
Fast Evolutionary Adaptation
for Monte Carlo Tree Search

Simon M. Lucas, Spyridon Samothrakis and Diego Perez
University of Essex, UK

Abstract

This paper describes a new adaptive Monte Carlo Tree Search (MCTS) algo-
rithm that uses evolution to rapidly optimise its performance. An evolutionary
algorithm is used as a source of control parameters to modify the behaviour of
each iteration (i.e. each simulation or roll-out) of the MCTS algorithm; in this
paper we largely restrict this to modifying the behaviour of the random default
policy, though it can also be applied to modify the tree policy.

This method of tightly integrating evolution into the MCTS algorithm means
that evolutionary adaptation occurs on a much faster time-scale than has previously
been achieved, and addresses a particular problem with MCTS which frequently
occurs in real-time video and control problems: that uniform random roll-outs may
be uninformative.

Results are presented on the classic Mountain Car reinforcement learning bench-
mark and also on a simplified version of Space Invaders. The results clearly
demonstrate the value of the approach, significantly outperforming “standard”
MCTS in each case. Furthermore, the adaptation is almost immediate, with no
perceptual delay as the system learns: the agent frequently performs well from its
very first game.

1 Introduction
Monte Carlo Tree Search (MCTS) is a powerful selective search method that has had a
profound impact on Game AI since its introduction in 2006 by a number of researchers;
see the recent survey paper by Browne et al [3] for more details of its history, algorithm,
variations and applications.

One of the most appealing features of MCTS is that it can operate without the need
for any heuristic: it works reasonably well in its vanilla form on a variety of problems.
However, it is also well known and not surprising that the appropriate use of heuristics
can significantly boost performance, and all leading Go programs use these.

MCTS selectively builds an asymmetric tree. The algorithm works by following a
tree policy until it finds a node to expand, at which point it performs a roll-out (also
called play-out or simulation) until the end of the game (or until some other stopping
condition is met). The value found at the end of the roll-out is then back-propagated
up the tree, updating the mean value and the number of visits to each node. Perhaps



the most popular tree policy is based on the Upper Confidence Bounds equation (UCB)
which for MCTS is known as UCT (Upper Confidence bounds for Trees). This aims to
optimally balance exploitation (visit the child of the current node with the best mean
value, left term in equation 1) versus exploration (visit the least explored child, right
term in equation 2).

UCB1c = µc + k

√
lnN
nc

(1)

where k is an exploration constant, N is the number of times the parent has been
visited, and for child c, µc is the mean value and nc the number of visits.

Although some efforts have already been made to incorporate automated learning
procedures into MCTS, the current state of the art usually involves a great deal of
hand-programming and leaves some important problems largely unanswered, namely:

• The action-space may be too fine-grained; it may be necessary to work in some
space of macro-actions in order to perform well. Designing the macro-actions
could be done by evolution.

• Uniform random roll-outs may cause insufficient exploration of the state space.
They may all end in a similar or even identical degree of failure, rendering them
devoid of information. In the worst case, the µc values for each child may be
identical, meaning there is nothing to exploit.

In this paper we address the second of these problems: this is important since it will
aid the development of general video game bots able to play a wide range of games to
a high standard without being explicitly programmed for any particular game. This is
useful for providing an automatic range of opponents for new video games, and also
for evaluating automatically designed video games. Although there have been some
very interesting efforts along these lines, for instance [15] [4] [5], the richness of the
games that have been evolved so far has been arguably limited by the intelligence of
the evolved bots [15], or the NPC rules [4] or the search algorithms used to evaluate
them [5].

2 Related Research
Silver et al [13] incorporated temporal difference learning (TDL) into an MCTS al-
gorithm, and drew the distinction between the transient values learned by the MCTS
procedure and the long-term heuristic information learned by TDL.

Robles et al [11] used a similar procedure for learning in Othello, where they used
TDL to learn a value function both for controlling the tree policy and for controlling
the roll-outs.

Although TDL utilises more of the available information during learning than evo-
lution [6], evolution can be more robust due to its direct emphasis on the end goal
(such as winning the most games) rather than some proxy of this such as minimising
the residual errors.

Evolutionary learning has also been used to tune MCTS algorithms. Benbassat and
Sipper [2] used Genetic Programming, in conjunction with MCTS, for several classic



games such Othello and Dodgem. In their work, each individual in the evolutionary
algorithm represents a function that evaluates a board position. During the rollout step
of MCTS, each move is chosen by selecting the action that maximizes the value of the
next board state, according to this function.

Independently, Alhejali and Lucas [1] used evolution to tune the weights of the
heuristic value function used to guide the roll-outs in an MCTS Pac-Man player. In both
these approaches evolution was able to improve on the default MCTS performance,
though in both cases the evolutionary algorithm was applied at the level of the indi-
vidual, where each fitness evaluation involved playing one or more complete games.
This approach leads to relatively expensive evolutionary runs, since for most games
reasonable standard MCTS players cannot operate much faster than real-time. The
approach developed in this paper is very different, since now each roll-out contributes
immediately to the fitness evaluation of the policy that guided it.

The main use of the fast evolutionary adaptation used in this paper is to bias the
simulation or roll-out policy after the tree policy has found a leaf node to expand. Most
previous ways of doing this have relied on the information gained from the simulations;
a good example is the recent work by Powley et al [10], where they learn n-gram models
to bias the roll-outs. This works well when the simulations are informative, but breaks
down when the simulations all terminate in identical or very similar values.

The approach developed in this paper is intended to complement the roll-out mining
methods by initially hypothesizing useful “directions” for the roll-outs to take in the
absence of any evidence. As the evidence accumulates, the aim is for the evolutionary
algorithm to adapt the distribution of roll-out policies accordingly.

One of the most general approaches for optimizing MCTS algorithms is that of
Maes et al [7] where they formulate a grammar for describing a general class of Monte
Carlo Tree Search algorithms and then search the space induced by that grammar to find
high performance ones. However, as with most other methods this requires relatively
extensive evaluation in order to determine the fitness of each algorithm instance.

Recently MCTS has found application in video games, with Ms Pac-Man being a
good example [12], supported by strong results in competitions both for controlling the
Pac-Man agent [9] and the ghost team [8]. However, all these cases relied on some
hand-designed heuristics such as disallowing Pac-Man reversals during roll-outs. This
was found to be necessary since if the Pac-Man is allowed to reverse then it makes
insufficient progress through the maze due to excessive dithering.

This is analogous to the problem observed running vanilla MCTS on the Mountain
Car problem described below, and in this case is easily solved by the fast evolutionary
adaptation approach.

3 Fast Evolutionary MCTS
The main contribution of this paper is the introduction of a new approach to using an
evolutionary algorithm to rapidly adapt the behaviour of an MCTS algorithm. The
main idea is to tightly integrate evolution’s fitness evaluation process with the MCTS
algorithm. Previous evolutionary approaches (e.g. [2], [1]) have been loosely coupled
in the sense that each fitness evaluation was based on the performance of the MCTS



agent over an entire game or set of games, where the MCTS agent was seen as a black
box with a set of tunable parameters.

In the Fast Evolutionary method each iteration (roll-out) of the MCTS algorithm
contributes directly to a statistical evaluation of an individual, where each individual
is characterised by a vector of parameters. As a result of this change the evolutionary
algorithm has access to a much higher bandwidth of information and consequently is
able to adapt more rapidly.

Within this fast evolutionary approach there are at least two distinct ways in which
it could work: evaluate each individual within the same MCTS tree, or create a new
MCTS tree for each individual.

The former approach aggregates the statistics of each individual within the same
tree and has the advantage of throwing nothing away. The latter approach is more
wasteful since each time an individual is discarded from the population all the statistics
are lost; however it can also be used more flexibly and can be used to search the space
of different macro-actions for example. In this paper we limit the investigation to the
former approach.

Algorithm 1 outlines the main steps. The while loop describes the MCTS algorithm
executed in order to make each decision. Here the condition is listed as being within a
computational budget: this could be measured as elapsed time or as a fixed number of
iterations.

For each iteration a parameter vectorw is drawn from the evolutionary algorithm by
calling evo.getNext() as shown on line 2. Line 3 initialises a statistics object to track the
performance of this control vector. The for loop (line 4) is there to enable a particular
MCTS control policy to be sampledK times before returning its performance statistics
to the evolutionary algorithm. There are many statistics that can be used to rate how
well an MCTS algorithm is performing: our basic statistics object includes calculation
of the mean, standard deviation, min and max. All these can be important, though in
this initial study we only use the mean. Alternatively, the K parameter can be seen
as the responsibility of the evolutionary algorithm, in which case the for loop can be
removed.

The parameter vector could be used to control both the tree policy and the default
policy as indicated on lines 5 and 6 respectively, with the default policy being used to
generate a roll-out that ends in a state with the value of ∆. Apart from the influence
of the control parameters, the MCTS algorithm operates as normal with line 7 showing
the backup of the tree statistics. Line 8 indicates the statistics object S being updated
with the roll-out value ∆.

After running the MCTS algorithm for the allowed computational budget, the while
loop exits. The algorithm returns the estimate of the best control vector found to date
via a call to evo.getBest() (line 12). This suggests another use case for the algorithm:
to find good control vectors and then use these to fix the bias. In the results tables below
we refer to this mode of use as Pre-Evolved.

Finally, the algorithm returns the selected action for the current root state using a
recommendation policy (line 13), which is usually different from the tree policy. In
this paper we mainly choose the action with the highest mean value, though for Space
Invaders we also experimented with biasing the recommendation directly.



Algorithm 1: Fast Evolutionary MCTS. The evolutionary algorithm provides a
source of parameter sets used to control the MCTS algorithm.

input : Parameter K, the number of roll-outs per fitness evaluation, v0 is root state
output : weight vector w and action a

; // initialize evolutionary algorithm evo,
1 while within computational budget do
2 Set w← EVO.GETNEXT()
3 Initialise statistics object S.
4 for i := 1 to K do
5 vl ← TREEPOLICY(v0, T (w)) ; // Tree policy is influenced by T (w)
6 ∆← DEFAULTPOLICY(s(vl), D(w)) ; // Default policy is influenced by D(w)
7 BACKUP(vl,∆)
8 UPDATESTATS(S,∆)

9 end
10 EVO.SETFITNESS(w, S)

11 end
12 Return w← evo.getBest()
13 Return a← recommend(vo)

3.1 Biasing Rollouts
The main idea here is to use features associated with a given state to bias the action
selection process. The biasing process works as follows: we map from state space
S to feature space F with N features and then from feature space to a probability
distribution over the set of actions. This is currently implemented using a hand-coded
feature space for each problem. There are A actions available and the relative strength
ai of each action i is then calculated as a weighted sum of feature values. The weights
are stored in a matrix W where entry wij is the weighting of feature j for action i:

ai =

N∑
j=1

wijfj (2)

These relative action values then feed into a softmax function in order to calculate
the probability P (ai) of taking each action.

P (ai) =
e−ai∑A
j=1 e

−aj

(3)

The bias is therefore controlled by two things: the features and the weight matrix
W . As previously mentioned, for the moment the features are hand-coded though
in future they could be evolved using GP or auto-constructed in some other way.
The weight matrix is evolved: every roll-out is biased using a W drawn from the
evolutionary algorithm.

4 Test Problems
For proof of concept we choose two initial test problems: Mountain Car and Space
Invaders. The first one is a simple reinforcement learning problem, but one that MCTS



with uniform roll-outs fails on badly. Space Invaders is a more interesting challenge,
and even the simplified version used in this paper involves precise shooting of fast
moving targets (the aliens move quickly when there are only a few left), and strategic
considerations regarding the order in which to shoot the aliens. In each case the
MCTS tree policy was UCB1 with the exploration constant k set to 0.3 after some
experimentation. The algorithm ran for 200 iterations per action selection. When
calculating the mean values of each child in the UCT tree we tried scaling the scores to
be in a smaller range, but this tended to degrade performance.

We used a (1 + 1) Evolution Strategy (ES) for the evolutionary algorithm (i.e. the
source of roll-out control vectors). This is the simplest possible choice, and most likely
far from optimal. A better choice might be to use a bandit-based algorithm in order to
maintain a multi-modal distribution of roll-out policies. Nonetheless, even the (1+1)
ES is able to produce some interesting results.

4.1 Mountain Car
The mountain car problem is a classic reinforcement learning benchmark problem; here
we use a version identical to that described by Sutton and Barto [14] (page 214) apart
from limiting the number of steps per episode to 500 instead of 2,500. The problem
is illustrated in Figure 1: the aim is to reach the line at the top of the hill on the right,
but the engine has insufficient force to overcome gravity. The state of the system is
fully specified by two scalar values: position s and velocity v. The state space is small
but continuous and there are many ways of constructing features for this. For these
experiments we take the most direct approach and simply use s and v scaled to be in
the same range from −1 to +1. The three possible actions are accelerate left, neutral
and accelerate right.

The difficulty of any particular instance of this problem depends on the initial state.
For example, if the car starts close to the goal with a large velocity towards the goal
then many action sequences will lead to success. All experiments in this paper used a
start state of (s = −0.3, v = 0). Starting in this way, close to the centre of the valley
and with zero velocity, is relatively hard and a few oscillations are required in order
to reach the goal. We limit the number of steps in each episode to 500, and the score
(to be minimised) is simply the number of steps taken to reach the goal, or 500 if the
goal was never reached. Configured in this way MCTS with uniform random roll-outs
reaches the goal around 1 in 30 episodes.

4.1.1 Analysing Trajectories

Figure 2 shows 20 random roll-outs using (a) uniform random actions and (b) random
actions biased by Equations 2 and 3, where the weights of matrix W were drawn from
a Gaussian distribution with zero mean and a standard deviation of 5. Each illustrative
roll-out lasted for 1, 000 steps (though for the experiments, we limited episode length to
500). This clearly illustrates the value of the approach. When taking uniform random
moves none of the roll-outs reached the goal and therefore, in the standard mountain
car reward scheme, would each have a value of -1000 (-1 for each step).



The biases introduce a more directed policy: sometimes this is even worse than the
uniform policy but sometimes it is much better, and plot (b) shows several trajectories
reaching the goal.

4.1.2 Results

Table 1 shows three sets of results based on the roll-out bias. Each roll-out ran until a
terminal state was reached. Uniform roll-outs perform worst, with a mean of 497 and
only 4 successes out of 100. The fast evolutionary method (Fast-Evo) reaches the goal
in all but one case. From the 100 fast evolutionary runs we saved the bias matrix W
with the best result and performed 100 trials with this Pre-Evolved bias. This gave the
best result with a mean of 99 and no failures.

Figure 1: A depiction of the mountain car reinforcement learning benchmark. The
objective is to get to the top of the hill on the right, but the force of the engine is
insufficient to directly overcome gravity. To solve the problem (depending on the start
state) it is usually necessary to accelerate away from the goal and up the left hill before
accelerating toward the goal.

Figure 2: Random roll-outs through the two-dimensional state space (position: hori-
zontal, velocity: vertical) of the Mountain Car problem: (a) uniform random roll-outs
are unlikely to reach the goal and wander through the state-space with no purpose. (b)
biased roll-outs encourage more purposeful trajectories through state space, some of
which may reach the goal. The set of goal states is shown as the hatched area to the
right of each plot.

.



Table 1: Mean scores and standard errors for each method based on 100 trials each. The
score is the number of steps taken to reach the goal state, so lower scores are better.
Each episode was terminated after 500 steps, so the worst possible score is 500. An
episode was deemed successful if it found the goal in under 500 steps.

Roll-out Mean Score (s.e.) Successes
Pre-Evolved 99 (2.8) 100

Fast-Evo 233 (13) 99
Uniform Random 497 (1.8) 4

4.2 Space Invaders
Space invaders was released by Taito in 1978 and is one of the classic arcade games
of all time, taking gameplay to new levels. There is still significant interest in de-
veloping better versions of this type of game, as evidenced by the highly playable
and commercially successful Space Invaders Extreme published by SquareEnix for
the Sony PlayStation Portable (PSP). The original ROM code is available on line and
can be played using the Multi Arcade Machine Emulator (MAME). We encourage the
interested reader to try this: the original game is superior to all of the clones we have
found on the Web.

Suitable MCTS agents could be used to play-test variations of these games to assess
the difficulty of each level and also to feed into the fitness function when automatically
evolving new variants. However, in this paper we use the game as an initial benchmark.

Figure 3 shows a screenshot with an MCTS software agent playing the game. This
version has the following features:

• The same number of aliens as the original game: 55 arranged in 11 columns, 5
rows.

• Similar movement patterns. On each tick of the game loop just one alien is
moved, each missile is moved, and the player cannon is moved. This leads to
the dog-legged movement pattern that can be observed in the original game, and
naturally leads to the effect of the aliens moving more quickly as more are shot -
with extremely fast movement when just one alien is left. Note that many clones
of the game ignore this feature and move the aliens together in lock-step.

• Currently there are no alien missiles: the game is over either when an alien lands
(reaches the bottom of the screen) or when all the aliens have been shot.

• The aliens are of three types (as with the original game) differing only in the
score for shooting each one: scores are 10, 20, 30 for cyan (bottom two rows),
magenta (next two rows) and blue (top row) respectively.

• No alien flying saucers along the top. In the original game these were worth
between 50 and 300 points, and one strategy involved shooting out some middle
columns in order to ensure a clear shot at the flying saucers. Our version is
currently missing these.



Despite the limitations compared to the original game, the version used in this paper
is nonetheless an appropriate challenge for the MCTS players under study. Actually,
the game required some tuning in order to make the difficulty suitable for clearly
distinguishing between weak and strong players. We did this by slowing down the
speed of the player’s missiles1, and by lowering the starting point of the block of
aliens. The latter difficulty adjustment happens in the original game, with the aliens
starting lower down as the levels progress. This means they have to be cleared in a
more constrained order to prevent them from landing.

Here the problem of constructing suitable features is much more complicated than
for the mountain car problem. There are many elements to good Space Invaders
strategy, and sometimes it is desirable to shoot away the end columns, but on other
occasions emergency measures are needed and to avoid immediate death it is necessary
to shoot away the aliens closest to landing. After some agonising over the best choice
of features we made some initial experiments with just a single feature! We call
this nearest edge column displacement and calculate it as follows. First, we find the
minimum (leftmost) and maximum (rightmost) x-coordinates of the set of aliens. We
then pick the one closest to the player’s missile cannon and subtract the x-coordinate
of the cannon.

The fact that this worked rather well was a surprise, but provides interesting insight
into the nature of biasing roll-outs for MCTS. The fact is that MCTS is already a
powerful adaptive algorithm, and the roll-out bias is just needed to nudge it into more

1Only one player missile can be fired at a time so this limits the rate at which aliens can be shot, and
increases the punishment for missing, since the player must wait until the missile has left the top of the
screen before firing the next one.

Figure 3: A Space Invaders game in progress. The aim of this is to shoot all the alien
invaders before they land. In this cut-down version there are no bases and the invaders
do not drop missiles. Nonetheless when play-testing the game we found that clearing
the level required a reasonable level of shooting skill and also that a suitable strategy
be employed such as shooting away the end columns first. In the depicted game the AI
player has made the mistake of shooting away too many of the central aliens, and the
aliens look set to land.



interesting regions of the search space. It may be unnecessary for the roll-out bias to
be especially clever.

There are six possible actions, formed by the cartesian product of the movement
actions {left, dontMove, right} and the firing action {dontShoot, shoot}. Since there is
only one feature this leads to 6 weights to learn in the matrix W .

4.2.1 Results

We tested a number of approaches. Given the simplicity of the parameters to learn, we
were able to include a hand-coded set of parameters. The intuition behind these is to
bias the roll-outs in order to move to the closest end column most of the time, firing
occasionally.

When designing the roll-out bias by hand we also observed a frustrating aspect of
this process: although the roll-outs were biased, the behaviour of the agent very often
failed to reflect this. The reason for this is that the actions involving more movement
may not necessarily lead to better scores, and hence may not be selected at the root
level.

In order to force the effect of the bias we also created an option of adding the bias
directly into the recommendation policy (i.e. the move actually chosen to play). We
refer to this as µ + Q action selection. We were also interested to see the effects of
not using MCTS at all, but simply playing uniform random moves, or random moves
according to the hand-coded bias.

Each roll-out ran to a maximum depth of 50 from the root or until the end of
the game, whichever condition was met first. This meant that every move in the
game required a maximum of 10,000 game-ticks to be simulated; in our simulator
this achieves real-time performance at 50 frames (actions) per second.

Table 2 shows the mean and standard error of these variations. The difference in
scores between methods is significant (t-test, p = 0.01) if separated by a horizontal line.
The MCTS approaches are described by the roll-out policy and the recommendation
policy. The biases are: Qhand: hand-designed, Qevo: evolved for each of the 100 trials
using Algorithm 1 and Qprevo: a fixed high scoring bias matrix selected from the 100
trials of the Qevo method. The Qevo approach sometimes (about 5 - 10% of the time)
obtains the maximum score of 990; we just selected an arbitrary one of these solutions
to fix the Qprevo bias.

The results are interesting. The first thing to note is that the non-MCTS methods
perform poorly: clearly it is not enough just to make uniform or biased random moves.
Secondly, the best MCTS approach was the hand-coded one with action selection bias.
Interestingly, evolution was able to find some good solutions, but not on every run
(remember here that an evolutionary run corresponds to a single game being played).
The high performance of Qprevo is very encouraging.

5 Conclusions
This paper introduced a novel fast evolutionary algorithm for adapting Monte Carlo
Tree Search. The algorithm has an important role to play in real-time control problems



Table 2: Mean scores and standard errors for each method based on 100 games each.
The maximum possible score is 990. The minimum possible score is zero.

Roll-out Action selection Mean Score (s.e.)
Qhand µ+Qhand 953 (20)
Qprevo µ 885 (11)
Qhand µ 877 (17)
Qevo µ 683 (19)

Uniform Random µ 674 (16)
Qevo µ+Qevo 593 (23)

— Uniform Random 127 (5.1)
— Biased Random Qhand 119 (6.2)

and video games where uniform random roll-outs may be uninformative. To counter
this the evolutionary algorithm is used as a source of roll-out policy control vectors
to encourage more decisive simulations that explore more diverse parts of the state
space. When it works this enables the MCTS algorithm to work with more informative
statistics.

We tested the algorithm on the Mountain Car RL benchmark, and on a reduced but
interesting version of space invaders. The algorithm learns extremely quickly and can
adapt the roll-outs to great effect during the playing of a single game. The estimated
best control-vectors can also be used to fix the bias for a set of runs, a process we call
pre-evolving the bias, and this led to good results on both problems under test.

So far the algorithm has been learning a small number of parameters — just six
in each case, yet appropriate setting of these was sufficient to significantly improve
performance on both test problems. Future work includes more thorough testing of
the method, including cases involving complex feature sets with large numbers of
parameters to tune.

Given the fact that simple features can lead to significant performance boosts, and
the fact that they can be evaluated so rapidly, this suggests that GP could work well for
automated feature construction.

References
[1] A. Alhejali and S. Lucas, “Using Genetic Programming to Evolve Heuristics

for a MonteCarlo Tree Search Ms Pac-Man Agent,” in IEEE Conference on
Computational Intelligence and Games, 2013, pp. 65 – 72.

[2] A. Benbassat and M. Sipper, “EvoMCTS: Enhancing MCTS-Based Players
through Genetic Programming,” in IEEE Conference on Computational Intelli-
gence and Games, 2013, pp. 57 – 64.

[3] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A Survey of Monte



Carlo Tree Search Methods,” Computational Intelligence and AI in Games, IEEE
Transactions on, vol. 4, no. 1, pp. 1–43, 2012.

[4] M. Cook and S. Colton, “Multi-faceted Evolution Of Simple Arcade Games,” in
Computational Intelligence in Games (CIG), IEEE Conference on, 2011, pp. 289
– 296.

[5] M. Cook, S. Colton, A. Raad, and J. Gow, “Mechanic Miner: Reflection-Driven
Game Mechanic Discovery and Level Design,” in Computational Intelligence in
Games (CIG), IEEE Conference on, 2013, pp. 284 – 293.

[6] S. Lucas, “Investigating learning rates for evolution and temporal difference
learning,” in Computational Intelligence and Games, 2008. CIG ’08. IEEE
Symposium On, Dec 2008, pp. 1–7.

[7] F. Maes, D. St-Pierre, and D. Ernst, “Monte Carlo Search Algorithm Discovery
for Single-Player Games,” Computational Intelligence and AI in Games, IEEE
Transactions on, vol. 5, no. 3, pp. 201–213, 2013.

[8] K. Q. Nguyen and R. Thawonmas, “Monte Carlo Tree Search for Collaboration
Control of Ghosts in Ms. Pac-Man,” Computational Intelligence and AI in Games,
IEEE Transactions on, vol. 5, no. 1, pp. 57–68, 2013.

[9] T. Pepels and M. Winands, “Enhancements for Monte-Carlo Tree Search in
Ms Pac-Man,” in Computational Intelligence and Games (CIG), 2012 IEEE
Conference on, 2012, pp. 265–272.

[10] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Bandits all the way down: UCB1
as a simulation policy in Monte Carlo Tree Search,” in Computational Intelligence
in Games (CIG), 2013 IEEE Conference on, 2013, pp. 81–88.

[11] D. Robles, P. Rohlfshagen, and S. M. Lucas, “Learning Non-Random Moves
for Playing Othello: Improving Monte Carlo Tree Search,” in Proc. IEEE Conf.
Comput. Intell. Games, Seoul, South Korea, 2011, pp. 305–312.

[12] S. Samothrakis, D. Robles, and S. Lucas, “Fast Approximate Max-n Monte Carlo
Tree Search for Ms Pac-Man,” Computational Intelligence and AI in Games,
IEEE Transactions on, vol. 3, no. 2, pp. 142–154, 2011.

[13] D. Silver, R. S. Sutton, and M. Müller, “Sample-Based Learning and Search with
Permanent and Transient Memories,” in Proc. 25th Annu. Int. Conf. Mach. Learn.,
Helsinki, Finland, 2008, pp. 968–975.

[14] R. Sutton and A. Barto, Introduction to Reinforcement Learning. MIT Press,
1998.

[15] J. Togelius and J. Schmidhuber, “An Experiment in Automatic Game Design,”
in IEEE Symposium on Computational Intelligence and Games, 2008, pp. 111 –
118.


	Introduction
	Related Research
	Fast Evolutionary MCTS
	Biasing Rollouts

	Test Problems
	Mountain Car
	Analysing Trajectories
	Results

	Space Invaders
	Results


	Conclusions

