
Making Something Out of Nothing:
Monte Carlo Graph Search in Sparse Reward Environments

Marko Tot,1* Michelangelo Conserva,1 Sam Devlin,2 Diego Perez Liebana1

1 Queen Mary University of London
2 Microsoft Research

Abstract

Monte Carlo Tree Search (MCTS) has proven to be a sta-
ple method in Game Artificial Intelligence for creating agents
that can perform well in complex environments without re-
quiring domain-specific knowledge. The main downside of
this planning based algorithm is the high computational bud-
get needed to recommend an action. The fundamental cause
of this is a vast search space caused by a high branching fac-
tor, and the difficulty to create a good heuristic function to
guide the search without leveraging domain-specific knowl-
edge. Recent advances in the field proposed a new planning
based method called Monte Carlo Graph Search (MCGS),
which uses a graph instead of a tree to plan its next action,
reducing the branching factor and consequently increasing
the performance of the search. In this paper, we propose sev-
eral modifications that optimize the performance by increas-
ing the sample efficiency of MCGS. The use of frontier for
node selection, improving the rollout phase by doing stored
rollouts, and a generalized approach to guide the search by
incorporating a domain-independent online novelty detection
method. Together these enhancements enable MCGS to solve
sparse reward environments while using a significantly lower
computational budget than MCTS.

Introduction
Monte Carlo Tree Search (MCTS) (Browne et al. 2012) is
a family of algorithms based on Statistical Forward Plan-
ning. They operate by searching for the optimal action to
take given the current state of the environment and work by
constructing a tree of possible future states that are used to
select the best action.

The main downside of Monte Carlo methods is the num-
ber of rollouts needed to get a precise estimate of the state
value, which takes up a large portion of the computational
budget and makes them unsuitable for real-time tasks. As
these rollouts are typically done with a random policy for en-
acting actions, i.e. the agent chooses its actions without any
heuristics, these methods rely on the Law of Large Numbers
to get a precise estimate of the values for each action given
a particular state (Robert and Casella 2004). To ascertain the
value of a node, Monte Carlo methods need to do the roll-

*Contact Author: m.tot@qmul.ac.uk
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

out step for every new node they encounter, so their perfor-
mance is directly reliant on the number of new nodes. Even
if a single step in the environment is fast, the sheer amount
of rollouts required to choose a single action limits the ap-
plicability of these methods, especially in sparse reward en-
vironments that require a lot of exploration. In sparse reward
environments most of the rollouts don’t obtain any valuable
information, thereby effectively wasting the computational
budget.

Monte Carlo Graph Search (MCGS) (Leurent and Mail-
lard 2020) is a modification of the standard MCTS algo-
rithm, in which the tree structure created by the search is
changed into a more generic graph. However, MCGS has
not previously been applied to sparse reward environments,
in which MCTS methods are known to struggle.

This study presents a combination of enhancements that
can be added to the current state of the art MCGS algo-
rithm to decrease the necessary computational budget while
maintaining and even surpassing the performance of the cur-
rently available solutions. This is achieved by increasing the
sample efficiency of the search through improving the ex-
ploration rate. The addition of three modifications, a main-
tained frontier of nodes to reduce the overhead of the algo-
rithm, storing of the nodes during the rollouts, which pushes
the frontier further away from the currently explored space,
and a novelty metric that is used as the primary factor for
selection phase before a reward is obtained. Together these
enhancements enable MCGS to solve sparse reward environ-
ments while using a significantly lower computational bud-
get than MCTS.

Related Work
MCTS performs the search by building a tree of future pos-
sible states of the game and can be summarised in four steps,
reported in Figure 1. These four steps compose one iteration,
and iterations are repeated until the computational budget is
depleted, and the best action obtained from the tree structure
is enacted.

i) Selection. Starting from the root node, i.e. the current
state of the game st, a child selection policy descends
through the tree until it reaches a leaf node s′j .

ii) Expansion. The selected leaf node is expanded by adding
child node/nodes, based on the actions available to the



agent from that state.
iii) Rollout. A Monte Carlo simulation using a random roll-

out policy is used to approximate the return from the new
child state. Ĵ (s′j) =

∑∞
t=0 R(s′j+t, πRandom)

iv) Backpropagation. The result of the rollout is used to up-
date the value of the trajectory from the expanded node
up until the root. This value is subsequently used by the
selection policy during the next iteration.

Figure 1: Monte Carlo Tree Search steps.

The reason in favour of using trees for performing the
search lies in the theoretical simplicity of such a structure,
which allows defining simple yet effective rules for apply-
ing search methods. However, the assumption of a tree struc-
ture does not accurately portray the underlying structure of a
game state space. This simplicity of the tree structure comes
at the cost of redundancy of states (Leurent and Maillard
2020), as multiple different trajectories may lead to the same
state (Childs, Brodeur, and Kocsis 2008) and results in the
same states appearing multiple times in the tree, unnecessar-
ily increasing the size of the structure. A recent study (Nel-
son 2021) shows that dealing with the redundant states de-
creases the branching factor and consequently the size of the
created structure in games like Atari by an order of magni-
tude. Reducing the total number of nodes in the graph leads
to a lower number of rollouts required to evaluate them,
which in turn reduces the required computational budget.

When two identical nodes are merged, the tree becomes a
graph. Transposition tables (Kishimoto and Schaeffer 2002)
have been used in tree search methods, as a way of com-
bining identical nodes in order to share the value between
nodes. Recent advances have been seen in Statistical For-
ward Planning Methods (SFP) that utilise directed graphs
instead of trees to represent the game state space, where each
state can appear only once in the graph (Leurent and Mail-
lard 2020; Czech, Korus, and Kersting 2021). On one hand,
this transformation causes the search space to lose part of its
simplicity. On the other hand, the budget required to search
over the state-action space can be dramatically reduced. An
example of such transformation is shown in Figure 2.

Techniques that reduce the number of states in the struc-
ture are particularly useful in environments where the reward
signal does not give enough insight to guide the algorithm.
Many of these environments have sparse rewards, where for
almost all of the states, the agent does not get any reward.
This means that the agent is not receiving informative feed-

Figure 2: The graph obtained by merging identical states.

back for the actions it takes, practically transforming MCTS
into an uninformed search algorithm, and uninformed search
is directly affected by the size of the state-space.

With the absence of external rewards, many techniques
have been used to provide intrinsic rewards to guide the ex-
ploration. In procedural content generation (PCG), novelty
has been used to drive the PCG process (Gravina et al. 2019),
and to create new and different entities (Liapis, Yannakakis,
and Togelius 2015). It has also been used with different re-
inforcement learning techniques (Jackson and Daley 2019)
for improving the policy and encouraging exploration.

Recent work has also shown promise of using novelty in
MCTS. Determining novel states can be an effective way
of enhancing the selection process in cases where nodes
have the same value. Several criteria have been used in or-
der to determine the novelty of the state. Heuristic novelty
or reward novelty (Katz et al. 2017) separates the nodes
into novel and not-novel based on the received rewards. ϕ-
Exploration bonus algorithm (Martin et al. 2017) detects
novel states based on the probability distribution of vari-
ables, while feature-based pseudo count novelty builds on
top of this idea but instead of using atomic variables uses
probability distribution over composite features. An exam-
ple of a feature for a game of chess could be ”Black still has
both knights” (Baier and Kaisers 2021).

However, the addition of novelty methods with planning
based algorithms has only been used on top of an already
existing heuristic evaluation, still relying on domain knowl-
edge and handcrafting of the reward signal for the specific
environment. While this enhancement shows that novelty
can provide additional information to the agent, it doesn’t
tackle the issue of sparse rewards. Furthermore, the use of
graph-based planners has not been explored in sparse reward
environments where sample efficiency and exploration tech-
niques are of a much higher priority.

Method
Our proposed algorithm is a highly modified version of the
state of the art SFP algorithm called Graph Based Plan-
ner (GBP) (Leurent and Maillard 2020). GBP uses a graph
structure as the basis for the search, with Upper Confidence
Bound for Trees (UCT) (Kocsis and Szepesvári 2006) for-
mula for the selection step, without doing any rollouts. By
skipping the rollout step this algorithm spends most of its



computational budget on expanding new nodes, which al-
lows it to explore a large state space. However this way of
exploration also heavily impacts the memory consumption
of the algorithms, as each newly explored node needs to be
added to the graph.

Another available planner which uses graphs is Stochastic
Graph Based Planner (S-GBP) (Leurent and Maillard 2020),
which uses the GBP as its basis, but also incorporates the
rollouts as well as keeping value bounds for each of the
nodes instead of a single value.

As MCTS allows multiple identical states to exist in the
tree, the size of the created structures doesn’t effectively
represent the explored state space. Graph search brings two
main benefits: it allows aggregation of states and easy detec-
tion of obsolete actions.

The agent interacts with the environment through differ-
ent actions. At each step of the game, it must choose one
of the given actions in order to progress the game to the
next state. Some actions, however, might not have any im-
pact on the game due to special circumstances. Using action
’Drop object’ while carrying no objects, doing ’Move For-
ward’ while being in front of a wall, trying to unlock the
door without carrying the correct key, or being in the middle
of a cut-scene where actions might not have any effect on the
game. While still being registered as actions, the game will
progress, but the underlying game state might not change1.
Any action that doesn’t affect the game state is an obsolete
action. If an obsolete action is registered during the expan-
sion phase while using MCGS, the node is not added to the
graph, and the rollout and backpropagation phases can be
skipped as those states have already been simulated, and the
value was already backpropagated through the graph.

We present three different modifications that increase the
sample efficiency of the basic MCGS.

Frontier
A common technique for selecting a node for expansion in
the Monte Carlo family of algorithms, also used in GBP,
is the UCT formula, which balances the exploration and
exploitation of the game space. We propose an alternative
node selection approach consisting of maintaining a set of
leaf nodes (frontier) that are yet to be expanded. Every node
added to the graph is also added to the frontier. The selection
of the node is done according to Equation 1 which includes
the UCT formula as well as added random noise.

SelectedNode = argmax
n∈N

(ucb(n) + ϵ) (1)

, where ϵ ∼ N (0, σ), σ = maxn∈N ucb(n). The frontier
also allows for a simpler process of updating the graph and
determining which nodes are reachable from the root node.
Since the complexity of the graph structure can make certain
nodes in the graph disconnected from the root, those nodes
have to be omitted from the node selection process. Even
though marked as unfit for the node selection process, these

1In some cases the game state could still change due to change
not being caused by the player but by other agents or the environ-
ment itself.

nodes are still kept in the graph as a potential merging of
the states could render those nodes reachable again through
a different action trajectory.

Stored rollouts
In MCGS, rollouts are done in order to ascertain the value
of a specific node. The agent follows a random action tra-
jectory from the selected node and the value of the node is
determined based on the accumulated reward. A valuable
addition to the rollout step could be adding the nodes vis-
ited throughout the rollout to the graph. In a tree structure,
those trajectories would be highly non-optimal due to the
randomness of the rollouts and state redundancy. Graphs, on
the other hand, allow for more inter-connectivity between
nodes. Adding additional nodes to the graph during the roll-
out phase, combined with leaf parallelisation (Cazenave and
Jouandeau 2007) provides a meaningful difference in the ex-
ploration of the state space.

Novelty
Novelty is detected by online analysis of the states using a
count-based technique. During the search, after a new state
has been encountered, features of the state are compared to
the ones already stored in the graph. For each feature, we
count how many times its value has been seen in the graph,
and the state is regarded as novel if its occurrence rate is
below a certain threshold. Including novelty as a factor adds
a new component to the selection step (Equation 2).

SelectedNode = argmax
n∈N

(ucb(n) + ϵ+ novelty(n))

(2)
Novelty inheritance is also enabled. If a node is reached

from a novel node it gets a percentage of the parent’s node
novelty. This encourages further exploration from the area
where a novelty was found. Including novelty in the algo-
rithm creates a reward signal that guides the algorithm to
select nodes from the frontier which are new and different,
consequently improving exploration.

Novelty methods can also be combined with adding the
nodes during the rollout. A potential issue with maintaining
the graph created in this way would be the requirement to
store a large number of nodes. Restricting the addition of
nodes to only add the trajectories which contain novel states
could alleviate the issue of rapidly increasing graphs, i.e. de-
crease the memory consumption, while preserving most of
the benefits regarding the exploration.

Based on these modifications we present several different
ablations of the algorithm based on types of enhancements
that were enabled:

• MCGS - Monte Carlo Graph Search with the frontier
• MCGS+R - MCGS with stored rollouts
• MCGS+N - MCGS with novelty search
• MCGS+RN - MCGS with stored rollouts and novelty
• MCGS+R*N - MCGS with stored novel rollouts and

novelty



Environment
In this study, we chose MiniGrid (Chevalier-Boisvert,
Willems, and Pal 2018) for the evaluation of the agent. Min-
iGrid is a staple environment for assessing the performance
of the algorithms on grid-based levels (Flet-Berliac et al.
2021; Ke et al. 2019; Leurent and Maillard 2019; Jiang,
Grefenstette, and Rocktäschel 2020). The agent has been
tested in two different versions of the environment, Empty
and DoorKey. In the Empty environment, the agent needs
to reach the goal located in the grid, while in the DoorKey
version there is an additional requirement of picking up the
key, unlocking the door, and then reaching the goal. The size
of the level is also modifiable to allow for specific difficulty
ranges.

The state representation, i.e. the observation received by
the agent, consists of features extracted from the environ-
ment, as well as the grid that represents the map. The choice
of state representation is critical for the creation and main-
tenance of the graph as well as for the performance of the
algorithm. Original MCTS doesn’t rely on any state repre-
sentation as it only encodes the action that is used to tran-
sition to the new state, and not the state itself. When using
a graph representation, however, the structure of the node is
of utmost importance, as different state representations will
create different graph structures. An example of a game state
and its state representation is presented in Figure 3.

Figure 3: DoorKey level and its state representation.

An example of using the novelty method in MiniGrid,
based on the given state representation can be seen in Fig-
ure 4. This state is not novel based on the Has Key feature,
where the value False is present in 572 of out 602 nodes
currently in the graph2. On the other hand, if the value was
True, the state would be regarded as novel due to the low
occurrence rate.

An example of utilising novelty search and its effects on
the reward signal in MiniGrid can be seen in Figure 5.

Experiments
Figure 6 showcases the difference between the structures
created after only a couple of iterations of MCTS and
MCGS, caused by disregarding obsolete actions and merg-
ing of the identical nodes in a sample MiniGrid level. These
two structures contain the same amount of information, the
only difference is in the redundancy of nodes in the tree.

2It could still be novel based on the other features.

Figure 4: Novelty detection in MiniGrid environment

(a) Level layout (b) Reward signal

(c) Novelty signal (d) Combined signal

Figure 5: Level layout and the corresponding value signals.

Empty environment
Table 1 shows the comparison between the state of the art
planning algorithms and MCGS with different modifications
on an Empty 8 × 8 environment. The cut-off was set to 99
steps: if the agent can’t reach the goal in 99 steps, the game
ends. One step in the environment corresponds to one action.

The performance of the agent is measured with two indi-
cators: whether the goal was reached at all, and how many
steps were used to do so. All algorithms were run on the
same budget of 250 forward model calls (FMC) per step.

Each algorithm was run with 50 times, each time with a
different random seed, to create the variance in the selection,
expansion and rollouts phases between runs. From the re-
sults, it is evident that the standard MCTS struggles to finish
even the simple, Empty 8× 8 grid, with only 6% of runs be-
ing successful compared to 100% completion rate of other
algorithms. While this disparity of the results might come
from a very low budget, it shows that in the environments
where there are many identical states graph-based search can
explore the space much more efficiently.

To determine the effectiveness of specific modifications
made for MCGS, the algorithms were run on a larger, 16×16
grid. The results for the Empty 16 × 16 grid are presented



Figure 6: Difference in the tree and the graph structures
caused by merging identical states and detecting obsolete
actions

Table 1: Different versions of MCGS compared with state of
the art planning methods, tested in Empty 8x8 environment.

Algorithm Steps
Mean± STD

Solve rate

MCTS 97.5± 7.2 6%
GBP 14.0± 0.0 100%

S-GBP 25.4± 1.9 100%
MCGS 39.2± 14.4 100%

MCGS+R 22.9± 7.0 100%
MCGS+N 35.4± 15.8 100%

MCGS+RN 33.5± 12.8 100%
MCGS+R*N 35.0± 17.0 100%

in the Table 2. Each of the algorithms was run on the same
budget of 8000 forward model calls per step.

Similarly to the previous experiment, MCTS fails to solve
the environment on any seed. All of the MCGS variants how-
ever manage to finish almost all of the levels. It is important
to note the big disparity between the number of steps re-
quired to finish the levels after including the rollout nodes.
However, with the small state space of only 782 different
states, all algorithms have been able to explore almost every
state and adding the rollout nodes allows the algorithm to
explore much faster, in a brute-force like manner, therefore
discovering and reaching the goal in fewer steps.

The results also show that adding novelty bonuses to such

Table 2: Different versions of MCGS compared with state
of the art planning methods, tested in Empty 16x16 environ-
ment.

Algorithm Steps
Mean± STD

Solve rate

MCTS 99± 0.0 0%
GBP 26.0± 0.0 100%

S-GBP 33.7± 0.8 100%
MCGS 69.7± 11.8 100%

MCGS+R 35.1± 3.2 100%
MCGS+N 68.2± 19.3 96%

MCGS+RN 50± 20.2 96%
MCGS+R*N 43.7± 15.2 100%

a small state space doesn’t impact the performance of the al-
gorithm. It is also evident that GBP has the best performance
in this environment. As the number of different states is very
low, it is more effective to skip the rollouts completely and
brute force the search.

To analyse the effects of a larger state space on the perfor-
mance of the algorithms, the environment was changed from
Empty to DoorKey.

DoorKey environment
DoorKey environment is difficult for planning algorithms
for two reasons. Firstly, the large grid makes the sparsity of
the reward problem much more evident. Some of the level
layouts require the agent to do up to 60 actions to get the
reward. Secondly, the presence of the inventory, i.e. the abil-
ity of the agent to pick up, and more importantly drop the
key. This interaction allows the state space to expand exten-
sively as dropping the key on any spot in the grid creates a
whole new set of states. These two factors combined make
this environment truly difficult for a planning algorithm, as
the probability of the agent traversing the grid from the key
to the door without dropping the key somewhere on the way
due to random rollouts is extremely low. Changing to this
environment increased the state space from 782 to approxi-
mately 600, 000.

Each algorithm was run 25 times with the same budget
of 8000 forward model calls per iteration and the results are
presented in Table 3. Metrics such as average steps and the
number of forward model calls were used in order to deter-
mine the effectiveness of different algorithms. In addition,
the discovery rate for three different checkpoints has been
measured: Key Found, Door Opened, Goal Found. Each of
them represents if the state where the agent collected the key,
opened the door, or found the goal was encountered during
the search. Note that discovering these checkpoints does not
inherently give any reward to the agent, they have only been
used for measuring purposes.

It is evident that MCGS isn’t able to solve the levels,
reaching the step limit on each of the level layouts. Large
state space and the sparsity of the rewards cause the roll-
outs to be ineffective in obtaining any useful information
about the value of the states, in order to guide the further
search. The addition of novelty bonuses or storing nodes
that are encountered during the rollouts increases the per-
formance of the algorithm and allows it to solve some of the
levels, showing that on their own, both of these modifica-
tions can be used to improve exploration. Interestingly, even
though they have the same rate of solving the environment
of 28%, different amounts of checkpoints are discovered in
these two variants. MCGS+N, discovers the goal 32% of the
time, while MCGS+R was able to discover the goal in 44%
of the tested levels. The reason for the significant drop for
MCGS+R is that the paths added to the graph during the
rollouts by MCGS+R are not optimal, requiring the agent the
do more steps on its path to the goal and consequently not
reaching it in time (99 total steps). Using both modifications
at the same time though greatly improves the performance
of the search. Adding all of the nodes found during the roll-
out, in conjunction with novelty bonuses reaches the over-



Table 3: Different versions of MCGS compared with state of the art planning methods, tested in DoorKey 16x16 environment.

Algorithm Checkpoint Discovered Solved Mean Mean Mean New node
Key

Found
Door

Opened
Goal

Found
Steps FMC Nodes per FMC

(%)
GBP 100% 100% 96% 64% 80 639, 280 103, 403 16.17

S-GBP 100% 96% 68% 0% 99 781, 300 44, 610 0.17
MCGS 100% 40% 8% 4% 98 1, 209, 535 1, 487 0.12

MCGS+N 100% 68% 32% 28% 90 1, 218, 543 1, 510 0.12
MCGS+R 100% 84% 44% 28% 92 295, 920 17, 427 5.89

MCGS+R*N 100% 88% 72% 72% 73 819, 253 1, 365 0.17
MCGS+RN 100% 100% 100% 96% 64 231, 806 17, 753 7.66

all solve rate of 96% with only 1/25 runs not being solved
in time. The benefit is also evident from the lowest average
number of steps and the lowest number of FMC. Combining
the two enhancements also provides a high new node per
FMC of 7.66%, the highest between all of the rollout based
methods. Having the advantage of being able to select the
node far away from the root which comes from storing roll-
out nodes, with knowing which of these nodes are promising
enabled by novelty detection creates a cohesion that boosts
the performance more than each of the enhancements sepa-
rately.

Another important metric to look at is the number of for-
ward model calls each of the algorithm needed to finish the
level. There is a huge decrease in forward model calls after
adding the rollout nodes. This happens due to an implemen-
tation choice of not doing the rollouts from the nodes which
have already been added to the graph. Every time an expan-
sion step is active, MCGS expands all of the children of the
selected node, if the option to add nodes during the rollouts
phase is enabled, many of these nodes will already be added
and therefore no additional rollouts will be enacted.

Finally, there is a huge increase in the number of nodes
that are added to the graph in the modification with the roll-
outs. This can greatly impact the memory consumption of
the algorithm which also has to be taken into account. As the
complexity of the environment grows so will the state space
and potentially the state representation as well, so keeping
the number of stored nodes low while maintaining the per-
formance is certainly a point of interest. One tested modi-
fication includes only adding the paths to the novel nodes
during the rollout phase (MCGS+R*N). This procedure de-
creases the number of stored nodes to a level similar to not
adding rollout nodes while outperforming both single modi-
fication algorithms. However, this constraint does affect the
ability of the algorithms to solve the harder levels which can
be seen when comparing the solve rate of 72% obtained from
this version to the 96% of MCGS+RN.

MCGS+RN also outperforms both of the current state of
the art planning methods. Given enough computational bud-
get to search a significant portion of the space GBP can
solve some of the environments. Without the need to spend
the budget on rollouts, this method can search through a
large amount of space, creating over 103, 403 nodes, which
amounts to 16% of the whole state space. We have to be
mindful of the number of nodes stored in the graph as well.

As this number is an order of magnitude higher than in
MCGS+RN (17, 753), and two orders of magnitude higher
compared to MCGS+R*N (1, 365) the memory consump-
tion is also significantly higher for GBP. On the other hand,
S-GBP often discovers the goal, but cannot solve the envi-
ronment in time. It also on average stores 44, 610.64 nodes,
a significantly less amount of nodes compared to GBP, but
also still several times more than MCGS+RN.

To further compare the state of the art with the main
MCGS variants, additional metrics for each of the subgoals
are presented separately in Table 4. Step metrics represent
the performance of the agent in regards to optimality, nodes
stored in the graph equate to the memory consumption of the
algorithm and the number of forward model calls reflects the
computational budget in which the algorithm can solve the
environment.

MCGS+RN variant outperforms both of the state of the
art planning algorithms in all three metrics. MCGS+R*N
presents itself as a promising alternative solution, which
allows for a trade-off between computational budget and
memory consumption while still maintaining most of the op-
timality of MCGS+RN. Compared to MCGS+RN, it used
almost 6 times more FMC, but reduced the number of stored
nodes by a factor of 8. This trade-off could be useful when
the state representations themselves become large enough,
where the high memory consumption can become an issue.

Even though MCGS+RN shows the best performance it
is necessary to mention that the average number of steps to
complete the level is still not optimal. As an example, for a
hard level where the key is far away from the door, presented
in Figure 7, after 50 runs with the different agent seeds, the
average number of steps required to completely solve the
environment was 68.5 with the standard deviation of 12.7,
while the optimal route would take 40 steps.

There are two reasons for this sub-optimal solution.
Firstly, it takes the algorithm multiple steps to explore the
environment and discover the goal, i.e. it depletes the com-
putational budget several times before discovering the goal.
Until the agent discovers the goal, it is purposelessly mov-
ing around the environment. For the hard level presented in
Figure 7, the average number of steps required to discover
the goal was 21.0 with the standard deviation of 11.3. Sec-
ondly, due to the random rollouts, there is a high chance the
path itself is not optimal, which is manifested by the agent
occasionally spending an action to drop the key somewhere



Table 4: Subgoal discovery metrics for GBP, S-GBP and MCGS+RN and MCGS+R*N.

Algorithm Key Discovered Open Door Discovered Goal Discovered
Step Node FMC Step Node FMC Step Node FMC

GBP 8.5 115 663 22.9 6, 970 38, 681 38.0 103, 404 442, 645
S-GBP 1.0 132 840 15.8 7, 436 118, 790 46.1 16, 931 364, 422

MCGS+RN 1.3 127 2, 653 12.3 2, 529 25, 990 25.2 5, 416 56, 569
MCGS+R*N 1.1 59 3, 608 22.0 441 242, 140 28.2 697 314, 703

Figure 7: DoorKey 16x16 - Hard level layout

along its path to the goal. The average discovered path length
was 47.6 steps with the standard deviation of 6.8 while the
optimal route would take 40 steps. Combined, these two fac-
tors are the cause of the disparity between the optimal play
and the obtained solution. Figure 8 shows the comparison
between optimal solution and the solutions from different
seeds of MCGS+RN.

Figure 8: Impact of various agent seeds on the performance
of MCGS+RN.

Conclusion and Future Work
In this study, we presented a new planning algorithm that
surpasses the current state of the art in the domain of sparse
environments. Taking advantage of the graph structure to
eliminate node redundancy through merging nodes and dis-
regarding obsolete actions already creates a good basis due
to the reduction in the branching factor. We presented several
main additions that work symbiotically to allow for plan-
ning methods to be effectively used in sparse reward envi-
ronments. Combining the use of the frontier for the selection
step, with storing the nodes during the rollout, and adding a
novelty bonus as the intrinsic exploration incentive increases
the sample efficiency of the algorithm by creating an effec-
tive way of searching through large state spaces. The results
demonstrate that combining these modifications shows a sig-
nificant decrease in the computational budget necessary to
discover, and later on reach the goal compared to standard
MCTS and current state of the art planning based methods.

Novelty bonuses based on occurrences of features of the
state space in the graph provide a generalizable way of giv-
ing additional information to the agent and decreases the
number of forward model calls until the goal is reached by
a large margin. To further enhance the exploration it could
be possible to take into account not only novelty through
occurrences of states, but also look for the empowerment
of the agent through graph analysis, and the change in state
features caused by specific actions to add a surprise factor
in addition to the novelty (Gravina, Liapis, and Yannakakis
2016; Hartuv and Shamir 2000).

Storing rollouts throughout the search also manifested as
a key part of the algorithm. It significantly improved the per-
formance in conjunction with the novelty bonuses. Storing
each path visited during the rollouts expanded the frontier
greatly and enabled the search to continue from a state fur-
ther from the root node. Nonetheless, the experiments have
presented a high variance during the execution of the algo-
rithm, partially due to the non-optimal paths caused by ran-
dom rollouts. Disabling certain actions during a portion of
the rollouts, or having dynamically adjusted rollout lengths
could reduce the variance and give more consistent results
over multiple seeds (Gaina, Lucas, and Perez Liebana 2019).
Following the notion of exploration vs exploitation, using a
portion of the computational budget to optimize the best-
known path while still using the rest to explore the environ-
ment may also lead to an improvement in the path length of
the discovered solution. Optimizing the length of the solu-
tion path with the addressed issue of lower computational
budget would further improve the effectiveness of MCGS in
the environments in which it has been struggling.



References
Baier, H.; and Kaisers, M. 2021. Novelty and MCTS. In Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference Companion, GECCO ’21, 1483–1487. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450383516.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games, 4(1): 1–43.
Cazenave, T.; and Jouandeau, N. 2007. On the paralleliza-
tion of UCT. In Computer Games Workshop.
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
imalistic Gridworld Environment for OpenAI Gym. https:
//github.com/maximecb/gym-minigrid.
Childs, B. E.; Brodeur, J. H.; and Kocsis, L. 2008. Trans-
positions and move groups in Monte Carlo tree search. In
2008 IEEE Symposium On Computational Intelligence and
Games, 389–395.
Czech, J.; Korus, P.; and Kersting, K. 2021. Improving Alp-
haZero Using Monte-Carlo Graph Search. In ICAPS.
Flet-Berliac, Y.; Ferret, J.; Pietquin, O.; Preux, P.; and
Geist, M. 2021. Adversarially Guided Actor-Critic. CoRR,
abs/2102.04376.
Gaina, R.; Lucas, S.; and Perez Liebana, D. 2019. Tack-
ling Sparse Rewards in Real-Time Games with Statistical
Forward Planning Methods. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 33: 1691–1698.
Gravina, D.; Khalifa, A.; Liapis, A.; Togelius, J.; and Yan-
nakakis, G. N. 2019. Procedural Content Generation through
Quality Diversity. CoRR, abs/1907.04053.
Gravina, D.; Liapis, A.; and Yannakakis, G. 2016. Surprise
Search: Beyond Objectives and Novelty. In Proceedings
of the Genetic and Evolutionary Computation Conference
2016, GECCO ’16, 677–684. New York, NY, USA: Associ-
ation for Computing Machinery. ISBN 9781450342063.
Hartuv, E.; and Shamir, R. 2000. A clustering algorithm
based on graph connectivity. Information Processing Let-
ters, 76(4): 175–181.
Jackson, E. C.; and Daley, M. 2019. Novelty Search
for Deep Reinforcement Learning Policy Network Weights
by Action Sequence Edit Metric Distance. CoRR,
abs/1902.03142.
Jiang, M.; Grefenstette, E.; and Rocktäschel, T. 2020. Prior-
itized Level Replay. CoRR, abs/2010.03934.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2017. Adapting Novelty to Classical Planning as Heuristic
Search.
Ke, N. R.; Singh, A.; Touati, A.; Goyal, A.; Bengio, Y.;
Parikh, D.; and Batra, D. 2019. Learning Dynamics Model
in Reinforcement Learning by Incorporating the Long Term
Future. arXiv:1903.01599.
Kishimoto, A.; and Schaeffer, J. 2002. Distributed game-
tree search using transposition table driven work scheduling.

Proceedings International Conference on Parallel Process-
ing, 323–330.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based
Monte-Carlo Planning. In Fürnkranz, J.; Scheffer, T.; and
Spiliopoulou, M., eds., Machine Learning: ECML 2006,
282–293. Berlin, Heidelberg: Springer Berlin Heidelberg.
ISBN 978-3-540-46056-5.
Leurent, E.; and Maillard, O. 2019. Practical Open-Loop
Optimistic Planning. CoRR, abs/1904.04700.
Leurent, E.; and Maillard, O.-A. 2020. Monte-Carlo Graph
Search: the Value of Merging Similar States. In Asian Con-
ference on Machine Learning, 577–592. PMLR.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2015. Con-
strained Novelty Search: A Study on Game Content Gener-
ation. Evolutionary Computation, 23: 101–129.
Martin, J.; Sasikumar, S. N.; Everitt, T.; and Hutter, M. 2017.
Count-Based Exploration in Feature Space for Reinforce-
ment Learning. CoRR, abs/1706.08090.
Nelson, M. J. 2021. Estimates for the Branching Factors of
Atari Games. arXiv:2107.02385.
Robert, C. P.; and Casella, G. 2004. Monte Carlo Integra-
tion, 79–122. New York, NY: Springer New York. ISBN
978-1-4757-4145-2.

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

	Introduction
	Related Work
	Method
	Frontier
	Stored rollouts
	Novelty

	Environment
	Experiments
	Empty environment
	DoorKey environment

	Conclusion and Future Work

