General Video Game Playing
Escapes the No Free Lunch Theorem

Daniel Ashlock
Department of Mathematics
and Statistics
University of Guelph
Guelph, Ontario, Canada,
dashlock @uoguelph.ca

Abstract—Popular topics in current research within the games
community are general game playing and general video game
playing. Both of these efforts seek to find relatively general
purpose Al to play games. Within the optimization community
we are approaching the 20th anniversary of the no free lunch
theorem. In this paper we suggest reasons why a games version
of a no free lunch result is probably not problematic. This is
accomplished by noting that none of the “’general” efforts are —
or should be — actually general. Technology is proposed to exploit
the lack of generality to permit more effective game playing Als
to be designed. A program for classifying games is outlined that
consists of gathering performance data on many games for many
algorithms and then using the resulting matrix of performance
data to create a tree structured classification of the games. This
classification is proposed as the basis for assigning games to
appropriate algorithms within a more general framework. A
novel algorithm that yields more stable tree-based classification
is also proposed.

I. INTRODUCTION

General game playing Als seek to mimic the human ability
to learn and then play, at least competently, any of a broad
variety of games. The human analogy highlights the well-
known problem that different people and different algorithms
have games they are good at or bad at. This paper suggest a
method that is the equivalent, in human terms, of assembling
a team of specialty players that are entered — as a single
participant — in a games tournament. This human team might
have a chess grand master, an excellent go player, a high-
earning professional poker player, a specialist in the analysis
of mathematical games, and a video-game obsessed teenager
with mad reflexes. When a game was presented to the team, the
most likely team member would be put forward to represent
the team in playing that game.

This vision hides a difficulty. Suppose the team was pre-
sented with the game Mancala: who plays? The team forgot
to include a board-games nut and so the chess grand master is
put forward as the best available choice (or is he?) and the team
has an enhanced danger of losing the round of the tournament
because of incomplete staffing. Implementing a general game
playing Al with sub-experts in the form of more specialized
algorithms needs a decent classification of all the types of
games it might encounter, algorithms able to deal with each

Diego Perez-Liebana
School of Computer Science
and Electronic Engineering,
Colchester, United Kingdom

University of Essex
dperez@essex.ac.uk

Amanda Saunders
Department of Mathematics
and Statistics
University of Guelph
Guelph, Ontario, Canada,
asaunder @uoguelph.ca

of these games, and an effective procedure for assigning games
to algorithms.

In this paper we outline a taxonomic scheme that can
simultaneously co-classify games and algorithms, based on
performance data. This is the core technology for assembling a
team of algorithms that is complete in the sense it can deal with
the games it might expect to encounter as well as providing
the information needed to assign games to algorithms. The
paper also explores the notion that this assignment of games
to algorithms may be hybrid; one algorithm might be natural
for the opening portion of a game while another might be
superior in the mid- or end-game.

When attempting to implement a general problem solver,
the experience of the optimization community with the no
free lunch theorems also suggests that overreach is not only
possible but potentially inevitable. The potential for a no
free lunch theorem for games is discussed and it is argued
that current general game playing efforts fall well below
the danger threshold for no free lunch effects; a case is
made that the games community is not currently overreaching.
A useful implication of the no free lunch theorem is that
algorithms should be specialized to their problem domains
and the proposal in this paper, in essence, runs with that idea.
Placing well-specialized algorithms in a decision framework
is a strategy for avoiding overreach and creates infrastructure
for incremental improvement of game playing algorithms to a
high level of generality.

II. BACKGROUND

The no free lunch (NFL) theorem [1] states that, over the
space of all optimization problems, the average performance of
a given optimizing algorithm that does not re-sample points is
equal to the average performance of all other such algorithms.
The key idea behind the proof is that, in the space of all
optimization problems, a correct decision for one problem is
the wrong decision for another and, over the entire space,
this all balances out. This theorem did the research world a
service by stomping on claims of universal superiority for one
or another algorithm.

There is a clear and helpful corollary to the NFL theorem:
the effectiveness of an optimizer on a problem or restricted

class of problems increases as the algorithm is specialized to
the problem. This specialization of the algorithm often takes
the form of incorporating special knowledge about the class of
problems into the algorithm. Gradient search [2], for example,
only works to optimize functions that have a gradient. It is
specialized for differentiable functions.

There is a natural question that arises from the furor that
occurred after the first publication of the NFL theorem: how
could the research community have contained so many people
that thought the claims that evolutionary algorithms were
universal ("Swiss army algorithms”) were well supported?
This belief in the extraordinary powers of a new approach
is a repeatable historical phenomenon. Catastrophe theory [3|]
is another example of a “savior theory” that would hand us
the keys to the world — in the late 1970s. With evolutionary
algorithms, the key was that they can solve almost any toy
problem and they also cracked some very hard problems like
VLSI layout [4]. They set the stage for assuming they could
do everything.

Within the games research community something analogous
to a universal optimizer has been proposed in the form of
general game playing [5] and general video game playing
(GVGP; [6]). The games community is following a much
better path that the optimization community did in the early
days of evolutionary algorithms: they are insisting on the
demonstration of at least substantial generality by using multi-
game contests to evaluate their general purpose algorithms.
It is possible to prove a NFL theorem for some classes of
mathematical games — a highly technical effort that will appear
elsewhere — and it is easy to embed mathematical games in
the space of all games. This means that a sort of NFL result
applies to games (or will once the requisite effort to write the
proof out and tighten it up has taken place). In this paper we
want to make the case that this result will detract in only the
most modest fashion from general Al research in games.

The starting point for this is to note that the NFL theorem
didn’t shut down optimization research — not even optimization
research that developed fairly general purpose algorithms.
With its strong exhortation to specialize to your problem, the
NFL theorem in fact helped optimization research quite a bit.
It strongly motivated the valuable research into the impact of
representation on search [7], [8]]. One of the earliest examples
of the impact of representation was in games research [9].
This means that as long as the games research community
is building general purpose algorithms for a restricted set of
games, they are not likely to run into NFL problems.

A. General is too General

Something that most computer science or math majors learn,
or are at least exposed to, is a few facts about the nature of
universal spaces that form the underpinning for not fearing no
free lunch complications. The simplest instance of the useful
viewpoint is the fact that almost all real numbers cannot be
described. The number of descriptions, even algorithmic ones,
are countably infinite while the number of real numbers is
a higher order of infinity, an uncountably infinity [10]. The

space of all real numbers is appallingly large and considering
all of it, other than by aggregational mechanisms like those in
calculus, is neither possible nor beneficial. In addition to being
indescribable, these numbers are also inapplicable — they are
the unconsidered packing form of Euclidean space.

A given instance of the NFL theorem for optimization
averages over a space of all optimization problems of some
sort. Almost all of these problems are random, in the sense
that adjacent points contain little or no information about
one another, unless the notion of adjacency is cooked to
match the problem. Adjacency in the search space used by
evolutionary computation is created by variation operators, like
mutation and crossover. If these operators are generic then the
mutual information of almost all pairs of nearby points is near
zero in almost all optimization problems. That means even
very general purpose algorithms — like generic evolutionary
algorithms — are already designed incorporating the special
knowledge that the problem they are operating on is one that
someone has a reason to be interested in. This alone creates
a filter for problems in which nearby points often have high
mutual information. In this case “mutual information” means
that the objective function value for nearby points to a point
p is somewhat predictive of the objective function value of p.

What does this mean for general game playing or general
video game playing? An Al that could do well on most games
a human might enjoy is still operating in an incredibly small
subspace of any abstract game space. Suppose we have a game
with n possible moves. Scoring of any move considers the
complete game history to that point — in other words every
string of moves has its own score. Suppose we automatically
generate instances of this game by filling in the scores, for
all possible play histories up to some maximum length, with
a normally distributed random variable. This gives us an
uncountable infinite space or games: all but an insignificant
subset of these games are of no interest to a human player.
There is no pattern, no basis for learning more sophisticated
than random sampling, and no reason to bother with such
games. These horrible games, however, fill almost the entirety
of the game space that contain chess, checkers, and go. The
presence of an infinitude of games we will never care about
protects us from NFL entanglements in general game Al
research.

B. What can be done with this?

While we have only a sketch of an NFL theorem for games,
it seems likely that one exists. If it does then the corollary that
algorithms should be specialized to their problem also holds
for games — but in addition to being a corollary of the NFL
theorem this is also just good sense. Why then do we even
want general game AI? One natural answer sounds a lot like
the rational for climbing Everest — it is there. There are other,
more pragmatic reasons. Procedural content generation (PCG)
[11]] is the algorithmic generation of game content. One type
of PCG is the automatic generation of whole games [12]]. If
one were generating games via evolution, an objective function
would be required. A general game playing Al — general at

least for the space of games encoded by the representation in
question — would be such an objective function. This general
Al would also be useful for game level generation [[13].

Anyone that plays games knows there are a lot of different
flavors of games. The mental machinery needed to play chess
is very different from the reflexes needed to play Galaga. As
different as those two games are, both lack the social and
political dimensions of Risk, the braggadocio needed for a
game like Munchkin, or the ability to bluff and read tells that
is at the core of skilled play in poker. During a discussion of
general video game playing at a recent Dagstuhl conference, it
was noted that the games in that year’s General Video Game
Al (GVGAI) Competition had a strong binary feature: either
Monte-carlo tree search [14] was an excellent approach or
it was hopeless. This observation suggests a visionary idea:
use automatic taxonomy based on algorithm performance to
classify games and then develop algorithms for the resulting
classes of games. A prototype of this program for game
classification has already been tested [15]. A collection of
games and different variations of Monte-carlo tree search were
juxtaposed and used to build classification trees of both the
games and the algorithms. The proposal to use classification
trees to segment the general game AI problem space is
developed additionally in Section

III. GENERAL VIDEO GAME Al

The GVGAI Framework is a benchmark that allows con-
ducting research in Artificial General Intelligence via games. It
has been used as a framework for the GVGALI [6] Competition
since 2014, which is at the fourth edition at the time of this
writing. The GVGAI framework would be a natural place to
test game classification to improve general Al performance.
This section briefly describes these benchmark and the com-
petitions run, followed by an analysis of some of the most
relevant controllers submitted to the

A. Framework and Competitions

The GVGAI Framework is a Java port of the original py-
vgdl engine developed by Tom Schaul [[16]], which defined a
Video Game Description Language (VGDL) for 2-D classic
and arcade real-time games (moves must be supplied within
40ms in the competition setting). GVGAI offers an interface
for the implementation of planning and learning algorithms,
as well as a collection of more than 140 single and two-player
games. Agents have access to a forward model, which allows
rolling the game forward to a possible next state by supplying
an action.

Implemented controllers can also have access to the game
state via a Java object, which accepts queries about the game
status (winner, current time step, score), the player’s state
(position, orientation, health points, resources), the available
actions and positions of the other sprites of the game. These

'Note that GVGAI is only one of the possible benchmarks for General
Video Game Playing. The discussions and insights presented in this paper are
applicable to all of them, but GVGALI is shown here as an example due to its
popularity and accessibility to the submitted controllers.

sprites are provided by means of observations, which camou-
flage the sprite’s type by using arbitrary integer IDs. Informa-
tion is given about the nature of the sprites, categorized into
classes: non-player characters (NPC), static, moving, resources
and sprites created by the avatar. Game rules, sprite dynamics
and victory requirements are not given to the agent.

Competition rankings are computed on the results obtained
by all entries in a set of 10 unknown games. Each game has
an independent ranking, sorted by victory rate, score and time
steps needed to complete it. Points are provided to each entry
according to the current F1 rules: 25 points for the first, 18 for
the second, then 15, 12, 10, 8, 6, 4, 2 and 1 for the following
positions, with 0 points awarded to the 11*" position onwards.
The winner of the competition is the controller with the higher
sum of points across all games in the final set.

The GVGALI runs two tracks for planning algorithms: single
and two-player track [17]. The latter was run for the first time
in 2016, featuring 8 submissions (plus 5 sample controllers
provided with the framework) in two different legs: IEEE
World Congress on Computational Intelligence (WCCI-16)
and Computational Intelligence and Games (CIG-16) in 2016.
The former and original track has featured in 6 different
editions, reaching more than a hundred total submissions:
CIG-14, Genetic and Evolutionary Computation Conference
(GECCO-15), CIG-15, Computer Science and Electronic En-
gineering Conference (CEEC-15), GECCO-16 and CIG-16.

B. Competition methods

Table [I| shows the results of the first edition of the single-
player planning track, offering interesting insights about the
type of controllers received. Adrien Couétoux implemented
OLETS (Open Loop Expectimax Tree Search; [6]), winner
of the 1%¢ edition of this track. OLETS is an Open-Loop
tree approach inspired by Hierarchical Open-Loop Optimistic
Planning (HOLOP [18]]), using an exploration term for the
value function and no Monte Carlo simulations.

As can be observed in Table [I] the first half of the table is
dominated by tree-based methods, mostly Monte Carlo Tree
Search (MCTS; [14]]) and variants thereof. On a more broader
view, these entries belong to the category of single agents (i.e.
they only use one algorithm), which is the most common type
submitted to this edition of the competition, with only 2 entries
using a combination of algorithms.

These techniques did not achieve excellent results this
round, maybe with the exception of the 4*" entry, Shmokin.
This agent simply starts executing A* to navigate through
the level, trying to find a goal to win the game, switching
to MCTS if this approach fails. The other mixed approach,
T2Thompson, provides 6 heuristics that try to achieve game
play objectives (shooting enemies, collecting resources, mov-
ing towards doors) that use either A* or a steepest ascent
hill-climber. The success of mixed approaches supports the
notion that partitioning the game space and handing off to
appropriate algorithms might work well. Finally, it’s also worth
highlighting the presence of Evolutionary Algorithms (EA) in
the form of Rolling Horizon EA (RHEA; [19]]), ranking in

Rank Username G1|G2|G3|G4|GS5 | G6 | G7 | G-8| G-9 | G-10 | Points | Victories Approach
1 OLETS 25 0 25 0 25 10 25 25 8 158 256/500 Tree Search
2 JinJerry 18 6 18 25 15 6 18 12 12 148 216/500 Tree Search
3 SampleMCTSt 10 18 6 4 18 25 12 0 0 99 158/500 Tree Search
4 Shmokin 6 25 0 12 10 8 10 6 0 77 127/500 Tree Search & A*
5 Normal_MCTS 12 0 4 15 4 15 4 4 0 68 102/500 Tree Search
6 culim 2 12 8 1 8 4 8 6 10 2 61 124/500 Q-Learning
7 MMbot 15 0 1 2 12 12 2 15 0 0 59 130/500 Tree Search
8 TESTGAG 0 8 15 0 0 1 1 0 2 25 52 68/500 Evolutionary Algorithm
9 Yraid 0 6 10 0 0 0 12 0 15 6 49 93/500 Evolutionary Algorithm
10 T2Thompson 0 0 0 10 0 0 0 1 18 18 47 87/500 Hill Climber & A*
11 MnMCTS 8 8 0 0 1 18 4 8 0 0 47 109/500 Tree Search
12 SampleGA T 4 10 12 0 0 2 0 0 8 4 40 76/500 Evolutionary Algorithm
13 IdealStandard 1 6 0 0 6 0 25 0 0 1 39 134/500 A*
14 Randomf 0 15 0 18 2 0 0 0 0 0 35 78/500 Random
15 Tichau 0 6 0 8 0 0 0 0 1 15 30 55/500 Only action USE
16 SampleOSLAT 0 6 0 0 0 0 0 0 1 10 17 51/500 Tree Search
17 levis501 0 0 2 6 0 0 0 2 1 0 11 50/500 Tree Search
18 LCU_14 0 4 0 0 0 0 0 0 0 0 4 54/500 Rule Based System
TABLE I

RESULTS OF THE 15¢ SINGLE-PLAYER GVGAI COMPETITION. THE GAMES ARE: G-1: ROGUELIKE; G-2: SURROUND; G-3: CATAPULTS; G-4: PLANTS;
G-7: PLAQUE-ATTACK; G-6: JAWS; G-7: LABYRINTH; G-8: BOULDERCHASE; G-9: ESCAPE AND G-10: LEMMINGS. {DENOTES A SAMPLE AGENT.

[Contest Leg [Entry | Type [Method |
[CIG-14 [OLETS] Single [Tree Search |
GECCO-15 YOLOBOT | Meta-heuristic A* MCTS, BFS

CIG-15 Return42 Meta-heuristic A*, Random walks
CEEC-15 YBCriber Hybrid Tree Search
GECCO-16 YOLOBOT | Meta-heuristic A*, MCTS, BFS
CIG-16 MaastCTS2 Single Tree Search

WCCI-16 (2P) ToVo2 Hybrid Sarsa, UCT(\)
CIG-16 (2P) Number27 Hybrid RHEA, MixMax
TABLE 11

WINNERS OF ALL EDITIONS OF THE GVGAI PLANNING COMPETITION. 2P
INDICATES 2-PLAYER TRACK. HYBRID DENOTES 2 OR MORE TECHNIQUES
COMBINED IN A SINGLE ALGORITHM. META-HEURISTIC HAS A HIGH
LEVEL DECISION MAKER TO DECIDES WHICH SUB-AGENT MUST PLAY.

the mid-table. RHEA is a technique that evolves sequence of
actions in a short time budget in order to choose the next
move, as the first action of the best plan found.

Of special relevance is the result obtained by IdealStandard
(A*) in the game Labyrinth, where the objective is to find the
exit. In this game, this agent plays optimally, better than any
other technique in this set. This is a clear example of how
an over specialized controller can do well in one game and
perform poorly on the rest of this set. The other agents that
include A* as one of their techniques don’t score points in
this game, which can be attributed to an incorrect partitioning
of the game space, highlighting the importance of an accurate
general classification algorithm to decide the technique to use.

Table [[I| summarizes all winners of the planning track for
the single and two-player versions of the contest The
2015 edition of the competition received multiple submissions
(the highest so far, about 70 entries), and a proliferation of

2For the sake of space, only competition winners are described for editions
after 2014. All rankings, framework versions and controllers are available in
the competition website: www.gvgai.net

agents that combine multiple algorithms could be observed.
The GECCO-15 leg, as well as the overall championship
(determined by summing the points from the three legs), was
won by the entry YOLOBOT |[20], and it is a clear example of
this type of entries. YOLOBOT starts playing by using a path
finding algorithm to populate a list to the closest sprites of
each type, while using the forward model to classify the game
as stochastic or deterministic. In the former case, the game
is played using MCTS; in the latter, Best First Search (BFS)
is the algorithm of choice. The other two legs of this edition
were won by two different entries: Return42, winner of CIG-
15, starts determining the stochasticity of the game. A* is used
as the main driving algorithm in case the game is stochastic,
and random walks are used otherwise. Finally, YBCriber [21],
winner of CEEC-15, combines reactive avoidance of hazards
with Iterative Width (IW; [21]]) in their tree search.

YOLOBOT repeated as a winner in the GECCO-16 leg of
the single player planing competition, although a new entry,
MaastCTS2 [22]], was able to rank first on the CIG-16 leg and
become the overall champion. The authors of this controller
proposed several enhancements to MCTS, combining it with
other techniques. Firstly, they use a Breadth-First initialization
with safety pre-pruning (based on IW) to reduce the number
of nodes in the tree that counted with more loses. Addi-
tionally, the authors complemented MCTS with Progressive
History [23]] and N-Gram Selection Technique [24], in order
to introduce a positive bias towards actions that performed
well in earlier simulations.

The 2-Player GVGALI track ran for the first time in 2016, and
it featured two different legs. The WCCI-16 one was won by
the entry ToVo2, a combination of MCTS and Sarsa-UCT(\).
The CIG-16 leg was won by Number27, which employed a
RHEA technique in combination with MixMax back-ups (as
in [25])). Interestingly, the champion of the 2016 edition was
an adaptation of OLETS, mentioned above, to this track.

A common pattern for all tracks of the 2015 and 2016
competitions is that none of the submitted controllers is able to
lead the rankings in more than 4 out of the 10 games of each
final secret test. Between 5 and 7 controllers are able to lead in
at least one of the games, and some of them are able to be the
top agent in a single game even if they ranked after the 10"
position. This suggests that the efforts of combining multiple
techniques into a single controller have not still reached a level
of performance that dominates in a subset of games. Again,
this may be an indication that cleverer ways of partitioning the
game state, together with a better or more diverse selection of
algorithms, can bring a significant boost in performance.

C. Other work on GVGAI agents

Researchers have also used the GVGAI framework during
the last years as a testbed for general artificial intelligence
without submitting to the competition. This section revises
part of this work, as it is important to understand how other
approaches try to tackle this problem. Most efforts are directed
towards improving the most used single algorithms in the
literature of GVGAIL: MCTS and RHEA.

In the case of MCTS, an early attempt by Perez et al. [26]
showed that a combination of this tree search technique with
evolution and knowledge gathering was able to improve perfor-
mance in most games of the first set of GVGAI games. How-
ever, this approach was still not able to perform better than the
vanilla version in some of the games, and subsequent experi-
mental results in other game sets did not provide extraordinary
results. More recently, F. Frydenberg et al. [25] proposed
several modifications to MCTS (such as MixMax backups,
macro-actions, partial expansion and reverse penalties). M. de
Waard et al. [27] introduced an enhancement entitled Option
MCTS, which analyzes the effects of using macro-actions for
achieving subgoals. Interestingly, both approaches improve
the performance of the vanilla MCTS algorithm. However,
this improvement can’t be observed across the totality of
games used in their experimental study: the performance
in some games actually drops down, possibly because over
specialization of the improvement introduced.

An algorithm receiving an increasing attention lately is
RHEA, with multiple enhancements being proposed. Tuning
look-ahead and population size parameters [28], initial seeding
of the population [29] and hybridizations with tree search [30],
[31] have been shown to again improve the performance of the
vanilla RHEA, but fail at producing an improvement over the
totality of games used on each study.

These results suggest that it seems to be relatively easy to
find enhancements that improve performance in specific, single
algorithm-based, techniques. The efforts of these researchers
succeed on designing agents that provide a higher average
of victory rates than the vanilla versions of the algorithms
they intend to improve, but fail to provide a stronger single
algorithm that is able to achieve a decent rate of victories in
the games tested. Some games of these sets have not been
solved once yet by any general agent!

It is reasonable to think that clustering games and applying
different techniques in a common agent should provide a step
up in performance across the games of a set. Some very recent
studies have started to go in this direction. For instance, P.
Bontrager et al. [32] analyze the strengths and weaknesses
of current GVGALI algorithms, clustering the games by using
Principal Component Analysis and Agglomerate Hierarchical
Clustering (in fact, these clustering has been used later [28]-
[30] to select games for experimental setups). The authors
showed that it is possible to build a decision tree to select the
algorithm to play with, although they claim that there’s also
a need for new algorithms in order to improve performance
further. Similarly, A. Mendes et al. [33]] use J48 and Support
Vector Machines to classify 41 known games of the GVGAI
corpus and select the most appropriate algorithm to play. The
authors are able to provide a meta-heuristic general agent that
improves the performance of the algorithms is composed of
in isolation. However, they also state that a better selection of
features would be required in order to increase the gap with
the best single agents, as the most appropriate controller was
not always selected by the J48 decision tree.

IV. STABLE CLASSIFICATION OF GAMES

The goal of creating a stable family tree of games serves the
end of picking diverse sets of games for future competitions.
This permits the contest designers to avoid picking games
that disproportionately favor one game or another and which
provide the broadest possible test of the Als submitted to the
contest.

The prototype study on classifying games [15] used the
UPGMA (Unweighted Pair Group Method with Arithmetic
mean) hierarchical clustering method to construct family trees
of both games and MCTS variants. UPGMA is a clustering
method commonly used to transform distance data into a tree.
It received attention in [34], and a good description may be
found in [35]]. It is especially reliable if the distances have
a uniform meaning. The classification effort proposed in this
paper would provide win/loss or goal achieved/not achieved
data and so maintain the desirable uniform meaning.

Given a collection of taxa and distance d;; between taxa i
and j, the method first links the two taxa z and y that are least
distant. The taxa x and y are merged into a new unit z. For all
taxa ¢ other than x and y, a new distance d;, is computed as
the average of d;, and d;,, and it is noted that the new taxon z
really represents the average of two original taxa. Henceforth,
z and y are ignored, and the procedure is repeated to find the
next pair of taxa that are least distant. When two taxa u and
v are combined into a new taxon w, the new distance d;,, is
the average of d;,, and d;,, weighted according to the number
of original taxa in uw and v respectively; w contains all the
original taxa in both w and v. The procedure ends when the
last two taxa are merged.

In order to apply the UPGMA method to games and MCTS
variants, we must somehow establish distances between pairs
of games and pairs of MCTS variants. In this case the number
of victories either against a fixed opponent algorithm (for

two player games) or scores above a standard (for one player
games) was used to score each of a variety of MCTS variants
on a collection of games. The resulting data object is a matrix
indexed by the games and the MCTS variants. Treating the
rows (scores an MCTS variant got on all the games) or
columns (scores the different MCTS variants obtained on a
game) as points in Euclidean space permitted the computation
of Euclidean distances between pairs of games or points.
This technique has already been used to create family trees
of optimization problems [36] and has been seen to be a viable
approach to classifying games. There are some problems.
Recall that one of the motivations for this approach was that
some of the problems in GVGAI were not MCTS-friendly.
This means that the performance of a broader variety of
algorithms on games is probably necessary. A natural source
of algorithms is to mine the GVGAI competitions and adopt
algorithms that did well there. The algorithms mentioned in

Sections [[II-B] and form a good starting point for the
selection of algorithms to drive the classification effort.

A. Stability of the classification trees

A second problem is that the UPGMA method, used directly
on simple distance data, has been shown to be unstable [37].
The instability demonstrated has the following form. If one
point is removed from the data set, and the algorithm is re-run,
then the resulting tree can be very different from what would
result if the leaf of the tree corresponding to that data point
were simply trimmed from the tree. This sort of instability
is not acceptable in a tree that is used to classify games and
then select the algorithm used to play them. The UPGMA
algorithm is widely used in biology and, when the data arise
from a common descent process, like biological evolution,
the stability of the resulting trees is greater. Performance
of different algorithms on a collection of games is unlikely
to have this stabilizing property and so a better method of
building trees for game classification is needed.

The stability measure uses a simple metric on trees to
compute the distance between the tree obtained by trimming
a leaf from the one obtained by removing a data point and
rebuilding the tree with whatever algorithm is in use. The
average distance between such trees, with the average being
over all single points that could be removed, is an instability
measure, in that larger numbers indicate higher degrees of
instability. A new clustering algorithm called bubble clustering
has been found that transforms distance data into trees in
more stable fashion. Preliminary results from a bioinformatics-
motivated experiment are given in Figure[I] Bubble clustering
is compared to the hclust package in the statistical platform R
[38]]. Over a variety of data sets, all forms of bubble clustering
tested exhibit higher stability than all forms of hclust tested.
The different forms of hclust vary the method of determining
the distance between groups of already clustered points.

Bubble clustering operates as follows. The algorithm ini-
tializes a matrix of connection strengths between all pairs
of point with zero. It repeatedly generates spheres with a
radius selected uniformly at random within the diameter of

Stability of trees with fifty points in two dimentions

15000
I

10000
I

5000

Algorithm

Stability of trees with fifty points in five dimentions

%

Stability
10000

5000
L

Algorithm

Stability of trees with fifty points in ten dimentions

20000
L

15000
L
am

Stability

10000
L
°

5000

Algorithm

Fig. 1. Shown are relative stability for trees on 100 randomly generated
data sets with n=50 data points each with 2, 5, or 10 coordinates distributed
uniformly at random in the interval [-5,5]. Six collections of trees are com-
pared produced with different methods; bubble clustering with 10n bubbles
(B1), bubble clustering with 100n bubbles (B2), bubble clustering with 1000n
bubbles (B3), hclust() using the complete linkage method (H1), hclust() using
the average method (H2), hclust() using the centroid method (H3). Boxplots
that share a letter are not statistically significantly different while those that
have different letters are statistically significantly different

the data space and centered on data points (bubbles). Each
time two points are both in such a sphere, their connection
strength is incremented by the reciprocal of the number of
points in the bubble. A bubble with a small number of points
in it indicates points that a more closely coupled, which is
why the reciprocal weight for co-membership in a bubble is
used. Point density may vary irregularly: the bubble sampling
process automatically creates a linkage that compensates for
such irregularity. In addition, the number of bubbles used
represents a control in a cost/accuracy trade-off. The UPGMA
algorithm is modified to deal with linkage data only by taking
the largest linkages instead of smallest distances.

The vision presented in this paper for enabling improved
Al performance in general game playing is to use bubble
clustering on a matrix of algorithm:game success data to

generate family trees of games used to assign different sub-
algorithms to play those games within a GVGP framework.
The algorithms participating in the generation of the success
data are still an open area for further work. Bubble clustering
with the reciprocal measure can provide the game classifica-
tion trees at the heart of the effort, but there is also room to
tinker with the weighting scheme to enhance the tree stability.

V. CONCLUSIONS AND FUTURE WORK

This paper argues that the implications of NFL theorems are
not a problem for general game Als because the most general
domain of interest, within the games arena, is still well below
the threshold of completeness where it would suffer from
attempting to contradict NFL theorems. Given this, the paper
goes on to propose a classification scheme that would permit
the partitioning of the set of games of potential interest for
assignment to appropriate algorithms. The GVGAI framework
is reviewed and a preliminary list of algorithms is supplied
based on that review. The GVGAI game set proposed as a test
set of games for the effort. Details and possible improvements
to the game classification scheme are presented along with
preliminary results touching on their stability — and extant
problem with these classification techniques.

A. Generalizing bubble clustering

Bubble clustering was proposed for the game classification
effort because it solve a potentially problematic stability
problem. Of particular value is its ability to operate smoothly
on data that is distributed in a complex or irregular fashion.
Since the classification of games into types is an off-line
activity there is also the ability to perform classification with a
very large number of bubbles and so achieve extremely stable
classification: in the preliminary work increasing the number
of bubbles sampled does improve stability. Given this, bubble
clustering is currently a somewhat arbitrary choice that may
benefit from additional examination.

Bubble clustering is an example of a more general technique
called associator clustering (AC). Each sampled bubble is
an associator. This name arises from the fact that being in
a bubble together associates two points. The first example
of AC is k-means multi-clustering [39]], [40]. This method
was similar to bubble clustering but used the clusters arising
from multiple different executions of the k-means clustering
algorithm, with different initial conditions and numbers of
clusters, to associate points. Multi k-means clustering showed
an exceptional robustness to irregular distribution of data.
In general, any reasonable method of telling two points are
similar could be used as an associator and AC could potentially
use multiple types of associators in the same classification.

In general, an associator is just a way of choosing a
collection of points to be associated, and any associator must
also have a quality measure that says how much the association
of points that appear together in an associator should be
strengthened. This strengthening factor is the quality of the
associator. Being together in a randomly sampled bubble
and appearing together in one of the clusters of a k-means

clustering are the tested examples of associators. If one were
clustering game players, it might be possible to create associa-
tors derived from their strategic choices. Clustering documents
could use common rare words or phrases as associators. No
matter what the choice of associator, the modified UPGMA
algorithm that joins strongest linkages first can be applied
to the resulting matrix of connection strengths. The choice
of effective associators for clustering games with algorithm
performance data is a central part of future work on useful
automatic game classification.

B. Agents, Heuristics and Objectives

The ability to correctly classify games in a stable way opens
interesting lines of research, aimed at obtaining good perfor-
mance in multiple games by means of combining different
techniques and methods. Some initial steps have already been
taken in GVGALI in this spirit. They are either simple human
and ad-hoc classifications [[6]], [41] (such as differentiating
between deterministic versus stochastic games, or the presence
or absence of certain type of elements in them), or they are
based on more involved clustering techniques which still need
further development to perform satisfactorily in a competition
setting with unknown games [32[], [33]].

Deeper research in meta-heuristic agents is one of the
next logical steps in General Video Game Playing. These
systems would count on a high level decision system that
determines which algorithm, heuristic and/or objective must
be pursued next within a range of possible choices. This
selection mechanism would naturally be strongly influenced
by an accurate and real-time classification of games.

It is worth highlighting that this classification does not
necessarily need to be only addressed from a game versus
game point of view. Alternatively or in parallel, such approach
could also consist of analyzing game states rather than com-
plete games. If different algorithms perform better in distinct
games, it is not too alien to think that different algorithms
can also be used at specific moments during the same game.
Especially in complex games, the dynamics, objectives and
even rules can change at several points during play. A clear
example is Pac-Man, which can be seen as (at least) two sub-
games in one: either the player is escaping the ghosts while
eating pills, or it is actively chasing them after consuming
a power pellet. More complex games (such as real-time or
turn-based strategy games, like Civilization) naturally evolve
through certain phases where exploration, resource gathering
and combat tactics take turns as the primary game objective.

Therefore, an interesting line of future work is the investi-
gation of how to combine multiple general heuristics, where
each one of them tries to tackle a different need during game
play. For example, C. Guerrero et al. [42] provide an initial
study on different heuristics in some games of the GVGAI
framework, which try to maximize exploration of the level,
discover rules and dynamics or simply maximize the score.
How to combine and pick the appropriate heuristic for the
given game (or moment within the game) is a problem to be
explored in the near future.

One possibility is to build a Multi-Objective approach [43]],
where each goal is represented by an heuristic and a high level
decision mechanism determines their weights dynamically.
Another possible alternative could be ensemble systems, where
several algorithms (or heuristics) determine the next move to
make at each game tick. Each one of these sub-agents has a
voice, listened by a central decision mechanism. The vote of
each agent can be provided in different ways (favorite action,
ranking of moves, with or without confidence intervals) and
the decision maker can determine how to weight each voice
attending to the type of game (or game state) provided by a
classification system like the one suggested in this paper.

REFERENCES

[1] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” Trans. Evol. Comp, vol. 1, no. 1, pp. 67-82, Apr. 1997.

[2] S. Ruder, “An overview of gradient descent optimization algorithms,”
CoRR, vol. abs/1609.04747, 2016.

[3] E. C. Zeeman, Catastrophe theory: Selected papers, 19721977.
Addison-Wesley, 1977.

[4] J. Lienig, “A parallel genetic algorithm for performance-driven vlsi
routing,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1,
pp- 29-39, Apr 1997.

[5] M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the aaai competition,” Al Magazine, pp. 62-72, 2005.

[6] D. Perez Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Couétoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General
Video Game Playing Competition,” IEEE Transactions on Computa-
tional Intelligence and Al in Games, vol. 8, no. 3, pp. 229-243, 2016.

[71 D. Ashlock and J. Gilbert, “A discrete representation for real optimiza-
tion with unique search properties,” in Proc. of the IEEE Symposium on
the Foundations of Computational Intelligence, 2014, pp. 54-61.

[8] D. Ashlock, J. Schonfeld, L. Barlow, and C. Lee, “Test problems and
representations for graph evolution,” in Proc. of the IEEE Symposium
on the Foundations of Computational Intelligence, 2014, pp. 38-45.

[9] N.L.D. Ashlock, E.Y. Kim, “Understanding representational sensitivity
in the iterated prisoner’s dilemma with fingerprints,” Transactions on
Systems, Man, and Cybernetics—Part C: Applications and Reviews,
vol. 4, no. 36, pp. 464-475, 2006.

[10] W. Rudin, Principles of Mathematical Analysis. McGraw Hill, 1976.

[11] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-
based procedural content generation,” in Applications of Evolutionary
Computation, ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2010, vol. 6024, pp. 141-150.

[12] T. Mahlmann, J. Togelius, and G. N. Yannakakis, Towards Procedu-
ral Strategy Game Generation: Evolving Complementary Unit Types.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 93-102.

[13] X. Neufeld, S. Mostaghim, and D. Perez Liebana, “Procedural level gen-
eration with answer set programming for general video game playing,”
in Computer Science and Electronic Engineering Conference (CEEC),
2015 7th. 1EEE, 2015, pp. 207-212.

[14] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and Al in Games, vol. 4:1, pp. 1-43, 2012.

[15] C. McGuinness, “Classification of monte carlo tree search variants,”
in Proc. of the 2016 IEEE Congress on Evolutionary Computation.
Piscataway, N.J.: IEEE Press, 2016, pp. 357-363.

[16] T. Schaul, “An extensible description language for video games,” IEEE
Transactions on Computational Intelligence and Al in Games, vol. 6,
no. 4, pp. 325-331, 2014.

[17] R. D. Gaina, D. P. Liebana, and S. M. Lucas, “General Video Game for
2 Players: Framework and Competition,” in Proc. of the IEEE Computer
Science and Electronic Engineering Conference, 2016.

[18] A. Weinstein and M. L. Littman, “Bandit-based planning and learning
in continuous-action markov decision processes.” in ICAPS, 2012.

[19] D. P. Liebana, S. Samothrakis, S. M. Lucas, and P. Rolfshagen, “Rolling
Horizon Evolution versus Tree Search for Navigation in Single-Player
Real-Time Games,” in Proc. of the Genetic and Evolutionary Computa-
tion Conference (GECCO), 2013, pp. 351-358.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]
[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

T. Joppen, M. Moneke, N. Schroder, C. Wirth, and J. Fiirnkranz,
“Informed Hybrid Game Tree Search,” Knowledge Engineering Group,
Technische Universitdt Darmstadt, Tech. Rep., 2016.

T. Geffner and H. Geffner, “Width-based planning for general video-
game playing,” in Eleventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 2015.

D. J. N. J. Soemers, C. F. Sironi, T. Schuster, and M. H. M. Winands,
“Enhancements for Real-Time Monte-Carlo Tree Search in General
Video Game Playing,” in IEEE Conference on Computational Intelli-
gence and Games, 2016.

J. A. M. Nijssen and M. H. M. Winands, “Enhancements for Multi-
player Monte-Carlo Tree Search,” in International Conference on Com-
puters and Games. Springer, 2010, pp. 238-249.

M. J. W. Tak, M. H. M. Winands, and Y. Bjornsson, “N-grams and
the Last-good-reply Policy Applied in General Game Playing,” IEEE
Trans. on Computational Intelligence and Al in games, vol. 4:2, pp.
73-83, 2012.

F. Frydenberg, K. R. Andersen, S. Risi, and J. Togelius, “Investigating
mcts modifications in general video game playing,” in /[EEE Conference
on Computational Intelligence and Games, 2015, pp. 107-113.

D. Perez, S. Samothrakis, and S. Lucas, “Knowledge-based fast evolu-
tionary mcts for general video game playing,” in 2014 IEEE Conference
on Computational Intelligence and Games. 1EEE, 2014, pp. 1-8.

M. d. Waard, D. M. Roijers, and S. C. Bakkes, “Monte carlo tree search
with options for general video game playing,” in IEEE Conference on
Computational Intelligence and Games, 2016, pp. 47-54.

R. D. Gaina, J. Liu, S. M. Lucas, and D. Perez Liebana, Analysis of
Vanilla Rolling Horizon Evolution Parameters in General Video Game
Playing. Cham: Springer International Publishing, 2017, pp. 418-434.
R. D. Gaina, S. M. Lucas, and D. P. Liebana, “Population Seeding
Techniques for Rolling Horizon Evolution in General Video Game
Playing,” in Proc. of the Congress on Evolutionary Computation, 2017.
——, “Rolling Horizon Evolution Enhancements in General Video
Game Playing,” in Proc. Computational Intelligence and Games, 2017.
H. Horn, V. Volz, D. Perez Liebana, and M. Preuss, “Mcts/ea hybrid
gvgai players and game difficulty estimation,” in IEEE Conference on
Computational Intelligence in Games, 2013, pp. 1-8.

P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching games
and algorithms for general video game playing,” in Twelfth Artificial
Intelligence and Interactive Digital Entertainment Conference, 2016.
A. Mendes, A. Nealen, and J. Togelius, “Hyperheuristic general video
game playing,” Proc. of Computational Intelligence and Games, 2016.
P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy; the Principles
and Practice of Numerical Classification. W.H. Freeman, 1973.

D. Swofford, G. Olsen, P. Waddell, and D.M.Hillis, “Phylogenetic in-
ference,” in Molecular Systematics, second edition, D. Hillis, C. Moritz,
and B. Mable, Eds. Sunderland, MA.: Sinauer, 1996, pp. 407-514.
K. M. Bryden, D. A. Ashlock, S. Corns, and S. J. Willson, “Graph based
evolutionary algorithms,” IEEE Transaction on Evolutionary Computa-
tion, vol. 10, pp. 550-567, 2006.

D. Ashlock, T. von Konigslow, and J. Schonfeld, “Breaking a hierarchi-
cal clustering algorithm with an evolutionary algorithm,” in Intelligent
Engineering Systems Through Artificial Neural Networks, vol. 19, 2009,
pp. 197-204.

R Core Team, R: A Language and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, Vienna, Austria, 2014.

D. A. Ashlock, E. Kim, and L. Guo, “Multi-clustering: avoiding the
natural shape of underlying metrics,” in Smart Engineering System
Design: Neural Networks, Evolutionary Programming, and Artificial
Life, C. H. D. et al., Ed., vol. 15. ASME Press, 2005, pp. 453-461.
E. Kim, S. Kim, D. Ashlock, and D. Nam, “Multi-k: accurate classifica-
tion of microarray subtypes using ensemble k-means clustering,” BMC
Bioinformatics, vol. 10, no. 260, pp. 1-12, 2009.

D. Perez Liebana, S. Samothrakis, J. Togelius, S. M. Lucas, and
T. Schaul, “General video game ai: Competition, challenges and oppor-
tunities,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.
C. Guerrero-Romero, A. P. Louis, and D. Perez Liebana, “Beyond
playing to win: Diversifying heuriscits for gvgai,” in Computational
Intelligence in Games , IEEE Conference on. 1EEE, 2017.

D. Perez Liebana, S. Mostaghim, and S. M. Lucas, “Multi-objective tree
search approaches for general video game playing,” in /[EEE Congress
on Evolutionary Computation, 2016, pp. 624-631.

