
General Video Game Level Generation

Ahmed Khalifa
New York University
New York, NY, USA

ahmed.khalifa@nyu.edu

Diego Perez-Liebana
University of Essex

Colchester, United Kingdom
dperez@essex.ac.uk

Simon M. Lucas
University of Essex

Colchester, United Kingdom
sml@essex.ac.uk

Julian Togelius
New York University
New York, NY, USA

julian@togelius.com

ABSTRACT
This paper presents a framework and an initial study in gen-
eral video game level generation, the problem of generating
levels for not only a single game but for any game within
a specified domain. While existing level generators are tai-
lored to a particular game, this new challenge requires gen-
erators to take into account the constraints and affordances
of games that might not even have been designed when the
generator was constructed. The framework presented here
builds on the General Video Game AI framework (GVG-AI)
and the Video Game Description Language (VGDL), in or-
der to reap synergies from research activities connected to
the General Video Game Playing Competition. The frame-
work will also form the basis for a new track of this com-
petition. In addition to the framework, the paper presents
three general level generators and an empirical comparison
of their qualities.

Keywords
procedural content generation, level generation, video game
description language, general video game playing

1. INTRODUCTION
Procedural Content Generation (PCG), or algorithmic cre-

ation of game content, has been an important research topic
for several years [1]. Generators have been constructed for
everything ranging from textures to maps to game rules. In
this paper, we focus on level generation. Level generation is
one of the oldest PCG problems, and arguably the first to
find practical use in games; see for example Rogue [2], which
generated levels in realtime in 1980. Level generation was
invented due to the technical limitation of the hardware de-
vices. These limitations drove developers to use PCG tech-
niques to support more content with a small disk/memory
footprint. Although modern technology is much less limit-
ing, level generation is perhaps more important than ever in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WOODSTOCK ’97 El Paso, Texas USA
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

the game industry. This is largely because the increased di-
versity in gamer demographics and tastes, and an increased
expectation of content quality and quantity, necessitate the
automation of some content creation, but also because some
types of games use level generation as an aesthetic in its own
right.

Almost all of level generation work (either in the research
or in the industry) is done for specific games (the exception
are level generators that work on a somewhat abstracted no-
tion of levels, such as Sentient Sketchbook [3]). This direc-
tion of work is important for having a deeper understanding
of the level design for a specific game and an understanding
of how the game rules interact with each other. Even more
importantly, at our current level of understanding we simply
do not know how to construct competent level generators
for multiple games. On the other hand, a core limitation
of such generators is the amount of work that needs to go
into building a generator for each game. This precludes the
incorporation of level generation in AI-assisted game design
tools that lets you construct new games. It would be a great
boon especially to small game developers if level generators
were available that did not need to be re-constructed for spe-
cific games. From a more academic perspective, PCG could
be a grand AI challenge, but only if the challenge of generat-
ing specific levels is somehow dissociated from game-specific
domain engineering—very much in the same way that Gen-
eral Game Playing and General Video Game Playing have
dissociated the AI game playing challenge from the details
of particular games [4, 5, 6, 7].

From these concepts arose the idea of general level gener-
ators, and general level generation as a challenge. We define
the problem of general video game level generation as fol-
lows: Construct a generator that, given a game described in
a specific description language and which can be played by
some AI player, builds any required number of different lev-
els for that game which are enjoyable for humans to play.
Very recently a few researchers have addressed variants of
this challenge.

Khalifa and Fayek [8] created two level generators for
games described in PuzzleScript language. PuzzleScript [9]
is a Description Language created by Stephen Lavelle to
help game designers/developers to prototype Puzzle games
quickly. The generators are tested on five different games
and the results are judged using human players. The results
show that almost all of the levels are playable, and that
the fitness function’s evaluation of the levels correlate with

player preferences. The level generators used in this paper
are heavily inspired by these two level generators. The work
on PuzzleScript level generation in turn builds on work by
Lim and Harrell [10].

Neufeld et al. [11] used Answer Set Programming (ASP)
to generate levels for any game described using the Video
Game Description Language (VGDL), a game description
which will be discussed further below. The system by Neufeld
et al. translates VGDL scripts into ASP constraint rules.
Further, Evolution Strategies (ES) are used to find con-
straints that can increase the percentage of the generated
levels that are playable. The system is tested using three
different games and the results show that the generated lev-
els have a similar structure to human-authored levels.

While the work discussed above is a good start, there is no
framework with which to compare the different methods and
they are based on different description languages. In this pa-
per, we therefore introduce the General Video Game Level
Generation (GVG-LG) framework to help with the General
Level Generation problem and to help with the unification
problem of different systems. The GVG-LG framework is
developed in Java and supports a Java interface to allow dif-
ferent users to create their own general level generator. For
describing the games, this framework uses the Video Game
Description Language (VGDL). VGDL is a game description
language designed to be able to represent a large variety of
games that feature graphical logics in a 2D world, for exam-
ple arcade games from the eighties [5, 6]. VGDL is flexible
enough to describe games ranging from Space Invaders to
Sokoban.

The GVG-LG framework is built on top of General Video
Game AI (GVG-AI) framework. That framework is the basis
for the General Video Game Playing Competition [12] where
competitors are able to develop a general playing agent to
play different games. One significant advantage of building
on the GVG-AI framework is the ability to reuse both games
and controllers constructed for that competition.

The GVG-LG framework will be used during the Level
Generation track of the GVG-AI competition. In this track,
competitors will create level generators for the GVG-LG
framework. The competition will use a protocol similar to
that used in the Level Generation Track of the Mario AI
Championship [13] where human players are used to judge
the generated levels. Our intent is that this competition
track will create a community of researchers and practition-
ers working on the general level generation problem using a
common benchmark.

The paper is structured as follows: Section 2 gives an
overview of the GVG-LG framework. Section 3 discusses
the protocol used in the competition as well as in the em-
pirical study in this paper. These are followed by Section
4 which describes three different algorithms that are incor-
porated in the GVG-LG framework. As a “dry run” of the
competition we have organized a small pilot study to test
our algorithms. The results are presented in Section 5 and
discussed in Section 6. Section 7 provides an outlook on
future paths and challenges.

2. THE GVG-LG FRAMEWORK
The GVG-LG framework is an extension to the GVG-AI

framework. It allows competitors to integrate their level gen-
erators and test them against a variety of different games.
Figure 1 shows the relationship between a supplied level gen-

Figure 1: Relationship between the GVG-LG
Framework and the Level Generator

Figure 2: AbstractLevelGenerator Class functions

erator and the GVG-LG framework. The framework pro-
vides the generator with a game description and in return it
provides a generated level by overriding generateLevel func-
tion. The level generator is able to change the LevelMapping
section by overriding getLevelMapping function.

Figure 2 shows the AbstractLevelGenerator class. The
level generator must extend the AbstractLevelGenerator class
and implement a constructor and the generateLevel func-
tion. The generateLevel function must return a string which
represents the generated level layout. This string is parsed
by the framework using the LevelMapping section in the
game description file. Competitors can use their own Lev-
elMapping section but they will need to override a getLevel-
Mapping function. This function must return a HashMap
object which maps a character to a list of corresponding
sprite names.

Both of the constructor and the generateLevel function
get a GameDescription object and an ElapsedCpuTimer ob-
ject. The ElapsedCpuTimer object provides the generator
with the maximum amount of time to spend in this func-
tion, while the GameDescription object encapsulates all the
information about the current game. The GameDescription
provides the generator with different functions that can re-
trieve information about the sprites, the termination condi-
tions, the interactions, and the level mapping.

Sprites are the main game objects. Sprites are divided
into six different categories: Avatar, NPC, Resource, Por-
tal, Static, and Moving. Generators can get a list of Sprite-
Data objects for all sprites or for a specific sprite category.
SpriteData is a data structure holding all required informa-
tion about the sprite. It has a name, a type, and a list of
sprite names. For example: the avatar in Space Invaders is
named avatar, is of type FlakAvatar (only moves horizon-
tally and shoots), and it has a bullet sprite in its list (bullet
spawns on shooting).

Termination Conditions define how and when the game
should terminate. Generators can get a list of Termination-
Data objects. TerminationData is a data structure encap-
sulating all the related information about the termination
conditions. It has a type, a limit, a win flag, and a list of

sprite names. The type defines how should the game end,
the limit is used to check if the condition is satisfied, the win
flag is for marking the condition as winning or losing, while
the list contains all involved sprite names in the condition.
For example: In PacMan, the losing condition is the number
of the avatar sprite in the level is less than or equal to zero.
This condition is of type SpriteCounter with a limit equal
to 0, marked as losing condition, and has a PacMan avatar
name in the list of sprites.

Interactions are collision effects between any two sprites.
Generators can get a list of InteractionData objects between
any two sprite names (they must be defined in sprites).
InteractionData is a data structure containing information
about the collision effect between two sprites. It has a type,
a scoreChange, and a list of sprite names. For example: In
Frogger, when a frog collides with a car, the frog dies. The
interaction type is KillSprite, the score is decreased by 1,
and it has an empty list of sprite names.

A Level Mapping helps the framework to parse the level
data. It is a HashMap which maps a character to a list
of sprite names. The generator can retrieve this HashMap
or even to replace it by implementing the getLevelMapping
function. For example: In PacMan, p refers to a pill, while
a refers to PacMan himself.

The generated level must follow two hard constraints. The
first constraint is that the level string should not contain any
unknown character that is neither in the original nor the new
LevelMapping (by overriding getLevelMapping). The second
constraint is that the level must only have one avatar.

3. THE GVG-LG COMPETITION
As mentioned before, the framework will be used for the

level generation track of the General Video Game Playing
Competition. The framework can automatically run level
generators submitted as zip files. All submitted level gen-
erators must generate a level within a certain time (in this
paper we are using a five-hour time limit) on a reference
computer, the specifications of which are to be determined;
for this paper, we are using a recent MacBook1. If the gen-
erator exceeds this time, it will be disqualified. There are
no constraints on the programming language for the gen-
erator, but the competition only provides a Java interface.
It should be easy enough for anyone working with another
language to write an interface in that language. Based on
the number of submissions, it might be impossible to judge
all the submissions by humans; in that case, some submit-
ted generators might be disqualified based on computational
testing. This testing will be discussed later in Section 4.3.

These generated levels are tested using human judges.
Our system will randomly choose two different generated
levels from two different level generators. The system al-
lows the human judges to play the selected levels for any
number of times. The system also ensures that each level
is picked at least once to be played. After the judges finish
playing the two levels, they indicate a preference between
them. All the judges’ preferences are recorded into a SQL
database and the most preferred generator across all games
wins the competition.

4. DESCRIPTION OF GENERATORS
12.9 GHz Intel Core i5 with 8 GB 1867 MHz DDR3

This section explains three sample level generators that
are provided with the GVG-LG Framework, and which are
also compared empirically in section 5.

4.1 Random Level Generator
This is a very simple level generator. It generates levels by

placing the defined sprites at random empty positions, then
surround the borders with solid tiles. Each tile position has a
probability (set to 10% to give the best playable and visually
appealing) to be filled with a random sprite picked using a
uniform distribution. This probability can be adjusted to
generate more or less cluttered levels. The generated levels
have size proportional to the number of game sprites defined.
The generator ensures that the produced levels have at least
one of every sprite and only one avatar.

4.2 Constructive Level Generator
This level generator utilizes the information presented in

the GameDescription object to generate better designed lev-
els. For example if the avatar sprite is of type FlakAvatar or
HorizontalAvatar (a type of avatar which can only move hor-
izontally), it should be placed either at the top or the bottom
of the level. The generator analyzes the GameDescription
object using the GameAnalyzer, which is part of the com-
petition framework. The GameAnalyzer divides the game
sprites into five different categories:

• Avatar Sprites: as defined in the GameDescription
object.

• Solid Sprites: block the movement of the avatar and
do not have any other interaction with the avatar.

• Harmful Sprites: kill the avatar upon interaction
(or spawn sprites that do this).

• Collectible Sprites: are destroyed upon interaction
with the avatar and are not harmful sprites.

• Other Sprites: any sprites that do not fit into the
above categories.

The GameAnalyzer object also provides two lists with in-
formation about sprites. The first list keeps track of game
sprites created from other sprites (i.e. bullets), while the
second list contains sprites that appear in the termination
set. It also calculates a priority value for each sprite, based
on how many interaction rules it occurs in. The level gener-
ator utilizes the information provided by the GameAnalyzer
to generate a well-formed level. Figure 3 summarizes the
core steps done by this approach. The generation procedure
is divided into four core steps with a pre-processing step and
a post-processing step:

1. (Pre-processing) Calculate Cover Percentages:
This step calculates the percentage of tiles in the gen-
erated level that should be covered with sprites. It
also calculates that percentage for each different sprite
category. The total cover percentage is directly pro-
portional to the number of collectible sprites, and it is
inversely proportional to the number of harmful sprites
and the number of sprites that are created by other
sprites. All categories have a percentage directly pro-
portional to the sum of the priority values of each
sprite in each category.

Figure 3: Steps applied in the Constructive gener-
ator for Pacman: (1) Build a Level Layout (2) Add
an Avatar Sprite (3) Add Harmful Sprites (4) Add
Collectible and Other Sprites

2. Build a Level Layout: This step only takes place
when there are solid sprites. It picks a random solid
sprite and surrounds the level with that sprite. Based
on the calculated solid percentage it fills the internal
level with solid sprites that are connected to each other
without blocking any area.

3. Add an Avatar Sprite: This step places a randomly
picked avatar sprite to a random free location.

4. Add Harmful Sprites: This step adds harmful sprites
to the game based on the calculated harmful percent-
age. If the harmful sprite is a moving sprite, the gen-
erator chooses a free location away from the avatar
sprite but if the sprite is a static sprite, the generator
chooses any random free location.

5. Add Collectible and Other Sprites: This step
places randomly picked sprites to randomly free loca-
tions. The number of added sprites depends on their
cover percentages.

6. (Post-processing) Fix Goal Sprites: This step
makes sure that the number of goal sprites are greater
than the number specified in the termination set for
that sprite type; sprites are added until this is the
case.

4.3 Search-based Level Generator
This is a search-based level generator based on the Fea-

sible Infeasible 2 Population Genetic Algorithm (FI2Pop)
[14]. FI2Pop is a genetic algorithm which uses 2 populations
at same time one for feasible chromosomes and the other

Figure 4: Average number of unique rules used
by AdrienCTX when playing human-designed levels
and randomly generated levels for all VGDL games

for infeasible chromosomes. The feasible population tries to
improve the fitness of the overall chromosomes, while the in-
feasible population tries to decrease the number of chromo-
somes violating the problem constraints. Each population
evolve on its own, where the children can transfer between
the two population. The initial population is generated us-
ing the Constructive level generator described in Section 4.2.
The levels are represented as a 2D array of tiles. Each tile
consists of an array of strings representing all sprites at that
tile. The generator uses one-point crossover which swaps the
2 chromosomes around a random tile. For mutation it uses
3 different operators:

• Create: creates a random sprite to any random tile
position.

• Destroy: clears all sprites from a random tile posi-
tion.

• Swap: swaps the sprites in two random tile positions.

The level generator uses an altered version of the Adri-
enctx controller for simulation-based fitness and constraint
evaluation. Adrienctx is a well-performing controller, which
won the 2014 edition of the GVGAI competition [12]. The
controller has certain super-human skills (i.e. fast reac-
tion time), and it was therefore altered to make its playing
style somewhat more human-like. This is achieved through
two modifications: adding action repetitions so that the
controller has a tendency to repeat the last action for few
time steps, and adding NIL repetition so that the controller
has tendency to add NIL values between changing actions.
These modifications make sure that the controller cannot
handle situations which require extremely fast reactions,
which in turn discourages the generation of levels that in-
clude such situations.

Some of the fitness and constraint evaluations are com-
pared with the OneStepLookAhead or DoNothing players.
The OneStepLookAhead player plays by greedily choosing
among the immediate next actions. The DoNothing player
simply applies the NIL action. Both players play for the
same amount of steps as the altered Adrienctx controller.
The feasible population is subjected to two different heuris-
tic functions:

• Score Difference Fitness: difference between score
achieved by Adrienctx and the best score achieved by
OneStepLookAhead (over 50 runs), as suggested by
Nielsen et al. [15]. That papers suggests that the rela-
tive difference between algorithms can be used to dif-
ferentiate between well-designed and badly designed
games. We compared with the score achieved by On-
eStepLookAhead, a weak player, to make sure to gen-
erate levels that require more skill to get a high score.

• Unique Rule Fitness: the number of unique events
that happened in the level due to the avatar or any
sprite spawned by it. We hypothesized that well-designed
levels try to utilize almost all the different game rules
while badly designed levels don’t. To investigate this
hypothesis, we played all levels of the publicly available
VGDL games using Adrienctx and calculated the num-
ber of unique rules used; we then compared this to the
number of unique rules used when playing randomly
generated levels using the same algorithm. Figure 4
shows that well-designed levels tends to have a higher
average of unique rules than random designed levels.

The fitness functions are treated as an average value of both
the Score Difference Fitness and the Unique Rule Fitness as
show in equation 1.

ffeasible =
fscore + frule

2
(1)

where fscore is the Score Difference Fitness and frule is the
Unique Rule Fitness. The Infeasible population is subject
to seven different constraints:

• Avatar Number: Each level must have one avatar.

• Sprite Number: Each level must have at least one
of each sprite which is not spawned by other sprites.

• Goal Number: The number of goal sprites must be
greater than the limit of the termination rule associ-
ated with these sprites.

• Cover Percentage: Between 5% and 30% of level
tiles must be covered by sprites.

• Solution Length: Levels must not be solved (by any
of the players) in less than 200 steps.

• Win: The Adrienctx player must win the generated
during evaluation.

• Death: The DoNothing player must not die for at
least 40 steps over 50 different runs. Also it must not
win after the same amount of time steps as Adrienctx.

These constraints might be used to disqualify some of sub-
mitted level generators if the competition attracts more en-
tries than can be judged manually.

5. PILOT STUDY
We performed a small pilot study to test the performance

of the proposed algorithms. The study used three different
games, which are all VGDL remakes of (parts of) well-known
games.

• Frogs: Port of Frogger. The aim of the game is to
cross a street and reach the exit sign without getting
hit by a car or drowning in the water.

• PacMan: Port of Pac-Man. The aim of the game
is to collect all pills without getting caught by chasing
ghosts. The player can eat one ghost each time he eats
a power pill.

• Zelda: Port of the dungeon system of The Legend of
Zelda. The aim is to get the key and get to the exit
without getting killed by monsters. Points are scored
by killing monsters using the sword.

The study did not incorporate any puzzle games because
most existing agents do not play puzzle games well. Each
generator supplies five levels for each game, and is allowed
up to five hours to generated each level. Figure 5 shows an
example level for Zelda from each generator.

The generated levels were tested by a group of human
players. For that purpose, we created a program to help the
players to understand the purpose of the study and get them
familiar with the games. After that, the system picked two
random levels from any of the generators and showed them
to the human player. After playing both of these levels, the
system showed a poll question as shown in Figure 6 where
the player indicated which level they preferred, if both lev-
els are equally preferred, or if none of them was preferred.
We use preference indication (ranking) rather than a rating
scheme such as Likert scales and rankings have been shown
to be more consistent and reliable [16]. Rating systems vi-
olate two basic assumptions (ratings are ordinal data and
they are not linear). On the other hand, ranking systems
treat data as ordinal data while minimizing subjectivity bias.
Data was collected from 25 players where each player played
five pairs of games on average. The preference data was sub-
mitted automatically to a database.

Table 1 shows the results of our pilot study for all the
three level generators. The Equal and Neither answer to
the survey are discarded in this study, only the preference
choices are taken into account. For this study we used three
two-tailed binomial tests to test three null hypotheses about
our generators, namely that there are no differences in pref-
erence between constructive and search-based, between ran-
dom and search-based and between random and construc-
tive.

From the preference numbers in the table its clear that
Search-Based is better than both the Constructive and the
Random, but the Constructive is voted far less than random
which is not expected. The calculated p-values support this
conclusion, as they reject only two null hypotheses (Search-
Based and Random; Search-Based and Constructive) while
showing no significant difference between the Constructive
and Random level generators.

6. DISCUSSION
We had expected the search-based generator to produce

levels that would be significantly better (more often pre-
ferred) than the Constructive generator; this was borne out
in our pilot study. The main reason for this is likely the
simulation-based evaluation function including constraints
which ensured having a good playable level. In particular,
using an altered version of Adrienctx ensured that the lev-
els would not have too many enemies too close together,
making the level playable for humans operating on human
timescales.

The same cannot be said about the Constructive versus
Random generator levels. The Random generator was pre-

Figure 5: Examples of generated levels from all the algorithms for Zelda: (a) Random Level Generator (b)
Constructive Level Generator (c) Search-Based Level Generator

Preferred Non-preferred Total Binomial p-value
Search-Based vs Constructive 23 12 35 0.0447
Search-Based vs Random 21 10 31 0.0354
Constructive vs Random 17 24 41 0.8945

Table 1: This table shows players’ preferences between different generators, aggregated over all three games.

Figure 6: Poll question comparing quality of the
generated levels.

ferred marginally more often than the Constructive genera-
tor. While the effect is not statistically significant, the likely
main reason for any such effect is that the Constructive al-
gorithm does not guarantee that each game object is gener-
ated at least once like in the case of the Random generator.
For example the Zelda level in Figure 5 looks better than
the random level but since it does not include a key, people
tend to prefer the random generator over the Constructive
generator. Not having this constraint gives more flexibility
to Constructive generator over Random generator. For ex-
ample: In almost all VGDL games there is multiple different
kind of enemies where they are used to construct different
levels. For example in Zelda, you can have slow enemies,
normal enemies, and fast enemies. You don’t need to place
one of each type of enemy in the generated levels. Based
on this fact, the Constructive generator tries to generate at
least one sprite of each different category.

General Level Generation is a very hard problem to tackle.
In order to generate playable levels for any game, we need
a language to describe all different kind of games. The only
languages that could represent all games would be Turing-
complete programming languages. However, programming
languages are not a good fit to describe games as they are
simply too general and can be used to describe any kind of
software (not only videogames); a random string in a stan-
dard programming language would not be likely to be a func-
tioning game, or even a functioning program at all. This was
a main reason for the development of Video Game Descrip-
tion Language (VGDL). VGDL is a description language
that is readable, simple and can be used to describe a subset
of different kind of videogames (real time 2D games). Al-
though VGDL looks limited from outside, its can be used to
describe different genres (such as puzzle, arcade, and shooter
games). Even if the language is limited, the range of possible
contributions is very large. For example Ludi language was
developed by Browne and Marie [17] is only used to describe
Combinatorial games, they managed to evolve very interest-

ing board game (Yavalath) which is ranked in the 100 top
best abstract games by BoardGameGeek [18]. Following the
same steps, the GVG-LG competition can be considered as a
first step towards solving the general level generation prob-
lem. It can also be seen as a step towards solving the great
general video game generation problem, as level generation
is part of complete game generation.

7. CONCLUSION AND FUTURE WORK
This paper defined the general level generation problem

and proposed the GVG-LG framework as a benchmark for it.
This framework will be used for the Level Generation track
of the GVG-AI competition. It also introduced three dif-
ferent level generators: Random, Constructive, and Search-
Based, and a small pilot study that compares the levels pro-
duced by these generators.

We had conjectured that the search-based level genera-
tor would be better than the constructive level generator,
which in turn would be better than the random level gen-
erator. Although the human players were unable to distin-
guish between the Constructive and Random generators, our
Search-Based generator exceeded both of the Constructive
and Random generator. It would be interesting to explore
whether we could improve Constructive generator by adding
some constrains to ensure playability.

Since this is a new field of study, there is not much pre-
vious work done on general level generation, which means
there is much to explore. Our immediate priority is to im-
prove our search-based level generator. In particular, we will
seek to better understand the effect of each module and try
to enhance our fitness evaluation so that it is more predic-
tive of perceived level quality, which includes improving the
automated player.

Beside doing different studies for the generators, we plan
to test the GVG-LG framework with more people and get
further feedback about the interface. This feedback will help
in organizing the Level Generation track of the GVG-AI
Competition.

Acknowledgement
Thanks to Tiago Machado for help with running experi-
ments and user study.

8. REFERENCES
[1] Shaker, N., Togelius, J., Nelson, M.J.: Procedural

content generation in games: A textbook and an
overview of current research. Procedural Content
Generation in Games: A Textbook and an Overview
of Current Research (2015)

[2] Geek, B.G.: Rogue (video game).
http://www.boardgamegeek.com/abstracts/browse/
boardgame?sort=rank&rankobjecttype=family&
rankobjectid=4666&rank=113#113 Accessed: April 2,
2016.

[3] Liapis, A., Yannakakis, G.N., Togelius, J.: Sentient
sketchbook: Computer-aided game level authoring. In:
FDG. (2013) 213–220

[4] Levine, J., Congdon, C.B., Ebner, M., Kendall, G.,
Lucas, S.M., Miikkulainen, R., Schaul, T., Thompson,
T., Lucas, S.M., Mateas, M., et al.: General video
game playing. Artificial and Computational
Intelligence in Games 6 (2013) 77–83

[5] Ebner, M., Levine, J., Lucas, S.M., Schaul, T.,
Thompson, T., Togelius, J.: Towards a video game
description language. (2013)

[6] Schaul, T.: A video game description language for
model-based or interactive learning. In:
Computational Intelligence in Games, IEEE (2013)
1–8

[7] Genesereth, M., Love, N., Pell, B.: General game
playing: Overview of the aaai competition. AI
magazine 26(2) (2005)

[8] Khalifa, A., Fayek, M.: Automatic puzzle level
generation: A general approach using a description
language. In: Computational Creativity and Games
Workshop. (2015)

[9] Lavelle, S.: Puzzle script.
http://www.puzzlescript.net/ Accessed: November 4,
2015.

[10] Lim, C.U., Harrell, D.F.: An approach to general
videogame evaluation and automatic generation using
a description language. In: Computational Intelligence
and Games (CIG), 2014 IEEE Conference on, IEEE
(2014) 1–8

[11] Neufeld, X., Mostaghim, S., Perez-Liebana, D.:
Procedural level generation with answer set
programming for general video game playing. In:
Computer Science and Electronic Engineering
Conference, IEEE (2015)

[12] Perez, D., Samothrakis, S., Togelius, J., Schaul, T.,
Lucas, S., Couëtoux, A., Lee, J., Lim, C.U.,
Thompson, T.: The 2014 general video game playing
competition. IEEE Transactions on Computational
Intelligence and AI in Games (2015)

[13] Shaker, N., Togelius, J., Yannakakis, G.N., Weber, B.,
Shimizu, T., Hashiyama, T., Sorenson, N., Pasquier,
P., Mawhorter, P., Takahashi, G., et al.: The 2010
mario ai championship: Level generation track.
Computational Intelligence and AI in Games, IEEE
Transactions on 3(4) (2011) 332–347

[14] Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.:
On a feasible-infeasible two-population (fi-2pop)
genetic algorithm for constrained optimization:
Distance tracing and no free lunch. European Journal
of Operational Research 190(2) (2008) 310–327

[15] Nielsen, T.S., Barros, G.A., Togelius, J., Nelson, M.J.:
General video game evaluation using relative
algorithm performance profiles. In: Applications of
Evolutionary Computation. Springer (2015) 369–380

[16] Yannakakis, G.N., Mart́ınez, H.P.: Ratings are
overrated! Frontiers in ICT 2 (2015) 13

[17] Browne, C., Maire, F.: Evolutionary game design.
Computational Intelligence and AI in Games, IEEE
Transactions on 2(1) (2010) 1–16

[18] Wikipedia: Yavalath (board game).
https://en.wikipedia.org/wiki/Rogue (video game)
Accessed: November 3, 2015.

