumiy at random. A mini-
mum distance between cities prevents overlap. The samé 3@tmaps has been used
for all experiments and configurations were tested overa t¢6t300 runs (10 runs per
map). Finally, the time to make a decision at each stage gfrthielem has been set to
10 milliseconds.

The results are shown in Tafilé1t is evident that MCTS outperforms, with respect
to the number of best solutions found, both 1-ply MC SearchNM@TS with a heuristic
in the roll-outs. The differences in the average scoreshanwgever, insignificant. The
observation that 1-ply MC Search is achieving similar resstd MCTS suggests that
the information obtained by the roll-outs is either notisétl efficiently or is simply
not informative enough. If this is the case, the action selecand/or tree selection
mechanism cannot be effective.

Figures® andl3 depict a visualisation of the MCTS tree at tquéair iteration: each
position, represented in the figure as a pixel on the map,awmusing a grey scale
that represents how often this position has been occupidthdyoint-mass during
the MC simulations. Lighter colours indicate more preseofctose positions in the
simulations, while darker ones represent positions léisad. Figurd 3 is of a special

(2)

2 The experiments were executed on an Intel Core i5 PC, with@-& and 4GB of memory.

Algorithm Average Standard Best count| Not solved _Avera_ge
Error simulations
1-ply Monte Carlo Search| 539.65 3.295 0 1 816
HeuristicMC 532.63 3.302 3 0 726
MCTSUCB1 531.25 3.522 10 2 878
Heuristic MCTSUCB1 | 528.77 3.672 2 0 652

Table 1: Results for 10 city maps compared in terms of the rarrobtime steps re-
quired to solve the problem. TiBest counindicates how often the algorithm produced
the overall best solution, whillot solvedshows the number of trials where the algo-
rithm was unable to find a solution. Finallfverage simulationsdicates how many
simulations were performed, on average, in each executm s

Fig. 2: Tree exploration at the start. Fig. 3: No cities close to tree explo-
ration

interest: the simulations are taking the point-mass totjpos where no cities can be
found. This happens because no other portion of the map éndies are located) is
explored and thus MCTS is unable to steer the point-massrttsnagions of higher
fitness.

5 Extended Experimental Study

The objective of the extended experimental study is to aeellye impact of additional
domain knowledge on the performances of the algorithmsatrtiqular, we exploit the
concept of ecentroid calculated as the centre of all unvisited cities (and thereeof
the map). The idea is to prevent the selection of actionst#katthe point-mass away
from that point. However, this penalty cannot be used alltitne, because otherwise
the point-mass would always be drawn towards the centroidvisiting any cities. In
order to decide when this heuristic is to be enabled, we deficiecle with a certain
radiusr, centred on the centroid, to be the centroid’s influence.

The maps depicted in Figurels 4 did 5 show a set of cities, titeoie (located near
the center of the map) and the centroid’s area of influBridee value ofr used is the

3Videos of the tree and the CentroidHeurisic may be found at
www. yout ube. comi user/ Mont eCarl oTr eeSear ch.

www.youtube.com/user/MonteCarloTreeSearch

Fig. 4: Centroid and influence. Fig. 5: Centroid and influence update.

distance to the farthest city from the centroid, multipleda factore; the value ofe
can be used to modulate how far the point-mass is allowed foogo the centroid. In
this study the value is set 005.

We define the following new algorithms using thelCrroIDHEURISTIC: the Cen-
troid Heuristic MCis identical to theHeuristic MCbut the heuristic used to guide the
MC simulations ignores actions that do not take the poinsstiewards the centroid (if
within the centroid influence). Likewise, tli&entroid Heuristic MCTSs similar to the
Heuristic MCTSbut uses th€entroidHeuristioduring the default policy. Th€entroid
MCTS only UCTis identical to the standafdllCTSalgorithm but uses th€entroid-
Heuristicin the tree policy, by not allowing the selection of those@tt that do not
take the point-mass towards the centroid (if within the g@dtinfluence). Finally, the
Centroid MCTS & UCTis similar to theCentroid Heuristic MCTS only UCTising the
CentroidHeuristicalso in the default policy.

5.1 Random Maps of 10 Cities

The results for random maps of 10 cities are shown in Tablei2elident that solution
quality was improved by the ENTROIDHEURISTIC. The average solution quality, us-
ing the centroid heuristic for both the tree selection andfdiCouts, is481.85, with a
low standard error and a very good count of best solutionsdobothCentroid MCTS
only UCT and Centroid MCTS & UCTwith K = 0.05, achieve more than th&%
of the best scores. The Kolmogorov-Smirnov test confirmsttiese results are signif-
icant. The test provides@valueof 1.98 x 10~22 when comparind.-ply MC Search
andCentroid MCTS only UCTand1.98 x 1022 for 1-ply Monte Carlo Searchgainst
Centroid MCTS & UCT

Similar results have been obtained for time steps of 50 seitionds. In this case,
the 1-ply Monte Carlo Searclalgorithm achieves an average timexdf4.31, while
MCTS UCB1 Centroid MCTS only UCTndCentroid MCTS & UCTobtain511.87,
556.53 and 469.72 respectively. Several things are worth noting from thesailts:
first, the algorithms perform better when the time for sintiolas is increased. Second,
it is interesting to see how the different MCTS configurasigspeciallyMCTS UCB1
and Centroid MCTS only UCJimprove more than the MC techniques when going
from 10 to 50ms. The third MCTS configuration, which obtaihe best results for

Algorithm Average Standard Best count| Not solved .Aver age
Error simulations

1-ply MonteCarlo Search | 539.65 3.295 1 1 816
HeuristicMC 532.63 3.302 1 0 726
MCTSUCB1 531.25 3.522 2 2 878
Heuristic MCTSUCB1 528.77 3.672 1 0 652
Centroid HeuristicMC | 552.87 4.158 2 0 915
Centroid HeuristicMCTS | 524.13 3.443 2 0 854
Centroid MCTSonly UCT | 599.38| 10.680 6 76 1009
Centroid MCTS & UCT | 481.85 6.524 12 0 659

Table 2: 10 city result comparison, 10ms limit.

both time limits, does not improve its solution quality asahas the other algorithms
when increasing the simulation time. However, it is impott®@ note that the results
obtained by this configuration given 10ms are better thabésesolution found by any
other algorithm given 50ms. It is highly significant that w@utions obtained by this
algorithm are the best ones found for this problem, showmigrgressive performance
even when the available time is very limited. This makes thg@ach very suitable for
time-constrained real-time games.

5.2 Random Maps of 30 Cities

To check if the results of the previous section are condisgemme experiments were
performed with 30 cities. Tablg 3 shows the results of thégearighms for a time limit

of 10ms. The results are similar to the ones recorded in thatlE® experiments, al-
though in this cas€entroid MCTS only UCTwith K = 0.05 is the algorithm that
solves the problem in the least number of time steps. Figsteovs the performance

of some of the configurations tested for the different timets considered. Comparing
1-ply Monte Carlo Searclith the Centroid MCTS only UCTsing the Kolmogorov-
Smirnov test gives the following p-values for 10ms, 20msBhs respectively).349,
0.0005 and 1.83k 10~". This confirms significance in the case of 20ms and 50ms, but
not in the case of 10ms.

6 Conclusions

This paper analyses the performance of Monte Carlo TreeBgsICTS) on the Phys-
ical Travelling Salesman Problem (PTSP), a real-time simgayer game. The two
experimental studies outlined in this paper focus on theaichpf domain knowledge
on the performance of the algorithms investigated and lgghhow a good heuristic
can significantly impact the success rate of an algorithrmvwhe time to select a move
is very limited.

The results show that th@entroidHeuristichelps the algorithm to find better solu-
tions, especially when the time allowed is very small (1QrAs)shown in the results,

Standard Average

Algorithm Average Error Best count| Not solved simulations

1-ply Monte Carlo Search |1057.01 6.449 2 0 562
HeuristicMC 1133.10 6.581 0 11 319
MCTSUCB1 1049.14 6.246 6 0 501
HeuristicMCTSUCB1 |1105.46 5.727 2 3 302
Centroid HeuristicMC [1119.93 6.862 0 1 441
Centroid HeuristicMCTS [1078.51] 5.976 1 0 428
Centroid MCTSonly UCT |1032.94 6.365 7 14 481
Centroid MCTS& UCT |1070.84 6.684 7 0 418

Table 3: 30 city result comparison, 10ms limit.

30 cities

T
1-ply MC Search +—+—

MCTS UCB1 (K=0.05)

1080 Centroid MCTS only UCT (K=0.05) s--a-e o

Centroid both MCTS and UCT (K=0.05) &

1100

1060
2 1040 \
. i
@ 1020 - |
E
=
1000 - 1
Dors
- : ,. L
B
960
;
10ms 20ms 50ms

Milliseconds

Fig. 6: Performance of the algorithms when time limit chan (g0 cities).

when the time limit is 10ms, some approaches (like MCTS witltmmain knowledge)
are not able to provide significantly better results tharylMonte Carlo Search. They
are, however, able to produce superior results when the ltmieis increased. The
main contribution of this research is evidence to show thiatpossible to effectively
utilise simple domain knowledge to produce acceptabletieols, even when the time
to compute the next move is heavily constrained.

The off-line version of the problem has also been solved witblutionary algo-
rithms, notably in the GECCO 2005 PTSP Competition. In féo, winner of that
competition utilised a genetic algorithm, using a stringhvthe five available forces
as a genome for the individuals (results and algorithms eyegl can be found at
CSWWW. essex. ac. uk/statf/sm/gecco/ ptsp/ Results. ht m). ThisPTSP
solution format, a string of forces, is a suitable represton for evolutionary algo-
rithms that may be applied to this problem. A thorough corigparof evolution versus
MCTS for this problem would be interesting future work.

cswww.essex.ac.uk/staff/sml/gecco/ptsp/Results.html

Other ongoing work includes the use of more interesting nflapéntroducing ob-
stacles, for instance), modified game-physics to steerialegather than a point-mass,
and the inclusion of more players that compete for the citizampetitions based on
these variations are already in preparation. The resultisesfe should provide further
insight into how best to apply MCTS to the PTSP, as well astisngths and weak-
nesses compared to evolutionary and other optimisatiohadst

Finally, a particular challenge for MCTS applied to the PTiSRow to persuade it
to make more meaningful simulations that consider the kemm plan of the order in
which to visit the cities, together with the short term pldrhow best to steer to the
next city or two.

Acknowledgements
This work was supported by EPSRC grant EP / H048588 / 1.

References

1. Y. Bjornsson and H. Finnsson, “CadiaPlayer: A SimulatBased General Game Player,”
IEEE Trans. on Computational Intelligence and Al in Games. 1, no. 1, pp. 4-15, 2009.

2. Z. Bnaya, A. Felner, S. E. Shimony, D. Fried, and O. Mak$Repeated-task Canadian
traveler problem,” irProceedings of the International Symposium on Combinait&arch
2011, pp. 24-30.

3. G. M. J.-B. Chaslot, S. Bakkes, |. Szita, and P. Spronclqritd-Carlo Tree Search: A New
Framework for Game Al,” irProc. of the Atrtificial Intelligence for Interactive Digit&n-
tertainment Conferenc@006, pp. 216-217.

4. R. Coulom, “Efficient Selectivity and Backup OperatorsMonte-Carlo Tree Search,” in
Proc. of the 5th Int. Conference on Computer GameSpringer-Verlag, 2006, pp. 72—83.

5. N. G. P. Den Teuling, “Monte-Carlo Tree Search for the Siameous Move Game Tron,”
Univ. Maastricht, Tech. Rep., 2011.

6. S. Gelly and D. Silver, “Monte-Carlo tree search and raution value estimation in com-
puter Go,"Artificial Intelligence vol. 175, no. 11, pp. 1856-1875, 2011.

7. L. Kocsis and C. Szepesvari, “Bandit based Monte-Caldmmpng,” Machine Learning:
ECML 2006 pp. 282-293, 2006.

8. S. Matsumoto, N. Hirosue, K. Itonaga, K. Yokoo, and H. Raghi, “Evaluation of Simu-
lation Strategy on Single-Player Monte-Carlo Tree Seanthits Discussion for a Practical
Scheduling Problem,” ifProc. of the International Multi Conference of Engineersl@om-
puter Scientistsvol. 3, 2010, pp. 2086—2091.

9. A. Rimmel, F. Teytaud, and T. Cazenave, “Optimizationh& Nested Monte-Carlo Algo-
rithm on the Traveling Salesman Problem with Time WindowsProc. of EvoApplications
2, LNCS 66252011, pp. 501-510.

10. D. Robles and S. M. Lucas, “A Simple Tree Search MethodPfaying Ms. Pac-Man,” in
Proc. of the IEEE Conference on Computational Intelligesicd Games2009, pp. 249-255.

11. S. Samothrakis, D. Robles, and S. M. Lucas, “A UCT AgenTfon: Initial Investigations,”
in Proc. of IEEE Conference on Computational Intelligence &aines2010, pp. 365-371.

12. ——, “Fast Approximate Max-n Monte-Carlo Tree SearchNts Pac-Man,"IEEE Trans.
on Computational Intelligence and Al in Gamesl. 3, no. 2, pp. 142-154, 2011.

13. M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik, G. MBJChaslot, and J. W.
H. M. Uiterwijk, “Single-Player Monte-Carlo Tree Searclry’ Proc. of Computer Games,
LNCS 51312008, pp. 1-12.

	Monte-Carlo Tree Search for the Physical Travelling Salesman Problem
	Perez et al.

