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Abstract—Real-time games often require a combination of
long-term and short-term planning as well as interleaved plan-
ning and execution. In our previous work, we introduced a
hybrid planning and execution approach, in which high-level
strategical planning is performed by a Hierarchical Task Network
Planner and micro-management is done through Monte Carlo
Tree Search. We use evaluation functions that represent weighted
sums of selected game features as an interface between the two
hierarchy levels.

In this work, we present a way of automatically evolving
the weights of these evaluation functions in order to improve
the efficiency of the execution of high-level tasks. We compare
the agent using the evolved evaluation functions with the one
using manually created evaluation functions against state-of-the-
art controllers in the Real Time Strategy game environment
microRTS.

I. INTRODUCTION

Real Time Strategy (RTS) games represent challenging
simulation environments for many other real-time planning
problems. An agent acting in such an environment needs to
create a plan within a short amount of time while working
with a large search space. Additional challenges are non-
determinism coming from the players’ actions, as well as the
environment itself, dealing with heterogeneous units, and – in
most cases – partial observability.

However, despite these uncertainties, the agent working in
such an environment is usually required to follow a long-term
plan or a high-level strategy and react to changes adapting its
behavior on the micro-management level. Thus, in order to
stay reactive it needs to constantly monitor the environment
and interleave planning and execution.

One of the approaches that has proven to work well on the
micro-management level in large search spaces is Monte Carlo
Tree Search (MCTS) and its variations. These approaches have
been used in multiple game environments [1]–[3]. However,
due to a high number of units that an agent controls in an RTS
game and the number of actions that each unit can execute,
the resulting high branching factor and the limited computation
time usually allow MCTS to plan only a few steps ahead. For
that reason, MCTS – at least when dealing with actions on a
unit level – cannot be used for strategical long-term planning.

On the other hand, planning approaches can be used for
long-term planning. Specifically a Hierarchical Task Network
(HTN) planner can be used to create plans in a similar manner
to human thinking: decomposing a high-level task into sub-
tasks until reaching a certain level of action granularity and
providing a plan as a sequence of actions. However, again,
due to large branching factors when dealing with unit actions
and the high costs derived from the manual design of the
task network, a (HTN) planner is not suitable to be used
for unit micro-management. Instead, it can be used on an
abstract high-level. Another disadvantage of using a planner
creating detailed long-term plans with micro-actions is the
fact that due to the high dynamics of a game environment,
the plan is very likely to fail during its execution requiring
a new plan. In contrast, MCTS does not create a long plan
but its flexibility and reactive capabilities allows it to make
appropriate decisions at each time step, returning only one
action that is considered best in the current state.

Combining the advantages of both an HTN planner and
MCTS, we have introduced a hybrid approach in our previous
work [4]. The hybrid approach uses an HTN planner for high-
level planning and MCTS for micro-management. The tasks
produced by the planner guide the action selection of MCTS
through evaluation functions. Thus, instead of saying how a
task should be executed, we describe what should be optimized
by MCTS in order to finish the task. That way, the agent is
able to stay reactive to small changes in the environment using
MCTS to make decisions in every step considering the current
game state and the current task. Additionally, a monitoring
system detects failures on the higher level and triggers a re-
planning whenever it is required.

Initial experiments of the hybrid approach in the research
environment microRTS1 [5], [6] have shown that when using
different evaluation functions for distinct tasks the agent
shows emergent behaviors. Additionally, the agent was able to
follow long-term plans while staying reactive to the opponent’s
actions and changing its high-level strategy, if needed.

However, the first experiments also indicated that changing
the evaluation functions that represented the high-level tasks

1microRTS: https://sites.google.com/site/microRTSaicompetition
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might have a big impact on the agents behavior. Every task’s
evaluation function was a weighted sum of sub-functions that
optimized different values. For example when attacking the
opponent, the agent should 1) maximize the health points
of friendly units while 2) minimizing the distance to the
opponent’s base as well as 3) minimizing the health points
of the opponent’s units. When changing the weights assigned
to these 3 sub-functions, the agent would show different levels
of aggressiveness.

Finding the right balance between the weights manually
turned out to be a difficult task (and led to subjective results).
For that reason, in this work, we propose using an Evolu-
tionary Algorithm (EA) to learn the optimal weights for each
task’s evaluation function. We compare the agent using the
learned weights with the one using the initial manually defined
weights testing both against multiple benchmark opponents in
microRTS.

The rest of the paper is structured as follows: Section II
describes related work and Section III gives a more detailed
insight into the hybrid approach. Section IV describes the
application of an Evolutionary Algorithm to the weights of
the Hybrid Approach. Section V gives insights into the exper-
imental work and its results. Section VI concludes with our
findings and proposes possible future work.

II. RELATED WORK

Over the last decade, multiple works have explored Monte
Carlo techniques in several RTS game environments. The
work described in [7] introduced MCPlan which was using
an abstract state space and MCTS for the strategical level
in OpenRTS. This work has shown promising results in RTS
games.

[8] used the Upper Confidence Tree (UCT) approach in
StarCraft. Using UCT for the tactical battle layer, this work
implemented multiple additional systems for the strategi-
cal and economical decision making as well as for micro-
management of units.

Similarly, [9] used UCT for the tactical layer in the game
Wargus dealing with abstract game states. This approach was
reasoning about groups of units while the micro-management
of single units was taken care of by the game engine.

Further works that have explored UCT approaches in Star-
Craft are [10] and [11]. In [10], the vanilla version was
extended to a UCT Considering Duration (UCTCD). It was
used for tactical movement and was able to outperform the
built-in AI of StarCraft. However, it was not able to perform
well when dealing with a high number of units.

The work described in [11] outperformed the previous
work even for big numbers of units by abstracting the search
space. Instead of dealing with micro-actions of single units,
it implemented more complex scripts which were assigned to
groups of units.

In a similar way, [12] used MCTS for army maneuvering in
StarCraft. It dealt with abstract game states and an abstracted
high-level forward model for action simulation. Additionally, it
used abstract evaluation functions for MCTS. Although, this

approach was not able to search deep enough using MCTS
and thus could not outperform the built-in AI of StarCraft,
it has shown that abstracting the search space could provide
meaningful actions while decreasing the branching factor.

The works described in [13], [14] have compared multiple
Monte Carlo approaches in microRTS specifically. All ap-
proaches were used on the micro-action level. These works
have shown that the sampling strategy naiveMCTS outper-
forms algorithms such as UCT or Alpha-Beta search, espe-
cially when dealing with large branching factors. For that
reason, for both this and our previous work [4], we use
naiveMCTS. Later, the vanilla version of naiveMCTS was im-
proved by guiding the search through a pre-learned probability
distribution of unit actions as described in [15]. This version
outperformed the original naiveMCTS agent.

Outside of RTS games, MCTS was also used in the General
Video Games Playing environment as described in [2]. Here,
an agent was developed to play any of the games provided by
the framework. In order to optimize the agent’s performance,
this work searched for optimal parameters of MCTS such as
the search depth or the exploration factor. Similar to the work
presented in the present paper, the performance of MCTS
is meant to be optimised by tweaking evaluation functions
instead of its parameters. Agents with adapted parameters
performed similarly or better than the vanilla version of the
algorithm in different games.

Planning techniques have also been used in RTS game en-
vironments. [16] introduced Adversarial planning with HTNs
(AHTN) wich combined game tree search and HTN planning.
As opposed to classical game tree search, this work allowed
for simultaneous and durative actions dropping the assumption
of a turn-based game. All AHTN agents with an HTN depth
of more than 1 outperformed previous benchmark agents in
microRTS.

The work described in [17] proposed a different hierarchical
approach combining Hierarchical Adversarial search on high
levels with either Alpha-Beta search or Portfolio search for
micro-actions. This approach outperformed agents that used
only Alpha-Beta search, Portfolio Search or UCT when deal-
ing with more than 72 units in SparCraft (a StarCraft combat
simulator)

Multiple approaches have been abstracting the action space
by using scripts that assigned actions to units following
pre-defined rules. [18] introduced the Puppet Search which
forwarded the game state through scripts and limited the search
space exposing only a few choice points to the search algo-
rithm. This approach performed similar to the best benchmark
agent in StarCraft. Later, it was extended by a convolutional
neural network (CNN) [19]. The CNN was used for script
selection while the low-level tactics was left to game tree
search. This approach won the microRTS competition in 2017
as the StrategyTactics agent.

Further works that used scripts include the winner of the
2018 microRTS competition Tiamat [20], [21] and one of the
top scoring agents Capivara [22]. [20] proposed assigning the
same scripts to units of the same type. Building up on this



idea, [23] explored the assignment of different scripts to sub-
sets of units in combination with naiveMCT. Here, the scripts
restricted the actions available to certain units when searching
with naiveMCTS. In [21], the rule-based scripts were used to
generate a larger set of strategies by changing the parameter
values of the rules. Afterwards, an evolutionary algorithm was
used to find an optimal subset of the generated strategies.
In [24] new scripts were created from the existing ones using
a voting system.

Evolutionary approaches have been applied to different
parts of MCTS and tested in multiple game environments
previously. [25] evolved a new default policy to be used
in MCTS (see Section III) in the game Ms Pac-Man. The
evolved agent outperformed both a random and a hand-crafted
controller.

A particularly relevant previous work to the one presented
in this paper is [26]. Their authors evolved the evaluation
functions used to evaluate board states in the game Reversi.
It implemented a full Genetic Algorithm that evolved all parts
of the evaluation functions (including the arithmetical and
logical operators). In contrast to this, we keep these parts
of our evaluation functions static (they are manually created
according to our expert knowledge and the requirements of a
high-level task) and evolve the weights only (see Section III).
This work has shown that evolving evaluation functions can
greatly improve the performance of an MCTS agent.

Another approach that evolved the weights used in evalu-
ation functions of MCTS is described in [27]. However, in
contrast to other approaches that performed the evolution and
the evaluation of individuals offline (as we do), [27] proposed
integrating the evaluation of individuals’ fitness with each
iteration of the MCTS approach. This approach has shown
that it is possible to improve the agent’s performance during
one single game.

III. HYBRID PLANNING AND EXECUTION

A. Hybrid Planning

In contrast to classical planning techniques where a goal is
reached by searching through the space of states, Hierarchical
Task Network Planners provide a way of solving a goal task by
decomposing it into subtasks [28], [29]. That way, the search
space can be decreased early in the search process removing
branches in the task network that cannot be used to decompose
the goal task given the current game state. However, manual
creation of task networks is very time-consuming and requires
good expert knowledge. Furthermore, using an HTN planner
for strategical and tactical planning for multiple units in RTS
games still leads to high branching factors towards the low
levels of a decomposition tree. Additionally, due to the high
dynamics of RTS games, a detailed long-term plan created by
an HTN planner is likely to fail early in the execution phase.
This leads to high re-planning frequencies and diminishes the
advantage of long-term panning.

On the other hand, Monte Carlo Tree Search techniques
have shown to perform well in large search spaces such as
RTS games, even when planning for a high number of units

(see Section II). However, usually, they need to run every
time that a decision needs to be made returning only one
currently optimal action. Thus, they cannot incorporate long-
term strategical planning.

The hybrid planning approach is based on the idea of com-
bining the advantages of both – HTN planners and MCTS [4].
This is done by using an HTN planner for strategical planning
with abstract high-level tasks, defining each task in the final
HTN plan as an evaluation function and using this function for
state evaluation by MCTS. This way, each evaluation function
implicitly describes what should be optimized when executing
the corresponding HTN task, instead of explicitly defining how
to execute this task. Thus, there is no need for developers to
manually create rules or commands for each unit’s behavior.

For example, when executing the HTN task CollectRe-
sources, the agent should maximize the number of resources.
However, usually an agent should optimize multiple poten-
tially conflicting objectives. Additionally to the collection of
resources, it should try to stay alive by maximizing the health
points of friendly units making them avoid enemy units on
their way. Therefore, a task’s evaluation function needs to
take into account all objective functions required for this
task balancing their importance through weights. Formally,
an evaluation function fτ of an HTN task τ is defined as
a weighted sum of N evaluation functions fj that optimize N
different objectives xj . Each objective’s function is multiplied
by the corresponding weight wj as shown in Equation 1.

fτ =

N∑
j=1

wjfj(xj) (1)

This evaluation function is then passed to MCTS to find
optimal unit actions. In general, combining tree search and
Monte Carlo simulations, MCTS searches for an optimal
solution of a Multi-Armed-Bandid (MAB) problem [30]. Fol-
lowing a tree policy, it starts with a root node expanding
an action a. A common tree policy is Upper Confidence
Bound (UCB1) [31] which balances between exploration and
exploitation of actions and is shown in Equation 2. Each node
stores the number of times that a node s was visited is stored
as N(s) on each node, as well as the number of times that
a certain action a was applied in this node N(s, a), and the
average reward Q(s, a) gained from its visit.

a∗ = arg maxa∈A(s)

{
Q(s, a) +K

√
ln N(s)

N(s, a)

}
(2)

After applying the tree policy, the expansion step adds
another node to the tree when a node is visited from which
not every action has been explored. After the expansion step,
a Monte Carlo simulation (or rollout) runs from a leaf node
of the tree following a default policy until reaching another
terminal criterion. This policy (in its default version) selects
actions uniformly at random. The state reached at the end of
the rollout is then evaluated using an evaluation function, in
our case fτ . The result of fτ is back-propagated to visited



nodes in this iteration, updating their statistics. Once the
budget time is consumed, a recommendation policy selects
the best action a∗ to play it in the game.

In case of an RTS game, the recommendation policy needs
to select an optimal combination of unit actions. Thus MCTS
is dealing with a Combinatorial MAB (CMAB) problem. An
overview of CMAB sampling techniques is provided in [14]
and one of the most effective techniques has shown to be
naiveMCTS [13]. This approach (naively) assumes that the
reward distribution of multiple units’ actions can be approxi-
mated as the sum of each unit’s reward. This allows breaking
the CMAB problem into one global MAB problem and a local
MAB problem for each unit.

The approach uses an ε-greedy policy π0 (where ε is
the probability for exploration and 1 − ε for exploitation)
deciding whether to exploit the local MABs or to explore
the global MAB. In case of exploration, it uses an ε-greedy
policy πl independently selecting an action for each unit and
adding it to the global MAB. In case of exploitation, it uses
a pure greedy policy πg selecting an action combination.
naiveMCTS has shown to outperform sampling techniques
such as Upper Confidence Tree. For that reason, we are using
its implementation in this work as described in [13].

B. Interleaved Planning and Execution Architecture

In order to stay reactive while following the long-term plan
provided by the HTN planner, the agent needs to monitor
the game environment and interleave high-level planning and
execution. Figure 1 shows the architecture of the hybrid agent.
The Agent Controller represents the interface between the HTN
planner, MCTS and the game environment microRTS.

In the beginning of a match, the Agent Controller forwards
the current game state to the HTN planner. Using the pre-
defined planning domain (task network) the planner creates an
abstract high-level plan such as CollectResources, BuildAnd-
Defend, AttackOpponent and returns this plan as an ordered
list of tasks to the Agent Controller. Taking the first task of
the plan – CollectResources – which contains a corresponding
evaluation function, the controller forwards the function to
MCTS. Using this function, MCTS takes care of the micro-
management of the task. It computes the optimal player action
(combination of actions of all free units) and returns it to the
controller which then forwards it to the game environment.
The actual execution of the player action is then performed
by microRTS itself.

In the following frames (time steps), the agent checks
whether any of the units can execute any action. If this
is possible, the controller first checks whether the currently
executed task (CollectResources) is still valid given the current
game state. This check allows the agent to react to changes in
the game world. For example if the opponent attacks first, our
agent will stop collecting resources and will try to prevent the
attack. In this case, it will report a plan failure to the HTN
planner and trigger re-planning. However, if the task is still
valid, the agent will then check whether it has been reached –
thus whether enough resources have been collected. The end
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Fig. 1: Architecture of the hybrid planning and execution
approach for microRTS.

of each task is defined through post-conditions. Depending on
the result of this check, the agent controller will either continue
using the current evaluation function or it will switch to the
next task in the high-level plan (also checking for its validity)
providing a new evaluation function.

First experiments of the hybrid approach have shown that
the combination of the two planning approaches allows the
agent to stay reactive while showing emergent unit behaviors
when executing different high-level tasks [4]. Furthermore,
tweaks of the subfunctions weights had a big impact on the
behaviors. However, balancing these weights turned out to be
a difficult task. For that reason, we propose evolving these
weights for every task separately in order to learn evaluation
function that best represent HTN tasks and allow MCTS to
complete the task in shortest time.

IV. EVOLUTION OF WEIGHT VECTORS

As already mentioned in Section III, the hybrid planning
approach uses evaluation functions as an interface between
the HTN planner and MCTS. Each evaluation function is a
weighted sum of subfunctions that optimize different objec-
tives. It is possible that two different tasks have the same
set of subfunctions with different weights prioritizing some
objectives over the others. However, it is difficult to balance
these weights manually in such a way that the resulting
evaluation functions allow MCTS to achieve the corresponding
HTN tasks as fast and precisely as possible.

In order to learn the weights, we propose using an evolu-
tionary algorithm. We represent an individual i by the weight
vector of the corresponding evaluation function fτ which is
described in Equation 1. Each gene gj ∈ i represents the
weight wj ∈ [0.0, 1.0]. The initial population is created with
each weight set randomly to a value between 0.0 and 1.0.
For genetic operators, we use uniform crossover between two
neighboring individuals. Here, the values of each gene pair
can be switched with a 50% probability. Additionally, we use



mutation with each gene’s value having a 50% chance of being
re-set to a new value between 0.0 and 1.0.

We aim to find weights that allow achieving the correspond-
ing task τ in the shortest time. For that reason, we propose
using the difference between the maximum allowed time of a
match tmax and the time that an individual i uses to finish the
task ti as a measurement of an individual’s fitness, which is
to be minimized as shown in Equation 3. The fitness F (i) is
measured for each match that an individual plays. Note, that
ti starts with the execution of the task and ends when the task
is either successfully reached or fails.

F (i) =

{
−(tmax − ti) if task τ reached
(tmax − ti) if task τ failed

(3)

Since we are minimizing the overall time that an individual
needs to finish a task, we take the negative value of the
difference for successful matches and the positive value for
unsuccessful matches. This way, the individuals that reach a
task fastest get higher rewards and those that fail fastest get
higher penalties.

As described in Section V-A, each individual is evaluated
through multiple matches on multiple maps against multiple
opponents. Trying to optimize (minimize) the individual’s
fitness for all maps and opponents, the total fitness of an
individual FT (i) is computed as the difference between tMAX

(the maximum total time allowed for all matches on all maps
against all opponents) and the sum of fitness values of all (M )
matches F (i) as shown in Equation 4. This way, starting with
the maximum time that an individual could possibly require
to achieve a task, we are optimizing towards 0.

FT (i) = tMAX −
M∑

match=1

F (i) (4)

However, whether or not the execution of a task starts
depends on the effectiveness of preceding tasks. For example
an agent cannot build anything if it failed to collect enough
resources. For that reason, it is important to evolve the
evaluation functions in the order that the tasks would usually
be scheduled (for example first the task CollectResources,
then BuildAndDefend, and then AttackOpponent). In case a
task does not even start its execution, we cannot evaluate the
individual’s fitness and repeat the match.

We follow a (µ + λ) strategy (with µ = λ) with elitism
keeping the best solutions of a population. Additionally, we
save the µ best solutions found so far in an archive.

V. EXPERIMENTS

A. General Experiment Setup

As already described in [4], we have created a simple
HTN domain using the following 4 primitive tasks: Collect-
Resources, which allows the agent to collect resources in the
beginning of a game. BuildAndDefend is usually scheduled
next making the agent build up his military force while staying
close to and defending his own base. PreventAttack is used

in case the agent controller detects an opponent’s attack. In
this case, the agent concentrates all his forces on destroying
the attacking units. Finally, AttackOpponent is scheduled to
perform an assault.

With the 4 tasks, the agent would use one of the 4
corresponding evaluation functions or individual types. The
length of each individual type varied depending on the num-
ber of objective subfunctions of the corresponding tasks as
follows: 7 for CollectResources, 15 for BuildAndDefend, 14
for PreventAttack, and 14 for AttackOpponent. In the initial
experiments, we have noticed that the efficiency of our agent
would change depending on the map size when using the same
weight vectors for all map sizes. For example, a weight vector
for the AttackOpponent evaluation function that would lead
to a high winning rate on a small map would not make the
agent aggressive enough on a bigger map. For that reason,
we decided to evolve the 4 evaluation functions for small
maps (8 × 8 cells), mid-size maps (16 × 16 cells), and big
maps (24 × 24 cells and bigger) separately. That way, we
have evolved 12 different evaluation functions in the current
experiments.

Furthermore, we have selected different types (structures)
of maps in order to optimize the agent’s behavior in different
environments. All maps provided by microRTS are symmetri-
cal. Following the rules of the microRTS competition [5], the
maximum time of a match was limited according to the map
size as follows: 3000 frames for small maps, 4000 frames for
mid-size maps, 5000 frames for big maps with a width of 24
cells, 6000 for 32 cells wide maps, and 8000 for maps of 64
cells width, and 12000 for bigger maps.

In case the agent did not start executing the task-to-learn in
a match, the match was repeated. However, knowing that the
HTN domain would never lead to some tasks to be scheduled
on certain maps, these maps were let out of the evolution of
these tasks. For example, the task CollectResources would not
be scheduled on maps where the players started the game with
enough resources already collected. Some small maps, on the
other hand, required a quick assault, so that the agent would
never execute the task BuildAndDefend, attacking with worker
units only.

For the naiveMCTS part of our agent, we have used the
following parameters that are set as default parameters by the
naiveMCTS agent provided with microRTS: ε-greedy policies
for π0, πl and πg with ε0 = 0.4, εl = 0.3 and εg = 0 (for
more details see [13]). The maximal tree depth for MCTS
was 10, the maximal simulation time 100 frames, and the
playout policy was RandomBiasedAI. The RandomBiasedAI
agent is provided with the microRTS framework and its action
selection is biased towards non-movement actions (collect,
attack and return a resource) rather than movement actions.

Agents from the first experiment described below were
trained against Tiamat [20]. The second experiment also used
SCVPlus [24] and a pure naiveMCTS agent which was using
exactly the same parameters as our agent and the SqrtEF
evaluation function throughout the whole match as described
in [13].



Afterwards, we have compared the evolved agents described
below against the Initial agent that was using manually-crafted
weight vectors. For this comparison, each agent played 50
games (25 on each player side) against each of the 3 opponents
from the training set as well as each of the additional 3
test opponents: Capivara [22], AHTN [16], and StrategyTac-
tics [19] on each of the maps used during the evolution. We
have measured the winning percentages shown in Table I by
summing the number of victories of the row-player against the
column-player and half of the number of draws, dividing the
sum by the number of matches and multiplying the result by
100.

B. First Experiment

In our first experiment, we have trained our agent against
the winner of the 2018 microRTS competition – Tiamat [20].
During the evolution, each of the 12 evaluation function
was evolved over 20 generations with a population size of
µ = λ = 10 individuals, a mutation probability of 50% and a
crossover probability of 50%. During the first training, we let
each individual play 6 matches (3 on each player side) against
Tiamat only on each map of the corresponding size.

Having 10 final individuals of each task’s evaluation func-
tion in the corresponding archives, we have selected the ones
with the lowest score from each archive (the most optimal
ones). The combination of these individuals trained against
Tiamat is represented as IT20 in Table I.

Afterwards, we repeated the first setup against Tiamat.
However, we have changed the number of matches that each
individual played to 2 (1 on each player side) and changed the
mutation probability to 20%. With this setup, we evolved 30
generations of each evaluation function. Similarly to the first
setup, we selected the best individuals from each archive for
the test games against the 6 opponents. These individuals are
represented as IT30 in Table I.

From the first experiments, we have noticed that Tiamat
alone was too strong for training. This was especially obvious
when training the AttackOpponent task on mid-size and bigger
maps. In these cases the task started but was never reached
throughout all 20 (30) generations. Thus, according to Equa-
tion 3, the evolutionary algorithm only optimized the time that
an individual used to fail giving smaller penalties for longer
execution trials. It could not reward successful trials.

C. Second Experiment

In order to have better chances of reaching tasks during the
training phase and to train our agent to perform well against
different types of opponents, we have used all 3 agents to
train against in the next experiment (Tiamat, SCVPlus, and
naiveMCTS). Similarly to the first setup, we have used a
mutation probability of 50%, and a crossover probability of
50%. The population size was kept at 10 individuals and each
individual played 3 matches against each opponent.

As already mentioned, we have evolved evaluation functions
in the order that the corresponding tasks would usually be
scheduled. Thus, for each experiment, we first ran a full evolu-
tionary process for CollectResourses, then for BuildAndDefend
and PreventAttack simultaneously and finally for AttackOppo-
nent. This meant that, especially for mid-size and big maps,
the evolution process of all tasks might take multiple hours.
With the fact that the algorithm repeated every match, in
which the agent did not start to execute the task-to-learn, the
evolution process might even take several days. This became
very obvious in the last experiment with 3 opponents to train
against. For that reason, we limited the number of generations
to 10.

After the evolution, similarly to the first experiments, we
have first selected the best individuals from each task’s archive.
The combination of these individuals is represented as IF1

in Table I. Since this combination has shown better results
than individuals from previous experiments, we have tested
further combinations of archive individuals. Therefore, we
have identified groups of related individuals (those with the
same values in the same genes) in each archive. Using this
information, we have taken the best individual of each group
(different from the optimal one used for IF1) and combined
them to be used in the agents IF2 and IF3.

As can be seen in Table I, IF1 – the agent using the
combination of the evaluation functions with the best fitness –
shows the highest performance gain for most maps compared
to the Initial agent. Although, in some cases, combinations
IF2 and IF3 also outperform agents that were trained against
Tiamat only.

D. Results and Limitations

The experiments performed in this work have shown that, in
general, an evolutionary algorithm can generate weight vectors
for evaluation functions that lead to agent performance similar
to and better than the performance of an agent using manually
crafted weights. Although in most cases the agent was not able
to outperform the two best controllers Tiamat and Capivara,
the evolved agents had a performance gain compared to the
initial agent which shows promising results for future work.

However, the biggest limitation of the proposed method-
ology lies in the fact that tasks that are usually scheduled
later in a match (e.g. AttackOpponent) strongly rely on an
optimal execution of preceding tasks (e.g. BuildAndDefend).
If preceding tasks are not executed efficiently enough, the
opponent might gain a great advantage not allowing our agent
to reach or even start later tasks.

This leads to the problem that the algorithm either can not
reward successful matches (it will only penalize matches, in
which the task fails) or that a match has to be repeated (if
the task-to-learn does not start at all). Considering that in the
next match the same agent configuration will be tested against
the same opponent, such a match might have to be repeated
for a very high amount of times. Thus, in order to avoid such
situations, we need a different way to deal with matches in
which the task does not start.



FourBasesWorkers8x8 basesWorkers8x8A
Tiamat SCVplus Naive-

MCTS
Capivara AHTN Strategy-

Tactics
Tiamat SCVplus Naive-

MCTS
Capivara AHTN Strategy-

Tactics
Initial 85 96 90 80 100 98 Initial 51 100 51 17 91 51
IT20 91 86 78 70 100 84 IT20 38 94 57 16 85 72
IT30 80 91 63 60 100 86 IT30 39 100 16 25 65 19
IF1 96 100 96 98 100 100 IF1 74 100 74 29 85 77
IF2 97 100 96 98 100 100 IF2 62 100 73 26 77 79
IF3 86 94 82 82 100 98 IF3 46 99 57 10 96 53

NoWhereToRun9x8 basesWorkers16x16A
Tiamat SCVplus Naive-

MCTS
Capivara AHTN Strategy-

Tactics
Tiamat SCVplus Naive-

MCTS
Capivara AHTN Strategy-

Tactics
Initial 0 98 78 14 98 58 Initial 0 97 64 0 85 37
IT20 0 95 80 27 94 86 IT20 2 68 54 0 57 20
IT30 0 100 99 38 100 94 IT30 10 98 82 0 64 58
IF1 10 99 100 46 100 93 IF1 10 100 96 0 88 63
IF2 6 99 99 32 100 94 IF2 2 100 93 0 98 58
IF3 0 84 32 27 92 41 IF3 4 94 96 2 75 84

TwoBasesBarracks16x16 basesWorkers24x24A
Tiamat SCVplus Naive-

MCTS
Capivara AHTN Strategy-

Tactics
Tiamat SCVplus Naive-

MCTS
Capivara AHTN Strategy-

Tactics
Initial 0 83 57 0 96 2 Initial 0 81 50 0 80 47
IT20 0 59 50 0 69 2 IT20 0 52 50 0 100 48
IT30 2 94 77 0 100 13 IT30 0 48 50 0 98 43
IF1 2 96 73 2 100 16 IF1 0 72 50 0 100 32
IF2 0 93 85 0 96 8 IF2 0 42 50 0 60 10
IF3 0 100 85 0 98 12 IF3 0 54 50 0 94 44

DoubleGame24x24 BWDistantResources32x32
Tiamat SCVplus Naive-

MCTS
Capivara AHTN Strategy-

Tactics
Tiamat SCVplus Naive-

MCTS
Capivara AHTN Strategy-

Tactics
Initial 43 69 50 6 99 0 Initial 0 0 50 0 10 3
IT20 50 72 50 8 68 8 IT20 0 0 52 0 14 18
IT30 50 70 50 0 40 8 IT30 0 0 58 5 28 6
IF1 50 69 50 6 99 0 IF1 0 0 50 0 0 14
IF2 50 70 50 6 96 0 IF2 0 0 52 0 16 10
IF3 48 68 50 4 80 2 IF3 0 0 50 0 8 4

TABLE I: Winning percentage of the row player against the column player. Computed as the sum of victories of the row-player
against the column-player and half of the number of draws, divided by the number of matches and multiplied by 100.

Moreover, with growing map size and difficulty the chances
to achieve any task were decreasing. We assume that with a
higher number of generations the proposed approach could
achieve better results for bigger maps. However, the fact that
tasks had to be evolved in a certain order meant that the total
evolution time was increased a lot. At this points, co-evolution
of tasks might be a better alternative to the sequential evolution
proposed here.

Furthermore, the test games have shown that there are
situations where it is not enough to improve the evaluation
functions. Additionally, the high-level HTN domain needs to
be improved. For example, on the map NoWhereToRun9x8,
our agent struggled winning against Tiamat and Capivara.
This map is the only one where players cannot reach each
other from the beginning of the match because they are
separated by a wall of resources. But they can create ranged
units and shoot the opponent through the wall, which these
two agents always did. However, since our agent was always
maximizing the number of military units of every type during
the BuildAndDefend task, it did not learn to not create melee
units. In this case, a different HTN task could have been
used enforcing the creation of ranged units and penalizing the
creation of other units.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have applied an evolutionary algorithm for
the generation of weight vectors in weighted-sum evaluation
functions. These functions are used by an MCTS approach
to evaluate game states in the game environment microRTS.
MCTS is guided through these evaluation functions to execute
long-term tasks that are scheduled by a high-level HTN
planner. This way, our agent is able to follow long-term plans
while handling micro-management through MCTS and staying
reactive to changes in the environment.

Although the agents evolved in the current experiments were
not able to outperform the strongest state-of-the-art controllers,
most of them showed a performance gain compared to the
initial agent and outperformed other benchmark controllers.
A big limitation of this approach are, however, very long
evolution times. These result through a sequential evolution
of evaluation functions according to a certain task order, the
fact that the evaluation of each individual’s fitness requires
playing multiple matches, and the fact that a match has to be
repeated if the task-to-learn does not start.

Future work involves further experiments with different
evolution parameters. Additionally, due to the long evolution
times when evolving the evaluation functions in a certain



order, co-evolution of evaluation functions of different tasks
seems to be a better option to deliver results faster. Further
improvements of the evolution process might involve a full
Genetic Programming approach evolving not only the weight
vectors but the structure of the evaluation functions as descri-
bed in [26].

In addition to the evolution of the evaluation functions, it
is possible to evolve the HTN domain itself aiming for more
efficient task transitions. For example, evolving the parameters
used for pre- and post-conditions of HTN tasks in a similar
way to the evolution of strategies described in [22]. Finally, the
agent controller might be extended with adapting its behavior
to an opponent’s strategy deciding at run-time which of the
evolved individuals to use.
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