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Abstract—In this paper we investigate the use of Monte
Carlo Tree Search (MCTS) on the Physical Travelling Salesman
Problem (PTSP), a real-time game where the player navigates
a ship across a map full of obstacles in order to visit a series
of waypoints as quickly as possible. In particular, we assess the
algorithm’s ability to plan ahead and subsequently solve the two
major constituents of the PTSP: the order of waypoints (long-
term planning) and driving the ship (short-term planning).
We show that MCTS can provide better results when these
problems are treated separately: the optimal order of cities
is found using Branch & Bound and the ship is navigated to
collect the waypoints using MCTS. We also demonstrate that
the physics of the PTSP game impose a challenge regarding the
optimal order of cities and propose a solution that obtains better
results than following the TSP route of minimum Euclidean
distance.

I. INTRODUCTION

Games haven always been a popular benchmark for test-
ing new techniques in computational intelligence. Real-time
(video) games have become increasingly popular in recent
years and many competitions are held at international con-
ferences every year where competitors from different areas
of research compete to be the best. Video games tend to
be very complex and players must solve a wide range of
problems, often in very little time, to make progress. To
better understand these requirements, it is useful to examine
some of the characteristics of such games in a simplified
framework.

In this paper we focus on a simple single-player real-time
game: the Physical Travelling Salesman Problem (PTSP)
requires the player to navigate a ship in real-time across a
map filled with obstacles to collect a series of waypoints
as quickly as possible. Despite its simplicity, the PTSP is
representative of the numerous challenges a player faces in
more complex video games, such as real-time constraints,
continuous state spaces and open-endedness. The PTSP lacks
the presence of an opponent and hence one is able to plan
ahead without having to worry about the actions carried out
by the adversary. However, this does not make it trivial: the
PTSP is a real-time game where the action to execute must be
chosen quickly. Hence, it is usually not possible to plan the
entire gameplay at the early stages of the game. Furthermore,
the search space may simply be too big to perform deep
searches. In many cases one has to choose the best of the
options currently available, recomputing moves in the future
as required.
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The remainder of this paper is structured as follows:
Section II highlights the challenges of long-term planning in
real-time games when applying Monte Carlo (MC) methods.
Section III introduces MCTS for single-player real-time
games, followed by the problem description in Section IV.
Section V presents the experimental study. Finally, conclu-
sions and future work are discussed in Section VI.

II. LONG TERM VS. SHORT TERM PLANNING

Monte Carlo (MC) methods, at least those that sample
from a uniform distribution, may be unsuitable for long-
term planning: the random nature of the sampling usually
lacks sufficient direction to explore the search space in a
satisfactory manner. In most video games, MC simulations
are not able to reach terminal states as this usually requires
thousands of moves. Monte Carlo Tree Search (MCTS) is
able to look ahead further by building an asymmetric tree
over time (see Section III-A). However, even this is usually
insufficient given the lack of time and the size of the state
space. Instead, long-term planning may best be achieved
through a different route.

One of the possible options is to create macro-actions, a
pre-defined set of consecutive low-level actions that define a
single high-level move. Then, MCTS simulations operating
in the high-level macro-action space can sample states far
ahead in a more diverse manner and hence obtain improved
long-term planning. A clear example of this methodology can
be found in Real Time Strategy (RTS) games, where groups
of simple moves (i.e., transit from A to B, attack a concrete
unit) can be included in higher level actions (such as patrol
an area or develop a new technology).

However, the PTSP offers an interesting way to balance
long-term and short-term planning. Since long-term plan-
ning is concerned with the order in which the waypoints
are visited and short-term planning is concerned with the
actual navigation of the ship, it is possible to tackle these
(interdependent) issues separately. The fact that the game is
deterministic and single-player allows for this type of long-
term planning: the uncertainty due to an opponent’s actions
or the non-deterministic nature of a game would limit an
algorithm’s ability to form reliable long-term plans.

In this paper we analyse the performance of MCTS on the
PTSP with different combinations of long-term and short-
term planning. In particular, we experiment with different
routes that take the nature of the game into account in
different ways, allowing for different short-term planning
patterns to emerge that lead to significant differences in
performance.



III. MCTS FOR SINGLE PLAYER GAMES

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) uses selective sampling
to estimate the value of a state: starting from the current
state (root), MCTS repeatedly simulates sequences of moves,
chosen uniformly at random (default policy), until the end of
the game. The value of each terminal state is subsequently
back-propagated to gather statistics that allow MCTS to
select greedily amongst the states close to the root (tree
policy). The selection of nodes for which statistics exist
must balance exploration and exploitation in the face of
uncertainty and the most common choice is UCB1 for trees
[8]:

πT (si) = argmax
ai∈A(st)

{
Q(st, ai) +K

√
logN(st)

N(st, ai)

}
(1)

The first term of this equation represents the expected value
of applying the action ai at the state st, while the second
term favours exploration, considering how often this action
is selected from the given node (N(st, ai)) in relation to
how many times this node has been explored (N(st)). The
constant K is used to weigh these two terms, producing a
balance between exploitation and exploration.

The tree created by MCTS is usually asymmetric and new
nodes are added to the leaf nodes one at a time. This makes
MCTS a promising candidate for real-time games where the
time to compute a move is severely limited. An exhaustive
description of MCTS and its variations can be found at [2].

B. MCTS for Single-player Real-time Games

MCTS is closely associated with Computer Go where
it has led to a breakthrough in performance. Since then,
however, MCTS has been applied to a wide range of games,
including single-player games (puzzles) and video games.
Single-player games are quite different to multi-player games
as they not only lack an adversary but also may result in a
score rather than a win/loss scenario. MCTS, like minimax,
is a technique used in 2-player games and modifications
are required to adopt it to the single-player domain. In this
section we review studies that applied MCTS to single-player
games, real-time games and single-player real-time games. A
complete collection of applications of MCTS and its variants
to games can be found at [2].

1) Single-Player Games: The Single Player MCTS (SP-
MCTS) algorithm was proposed by Schadd et al. [17] and
modifies the UCT tree selection to consider the effects of not
having an opponent to play against. The authors presented
the algorithm as a solution to SameGame, a puzzle played
in a 15 × 15 board where the player has to remove groups
of tiles of the same colour. The objective is to clear the
board in the least number of moves possible. The authors
highlight the difference between single and multiple player
games, focusing on the range of values of the score functions.
They also propose a meta-search algorithm that resets the
tree search with a different random seed, in order to avoid
being caught in local minima during the search. The results

obtained with SP-MCTS suggest that this algorithm is a good
alternative for single player games.

Other authors have also addressed SameGame, such as
Cazenave [3], who used Nested Monte Carlo search to
achieve good results. Matsumoto et al. [10] applied SP-
MCTS to this game, including knowledge information to
bias the roll-outs, obtaining better performance. Finally
Edelkamp [4] applied an enhanced UCT to beat the highest
score registered at the moment.

Morpion Solitaire is another good example of the appli-
cation of MCTS to single player games: the game consists
of repeatedly drawing straight lines on a board to link nodes
until no more moves can be made. There are two variations
of the problem: the touching and the non-touching versions,
in which sharing nodes at the end of the lines is legal or non-
legal respectively. Edelkamp et al. [4] obtained good results
applying UCT to this problem, and Rosin et al. [14] achieved
a new world record, for the 5-line touching version of the
problem, applying a modified version of MCTS.

2) Real-Time Games: MCTS has been applied to the 2-
player video game Tron where players have to force the
opponent to collide against the walls created by their own
movements. Samothrakis et al. [15] proposed a standard
implementation of MCTS that included heuristic knowl-
edge to prevent the player from self-destructing, and also
compared different MCTS variants. The authors conclude
that UCT by itself works reasonably well, although some
bias needs to be introduced in order to get high quality
MC simulations and hence obtain better performance. In a
more recent paper, by Den Teuling [18], an enhanced UCT
algorithm is applied to the game of Tron. The enhancement,
MCTS-Solver, handles simultaneous moves and predicts the
outcome of the game without completing a whole simulation,
deriving an improvement on the performance of the player.

Another relevant video game is Ms Pac-Man: Samothrakis
et al. [16] used MCTS with a 5-player maxn game tree
that controls each one of the ghosts separately, showing that
MCTS can be used successfully to create strong players for
this game. Ikehata and Ito. [5], [6] propose a variant of
MCTS that avoids hazardous moves and identifies the most
dangerous positions in the maze.

Finally, another category of video games to which MCTS
has been applied are real-time strategy games (RTS). Similar
to Ms Pac-Man, terminal states are difficult to reach using
MC simulations, especially under the tight time constraints,
yet modifications may still allow the successful application
of MCTS to these types of games. R. Balla and A. Fern [1]
apply MCTS to the RTS Wargus. This game focuses on
tactical assault planning and the authors achieved better
results than human players in 12 maps by assigning abstract
actions to groups of units in the game. Similarly, the game
ORTS has been tackled by Naveed et al. [11]. The authors
used MCTS and Rapidly exploring Random Trees (RRTs) to
find paths in the game, showing that MCTS is able to obtain
good solutions with less effort, although RRTs still produced
stronger players.



3) Single-Player Real-Time Games: Zhongjie et al. [19]
have recently applied UCT to the well known game Tetris,
a game that shares the single-player and real-time features
with the PTSP. In their work, the authors sample the dif-
ferent possible scenarios according to the state of the board
and the available pieces. They improved the quality of the
simulations by including a pruning mechanism that avoids
actions that create holes in the game board, penalising them
also in the score value function. Although the number of roll-
outs per cycle dropped by half because of the complexity of
the pruning procedure, the number of pieces correctly placed
was increased significantly.

Finally, MCTS was applied previously to an older version
of the PTSP [13]. The object of the study was to analyse
how the appropriate heuristics can help the tree selection
and default policies in order to increase the performance of
the algorithm. The results showed that biasing the action
selection with domain knowledge improved the solutions
obtained, specially when the time allowed to run simulations
is very reduced (10ms). Furthermore, the experimentation
indicated that MCTS found solutions in a greedy manner,
leaving the balance between short and long-term planning as
an open problem.

IV. THE PHYSICAL TRAVELLING SALESMAN PROBLEM

A. Problem Description

The Physical Travelling Salesman Problem (PTSP) is a
modification of the well known combinatorial optimisation
problem the Travelling Salesman Problem (TSP). The objec-
tive of the TSP is to find the shortest (or quickest) route that
will visit each city exactly once, returning to the origin at
the end [7]. The PTSP converts the TSP into a single player
game where the objective is to drive a ship through a maze in
order to visit a determined number of waypoints as quickly
as possible.

The actions to navigate the ship are divided into two types:
acceleration and rotation. The former can thrust or be idle
while the latter corresponds to a fixed rotation to the left, the
right or no rotation at all. This leads to a total of six unique
actions that can be applied at any one time. The ship may
then be navigated to visit each of the waypoints as quickly
as possible. To limit the overall length of the game, the ship
is required to reach the next waypoint within a pre-defined
time limit. The game ends when the time runs out or all
waypoints have been visited.

All actions can be seen as forces that modify the position,
velocity and orientation of the ship. The ship keeps momen-
tum (or inertia) while friction reduces the speed of the ship
over time, stopping it eventually if no thrusting actions are
supplied. The physics of the game have an important effect
on the problem because it requires an ordering of waypoints
that may not correspond to the optimal Euclidean distance
based TSP route (see Section V-E).

The PTSP features in the PTSP competition1 held twice
a year at major international conferences. An exhaustive

1www.ptsp-game.net

Fig. 1: PTSP map where the ship, at the bottom left, has to
visit all waypoints (red dots) scattered around the maze.

description of the PTSP game, framework and competition
is given by Perez et al [12]. Figure 1 shows one of the maps
distributed with the competition framework.

Despite its simplicity, the PTSP retains some of the
most important aspects of modern video-games: it requires
the player to deal with navigation, obstacle avoidance and
pathfinding. Furthermore, as it is a real-time game, it does
not allow much time to decide what is the next move to make
(as would happen in other games such as Chess or Go) or to
plan an overall strategy for the game. These characteristics
make the PTSP a very good benchmark to try a wide range
of techniques that could be exported to real video-games in
the future.

B. PTSP Framework: Maps & Controllers

The experiments and results detailed in this paper were
obtained using the software and maps from the current PTSP
competition (WCCI 2012 Competition), using the following
specifications:
• Next waypoint must be reached within 1000 time steps.
• The game advances every 40ms (25 frames per second).
• All maps have 10 waypoints.
• Collisions with obstacles do not damage the ship.
The PTSP competition provides the participants with an

online server which has different sets of maps on which to
test their controllers. The maps used in this study correspond
to the maps of phase 1. The code distributed with the
PTSP competition includes a pathfinding library that is used
by some of the algorithms presented in this paper. This
library creates a grid graph on the navigable sections of the
map and may be used to obtain the shortest path between
the position of the ship and any other point in the map,
accounting for obstacles in the way. Finally, the software also
includes several sample controllers that are used as baseline
benchmarks in this paper. These controllers are as follows:
• RANDOMCONTROLLER: executes a random action at

every time step (from the six actions available).
• LINEOFSIGHT: if there is no unvisited waypoint in the

line of sight from the ship’s point of view, the controller

www.ptsp-game.net


executes a random action. Otherwise, the ship moves in
a straight line towards the visible waypoint.

• GREEDYCONTROLLER: this controller makes use of
the pathfinding library included in the framework. It
calculates the shortest path from the ship to the closest
waypoint and follows it to collect it.

V. EXPERIMENTAL STUDY

A. MCTS for the PTSP

Standard MCTS cannot be applied directly to the PTSP:
the open-endedness of the game would prevent any of the
MC simulations from reaching a terminal state. It is thus
necessary to limit the number of moves (depth) of the default
policy. This, however, poses another issue: although one
always knows, at any stage of the game, the number of
waypoints that were visited up to that stage (and hence one
has a perceived notion of quality), this value is typically not
fine-grained enough to allow MCTS to distinguish between
different rollouts. Many rollouts will not manage to reach
an additional waypoint and hence will result in identical
scores, making the tree search somewhat akin to the needle-
in-a-haystack problem. This issue may be addressed using a
more fine-grained value function that assigns distinguishable
values to the states encountered by the MC simulations.

The second obstacle that needs to be overcome is the real-
time aspect of the game: the number of MC simulations
needs to be reduced in order to avoid the algorithm running
out of time. It is thus necessary to find the perfect balance
between the length of the roll-outs (i.e., the number of moves
per MC simulation) and the number of rollouts achievable.
If the rollouts are too short it is not possible to obtain
enough information to connect a subset of the waypoints.
On the other hand, if the MC simulations are too long,
only a few roll-outs can be performed at each time step
and the uncertainty associated with the action to take is too
significant. It is possible to reduce this variance by using
domain-specific knowledge to bias the rollouts, albeit at an
additional speed reduction.

A central issue is thus the amount of information that
can be extracted from the rollouts. There are two main
approaches that can be taken. On one hand, it is possible
to concentrate the MC simulations on the navigation part in
order to get a very fast driver, making use of an ordering of
cities obtained a priori by a higher level solver. On the other
hand, heuristic information can be included in the roll-outs to
produce longer and more useful simulations that entail both
short-term and long-term planning. The work performed in
this paper concentrates on the first approach, making use of
the 1 second initialisation time the controller is given: the
objective is to obtain a very good driver (short-term look
ahead) that is directed by a long-term planner (TSP solver)
which has to indicate the order of waypoints to follow.

Since the route connecting all waypoints has to be cal-
culated only once, the remaining problem is reduced in
complexity. However, this reduction in complexity comes
at the cost of accuracy: since the route and driving are

interdependent, any approach that tackles them independently
might be sub-optimal. However, it is possible to take the
physics of the game (and the ability of the algorithm) into
account in various ways when searching for the order of
waypoints. Numerous different approaches are investigated
in the remainder of this paper.

Furthermore, there are two more parameters of the MCTS
algorithm that will be tested: keeping or discarding the tree
and saving the best route. The former one, keeping the tree
instead of discarding it, is used in order to avoid losing the
statistics gathered in previous execution steps. This process
is performed by selecting the appropriate child of the root
node (depending on the action taken in the last step) and
making it the new root. Then, the rest of the tree is discarded
(with the exception of the sub-tree under the new root) and
a new MCTS iteration starts. Nevertheless, in many games,
the whole tree is discarded at every execution step, as the
tree can be too large due to a high branching factor.

The latter parameter consists of saving the best route found
during the simulations. As the PTSP is a deterministic single-
player game, it is possible to keep the best route found and to
repeatedly return the actions corresponding to said route until
a better one has been found. In two (or more) player games,
this is not so useful as the uncertainty of the moves of the
opponent must be taken into account. We thus compare here
two different move selectors: apply the action of the best
route found during the MC simulations or take the action
that leads to the best estimated value (standard approach).

B. The Baseline Driver

First an MCTS baseline driver is established that is able
to finish the game in most cases. This driver is subsequently
used to analyse the differences between short and long-term
planning. All experiments have been performed on a set of 20
maps with 5 trials each (i.e., 100 games in total) in order to
get some meaningful statistics. The experiments are executed
on the competition server under the competition’s formal
rules, allowing a comparison of the results with those from
other participants.

We use MCTS with the following characteristics:
• Tree policy: UCB1 (equation 1), with K = 0.025 (value

determined empirically).
• Default policy: uniform random.
• The roll-out depth is set to 100 actions.
• The tree is discarded after every execution step, and the

best route is not saved.
It is important to have a reliable value function for
non-terminal states; the objective of the algorithm is to
maximize this value function, which is normalised between
0 and 1. Equation 2 is used:

s = w + d+ c+ t (2)

where each one of the terms corresponds to the following
features of the game state:
• w = wn ∗ f , where wn is the number of waypoints

visited and f a constant (we use f = 1000).



• d = max(900 − de, 0), where de is the Euclidean
distance between the ship’s position and the closest
waypoint in the map.

• c = −10cn, where cn is the number of collisions of the
ship during the simulation.

• t = 10000− T , where T is the time spent in the game
(10000 is the maximum duration of a game: number of
waypoints multiplied by the maximum number of steps
per waypoint).

This approach always drives towards the nearest waypoint
until it has been collected. There is no long-term planning
that may allow the algorithm to approach a particular way-
point in such a way that the next waypoint after that may be
reached in minimum time.

Given the specifications above, the algorithms managed
to visit 6.59 waypoints on average (with a standard error
of 0.32), taking 2172 time steps on average (standard error
of 76.61). The performance of a controller on the PTSP is
primarily evaluated by the number of waypoints visited (i.e.,
65.9% in this case). The time taken to do so is taken into
account as a secondary criterion. In order to improve the
number of waypoints visited, some changes are required to
the basic setup.

The first modification regards the calculation of the dis-
tance to the closest waypoint (i.e, the term d in equation
2): since there are obstacles in the map, a straight line
(Euclidean) distance may not be able to provide a reliable
estimate of the true cost of reaching a waypoint (and may
cause the ship to get stuck against a wall). In the new
configuration, the closest waypoint is still chosen depending
on the Euclidean distance, but the distance de used in
the score function is now the cost of the A* path (using
the game’s built-in graph). Choosing the closest point with
the Euclidean distance is an approximation that has been
observed to provide better results for efficiency reasons: as
it is a faster calculation, more MC simulations are able to be
executed at each step.

The second modification was introduced after analysing
the behaviour of the driver. In some cases, the ship got stuck
against a wall and none of the MC simulations were able
to discover an escape route. Hence an UNSTUCK mechanism
was implemented. This mechanism rotates the ship, once it
has been in the same position for more than a specific amount
of time, so it faces in the direction of the next point in the
path leading to the closest waypoint.

These two modifications raise the number of waypoints
visited on average to 94.6%: the number of waypoints visited
is now 9.46 (with a reduced standard error of 0.18) and an
average time taken of 2387 time steps (standard error of
86.38). It is important to highlight that there is a direct corre-
lation between the time spent in the game and the number of
waypoints collected: although the second experiment resulted
in longer execution times, more waypoints were visited
and hence it is impossible to draw conclusions regarding
the actual speed of the ship. The only fair comparison,
attending only to the time spent, must be done between

algorithms that obtain similar amounts of waypoints visited.
However, an approximation can be obtained by observing
the time spent per waypoint (time spent divided by number
of waypoints visited). In this case, these algorithms would
obtain respective values of 329 and 252 time steps per
waypoint, showing that the algorithm with the modifications
seems to be faster.

C. Short-term Planning: Driving without a Route
It is possible to further improve the results of the BASE-

LINE DRIVER by systematically tuning the algorithm’s pa-
rameters. The goal is to find the best possible MCTS con-
troller given no long-term planning at all. The order of cities
is determined entirely by the (greedy) selection of the nearest
unvisited waypoint at all times.

The following parameters have been tested:
• Two values for K (see equation 1) are compared: 0.025

and
√
2.

• MC simulation depth: 50, 100 and 200 time steps.
• Discarding or keeping the tree after each execution step.
• Saving and applying the actions that take to the best

route found, or taking the actions that lead to the best
estimated value.

The results of this comparison are shown in Table I.
Interestingly, much shorter rollouts tend to lead to overall
better performances. In particular, the variants that use a
depth of 50 for the MC simulations (specially the top
two rows) collect almost 100% of the waypoints with less
than 2000 time steps on average (i.e., shorter rollouts also
seem to improve speed). On the contrary, variants that use
much deeper roll-outs produce significantly worse results and
collect less than 86% of waypoints, requiring in excess of
3000 time steps to do so.

The value of K does not have a big impact on the results
and K =

√
2 produces only slightly faster drivers. As this

value is used widely in the literature, it will be used in the
next experiments.

The remaining two parameters analysed, keeping the tree
and following the best route, have a somewhat negative
impact on the overall performance of the algorithm. The
equivalent of the leading configuration (i.e., row one in Ta-
ble I) that keeps the tree ranks only 7th. Similarly, following
the best route found during the simulations increases the time
taken to visit the waypoints.

A possible explanation for this may rely on the fact that
the ship overshoots a waypoint because of travelling at a
very high speed. For instance, the best route could have a
high score value because the simulation ended very close to
a waypoint. However, the speed of the ship at that point is
probably quite high and if the distance to the waypoint is very
small, it is likely that the sequence of moves taken during
the roll-out of the best route involves a lot of acceleration.
If the speed is too high, the ship might not be able to visit
the waypoint when the MC simulations really reach it in
next steps. On the contrary, more conservative sequences of
actions have more possibilities to change the trajectory of
the ship in further steps, and eventually visit the waypoint.



MCTS Parameters Waypoints Time Spent
K value Roll-out depth Keep tree Follow best route Average Std error Average Std error

0.025 50 No No 9.99 0.01 1955.9 53.67√
2 50 No No 9.98 0.01 1941.57 54.84

0.025 100 Yes Yes 9.57 0.13 2737.24 85.93√
2 100 No No 9.52 0.17 2376.81 84.57

0.025 100 No No 9.46 0.18 2386.76 86.38
0.025 100 No Yes 9.42 0.18 2606.64 87.72
0.025 50 Yes No 9.4 0.18 1965.97 57.51
0.025 100 Yes No 8.93 0.24 2308.33 82.07
0.025 200 Yes Yes 8.57 0.26 2977.58 88.50
0.025 200 No Yes 8.46 0.27 2925.74 101.52
0.025 50 Yes Yes 8.2 0.27 3282.57 95.99
0.025 200 Yes No 8.06 0.28 3024.54 104.98
0.025 200 No No 8.05 0.27 3049.67 98.63
0.025 50 No Yes 7.92 0.32 3112.79 95.51√

2 200 No No 7.64 0.29 2770.56 90.71

TABLE I: MCTS, Short-term planning, order by average of waypoints visited.

D. Long-term Planning: Pre-computing the Route

The second part of this empirical study focuses on ap-
proaches that make use of pre-computed routes: instead of
aiming at the nearest waypoint at the time, the controller
now makes use of an a priori ordering of cities. This may
be established during the initialisation time of the controller
before the game starts. This problem essentially corresponds
to the classical travelling salesman problem although, as will
be shown later, it is possible to take the physics of the game
into account to obtain routes that are somewhat longer but
more efficient to drive. The method chosen to solve the TSP
is the Branch and Bound (B&B) algorithm [9] which is able
to provide the optimal solution for 10 cities within the time
given. Two variations of B&B are used, depending on how
the distances (cost) between the waypoints are computed:
• B&B with Euclidean cost: the cost of going from

waypoint A to waypoint B is the Euclidean distance.
This algorithm does not take into account the presence
of obstacles and is thus expected to be sub-optimal in
many cases.

• B&B with A* path cost: using the pathfinding library
of the framework, the path between every pair of
waypoints is calculated. The travelling cost from one
waypoint to another is the length of the path that joins
them. This solution resembles an optimal TSP solution.

The long-term planning feature of the algorithm provides an
order of waypoints that the ship has to follow. The low-level
navigation to do so is handled by the most promising MCTS
algorithm from the previous section: a roll-out depth of 50,
discarding the tree each time step, not saving the best route
found so far and a value of K =

√
2. The value function (i.e.,

equation 2) is modified to take into account the distance to
the next unvisited waypoint in the pre-computed route (rather
than the nearest waypoint). Furthermore, a penalty is imposed
when the ship accidentally visits a waypoint that is not meant
to be collected at that time, in order to follow strictly the
established order of cities.

The focus of this set of experiments is to establish the
efficiency with which the controller is able to collect all

Waypoints Time Spent
Algorithm Average Std Error Average Std Error
Short-term planning 9.99 0.01 1941.57 54.84
B&B (Euclidean) 9.4 0.22 1830.25 54.25
B&B (A*) 9.84 0.10 1744.47 39.29

TABLE II: Results with different TSP solvers.

the waypoints and the results are shown in Table II. A
first analysis of the results shows that by including any
reasonable order of cities (even if sub-optimal), the time
spent to solve the problem is reduced significantly (from
1941.57± 54.84 to 1830.25± 54.25). These results suggest
that the addition of long-term planning improves the overall
performance significantly. Furthermore, it is evident that
the routes computed with A* are more efficient than those
computed using Euclidean distance, since the latter does not
take the presence of obstacles into account.

E. Long Term Planning: Change of Directions

The previous experiment ignored the inter-dependency
between the long-term and short-term planning components
of the PTSP: an optimal TSP route is not necessarily an
optimal PTSP route [13]. In order to address this issue, a
different algorithm has been implemented where the cost
associated with travelling from one waypoint to another takes
into account the changes of direction required in the ship’s
trajectory. This approach is based on the premise that the
ship can visit a series of waypoints connected in a straight
(or almost straight) line much more quickly than a series of
waypoints that require many changes in direction (and hence
loss of momentum).

The most accurate way of computing the optimal ordering
of waypoints would be to actually drive the different routes
(or sub-routes) using the same controller that is used when
playing the game: the base MCTS driver. This, however,
would be prohibitively costly given the short initialisation
time the controller has to compute the route in the first place
(it would essentially solve the problem offline). Instead, we
approximate the physics (and driving styles) of the game by



Fig. 2: B&B using costs as lengths of the shortest path.

Fig. 3: B&B adding changes of direction to costs calculation.

taking the angles into account, producing a route that is likely
to be sub-optimal yet superior to routes obtained using the
classical TSP approach.

Figure 2 depicts a portion of a map that shows the path
that a (classical) TSP solver would suggest if only distances
between nodes would be taken into account. This route
requires two significant changes of direction (120 and 90
degrees respectively). A PTSP-optimised route is shown
in Figure 3: this route takes into account the changes of
direction and reduces the number of sharp turns (a single
sharp turn of just above 90 degrees is now required).

To obtain PTSP-optimised routes, it is necessary to ac-
count for the number of turns in a route by introducing a cost
factor when searching the optimal TSP route. The final cost
of a path is thus obtained by multiplying the normal length
of the A* path by a factor that depends on the summation
of angles from the route. To analyse if there is a significant
difference after including the changes of direction in the path
cost, Figure 4 shows a base case. In this test map, it is clear
that the order of the waypoints affects the quality of the
solution significantly.

The experiment from the previous section is repeated using
the new TSP solver that takes the angles of the route into
account. It is evident that the performance is slightly better,
as the results have been improved, 1703.07± 40.12 against
1744.47±39.29, although the difference is not especially big.
The reason for the only small rate of improvement is that
the new TSP solver produced routes that differ in only 9 of
the 20 maps. In other words, even accounting for the angles
in the route, always driving towards the nearest waypoint

results in the same overall order of waypoints in 11 of the 20
maps. If the analysis is concentrated only on those nine maps,
the improvement is more noticeable: a run that executes 15
times on each of these nine maps shows that the TSP solver
that considers angles outperforms the standard TSP solver,
with an average time taken of 1753.98± 39.25 compared to
1820.76±37.81; it obtains better results in seven out of nine
maps.

A final evaluation of comparison includes the best con-
trollers submitted to the PTSP competition: all controllers are
evaluated 5 times per map to obtain averages of the number
of waypoints and time spent, discarding the two worst games
on each map. The controllers are then ranked for each map
by the number of waypoints visited and the time required to
do so. Points are awarded for each rank as follows: 10 points
for the best controller, 8 for the second, 6 for the third, 5 for
the fourth and so on until 1 point for the eighth. The results of
this comparison are shown in Table III. The results indicate
that the algorithms presented here are competitive, as they got
better results than other approaches during the early stages of
the competition. Nevertheless, it is important to mention that
this does not imply that these algorithms are the best for this
problem, as the other participants improved their controllers
during the competition, obtaining better performances. This,
however, is not the ultimate goal since the focus of this
empirical study lies on the relative differences in performance
obtained using different variants and combinations of short-
term and long-term planning. Nevertheless, it is reassuring to
see that the results are good enough to place these algorithms
at the top of the rankings. This also demonstrates that taking
into account the changes of direction when computing the
order of waypoints produces excellent results.

VI. CONCLUSIONS

This paper demonstrates the importance of long-term
planning when using Monte Carlo Tree Search (MCTS) for
real-time and open-ended (video) games, as exemplified on
the Physical Travelling Salesman Problem (PTSP). The real-
time element of these games, where the time to compute
the next move is severely limited, prevents sample-based
algorithms such as MCTS from looking far enough ahead
to behave optimally. This issue may be addressed by solving
the long-term and short-term aspects of the game separately:
the solution proposed in this paper shows how providing
the order of cities (i.e., solving the long-term planning
aspect) makes a noticeable difference in the performance of
the algorithm, reducing the time spent solving the problem
and still proving a high rate of success in visiting all the
waypoints of the maps.

There is plenty of room for improvement: taking into
account not only the changes of direction, but also the way
the driver actually moves through the maze, could lead to
better results. In particular, the speed at which the ship is
supposed to arrive at each waypoint has not been considered
in this study, and that could make a big difference. Likewise,
it would be interesting to see whether MCTS could find the



Fig. 4: This figure shows the results of following different TSP routes. The top row depicts the order of cities to follow,
whilst the bottom row shows an actual game played by the controllers. The left column (figures a and b) presents the problem
solved by a TSP that only takes into account the distances between the waypoints. The right column, figures c and d, shows
the performance of the controller that includes the changes of direction in the route calculation. As can be seen, the latter
algorithm is able to solve the problem in 564 steps, while the former only can do it in 1040.

Controller \Map: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total
TSP ANGLES 8 10 10 10 10 8 10 8 10 10 8 10 10 10 10 8 6 8 8 10 182
TSP NORMAL 10 8 8 8 8 10 6 10 8 8 10 8 8 8 8 6 10 10 10 8 170

ST3F1 6 5 6 6 5 6 8 6 6 6 4 6 6 5 4 5 5 5 6 6 112
PUROFVIO 4 6 5 5 6 4 4 5 4 4 5 5 5 6 6 10 8 6 5 4 107
PHILSTER 5 4 4 4 4 5 5 4 5 5 6 4 4 4 5 4 4 4 4 5 89
GREEDY 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 2 57

LINEOFSIGHT 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 3 43
RANDOM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20

TABLE III: This figure presents the rankings of some controllers following the point award scheme of the PTSP competition.
It shows eight controllers (rows of the table) evaluated in 20 maps (columns), during the first phase of the WCCI PTSP
competition, which corresponds to controllers submitted from 1st March to 1st April 2012. The first two controllers are the
ones shown in this paper: the TSP solver that considers direction changes (TSP ANGLES) and the TSP solver that does
not (TSP NORMAL). Then, the three best participants’ controllers (ST3F1, PUROFVIO and PHILSTER) and finally the three
sample controllers distributed with the software (GREEDY, LINEOFSIGHT and RANDOM controllers), described in IV-B.

optimal racing line given the distribution of waypoints and
obstacles. These issues will be investigated in future research.
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