
Evolving a Fuzzy Controller for a Car Racing Competition

Diego Perez, Gustavo Recio, Yago Saez, Member, IEEE, Pedro Isasi, Member, IEEE

Abstract— Computational intelligence competitions have re-
cently gained a lot of interest. These contests motivate and
encourage researchers to participate on them, and to apply
their work areas to specific games. During the last two years,
one of the most popular competitions held on Computational
Intelligence in Games conferences is the Car Racing Competi-
tion. This competition combines the fun of driving to win and
the challenge of obtaining autonomous driving, which is known
as a very difficult problem and faced by a lot of researches from
different perspectives. For this competition, we have developed
a controller with fuzzy rules and fuzzy sets for input and
output, which were evolved using a genetic algorithm in order
to optimise lap times, damage taken and out of track time. The
design of this controller is explained in detail in this article, as
well as the results obtained at the end of the contest.

I. INTRODUCTION

International game competitions have become a very
important meeting point for computational intelligent re-
searchers. In these events, competitors are highly motivated
to win the contest and usually can apply their own research
topics to face the competition challenge.

The controller explained in this article was proposed for
the Computational Intelligence in Games 2008 Car Racing
Competition, where the objective was to develop a controller
able to win races, alone and with other cars on the track. In
the next lines we explore the literature in order to determine
the approaches followed recently in the world of autonomous
driving.

The techniques and the technologies supporting Automatic
Vehicle Guidance (AVG) are an important issue [1]. Automo-
bile manufacturers see automatic driving as a very interesting
product with motivating key features which allow improving
car safety, reduction of emissions and fuel consumption or
optimising of driver comfort during long journeys. This topic
has been addressed by numerous researchers, e.g. [2], [3],
[4], [5], [6], [7], as an engineering problem. Many different
approaches have been studied in recent years and the most
promising ones are being engineered on real prototypes,
i.e., [5], [8], [9], [10], [11] or the well-known DARPA
competition [12].

However, researchers have a long way to go before these
intelligent vehicles, capable of driving in a fully automated
way, are actually available. Most of the work mentioned
before was engineered in real prototypes, involving two main
problems: the costs of buying and modifying a car, and the
time needed for each test. To overcome these constraints we
propose to use car simulators. Today, car simulators are very

The authors are with Carlos III University of Madrid, Av. de la
Universidad 30, Madrid, Spain (contact phone: +34-91-624-8456; email:
yago.saez@uc3m.es).

close to reality, and they allow us to speed up the research
by testing more techniques.

A. Evolutionary computation techniques applied to auto-

mated driving

Our proposal for this task is studying how evolutionary
computation techniques can help in automatic driving. For
this proposal we have collected some work related to evolu-
tionary computation techniques applied to automated driving.

One of the first approaches in this area was carried out
at the Carnegie Mellon University by Sukthankar et al. in
1996, [6]. This work uses reasoning modules which com-
bine high level task goals with low-level sensor constraints.
Those modules are directly dependent on a large number of
parameters, and the setting of these parameters must be done
carefully. As this manual selection is tedious and error prone,
a Population Based Incremental Learning (PBIL), which is
a combination of Genetic Algorithms (GAs) and competitive
learning, [13], is proposed for automatically setting each
module’s parameters.

Therefore, the algorithm will analise what the probabilities
of using a set of rules are depending on each situation.
The evaluation function takes into account different aspects,
such as serious crashes, collisions, wrong exits, distance
completed, etc. For the simulation, the system uses a program
called SHIVA (Simulated Highways for Intelligent Vehicle
Algorithms) which reproduces a microsimulation of vehicles
moving and interacting in a user-defined roadway. The al-
gorithm can influence the vehicle motion sending simulated
commands (steering, accelerate and brake). In addition, the
system provides a perception module responsible for obstacle
detection, positioning, lane tracking, vehicle sensing, etc.
Two years later the PBIL was compared to the GA in this
same framework, [14]. The results of these works were
quite motivating; at the end of experiments the vehicles
automatically entered the test track, completed one lap and a
half and finally took the exit. Although they were not capable
of avoiding collisions with other vehicles, these experiments
showed the potential for intelligence behavior in tactical
driving.

Other interesting work carried out in 1996 by Pyeatt et

al. from Colorado University dealt with simulated race car
driving [15]. In this case a study on autonomous driving
was developed based upon RARS simulator software (also
known as TORCS). This simulator gives information about
the vehicle position, vehicle speed, distance to the current
track segment, curvature of the track, and relative position
and velocity of nearby cars. It also offers the possibility of
controlling the speed and steering of the vehicle.

978-1-4244-4815-9/09/$25.00 ©2009 IEEE 263

This work applied neural networks for learning automatic
driving through the use of inputs such as position, speed,
distance measured till the end of the segment, angle between
the vehicle and the road, etc. This neural network produced a
set of rules which decided when to accelerate, brake or steer.
The results showed that the RARS simulator was adequate
for developing the test framework and that neural networks
were competitive techniques for producing autonomous rac-
ing cars.

In 1998, Bernard et al. from Iowa State University illus-
trated the power of GAs to model driver/vehicle behavior.
In fact, their work determined how fast and safe a given
vehicle model could be driven through a short course without
failure from hitting a cone or lifting the wheels. In this
work they used a simulator that was developed by them. The
GA represents the vehicle movements with the starting and
ending points of the path, and a measure of the position with
the first and second derivatives of the path in a point near
the middle set of cones. The results were very good but they
only reached a near optimal solution due to the constraints
of the genetic representation they used.

In 2004, Floreano et al., [16], imitating strategies observed
in simple insects, used a GA to tune up a neural network
which visually recognises edges, corners and height. This
active vision system acts as an artificial retina, moving and
focusing on important features. It was tested with the open
source simulator Car-World (http://carworld.sourceforge.net)
and the best evolved individuals performed equal to or better
than well-trained human drivers tested on the same circuits.

In 2005, Sun et al. [17], used a GA to optimise the
parameters of a set of Gabor filters in the context of vehicle
detection from images. They tested the proposed framework
on real data with success and improved the performance of
on-road vehicle detection. In the same year another inter-
esting approach was proposed for automated evolutionary
design of driving agents, [18] [19]. This work showed
how GAs can help in the task of designing an agent able
to remotely operate a scale racing car. The agent perceives
the environment from a camera mounted overhead (position,
orientation, velocity, approach angle, distance to the apex and
outside/inside slow down zone). With these perceptions the
agent sends commands to the remote controlled car (forward,
neutral, reverse, left, straight or right). The comparative
analysis established that on long runs the agent’s operated
car was 5% slower than the human operated one.

Working with the evolving weights of a neural network,
Julian Togelius et al. compared, with their own simulator,
that simulated cars with evolved neural network controllers
(in first-person and third-person) [20], [21]. They extended
their work to a more complex case of two cars competing
against each other in the same track at the same time, [22],
using evolutionary strategies to solve the problem of the
co-evolution. Finally, an interesting study which compares
neuroevolution and genetic programming in the same envi-
ronment can be found in [23].

B. Fuzzy logic applied to autonomous driving

The usage of fuzzy systems to manage controllers for
certain devices is widely spread in the literature. The char-
acteristics of them allow a fuzzy perception of the world,
what it is very useful for designing controllers for robots,
machines or vehicles. Usually, a robot may use parameters
as position or distance to move ahead or to raise something
up form the environment, and depends on the exact measure
of its sensors to continue working. Fuzzy logic allows us to
establish non-crispy values to these parameters, so we can
say that the box to take is “on the right”, or that the next
bend is “close” enough to start turning.

An interesting description of how fuzzy logic can be used
in autonomous robot navigation can be found in the works
done by Alessandro Saffiotti in 1993 [24] and 2004 [25].
Furthermore, implementations of these systems have been
done in simulators, as in the work performed by Astudillo et

al. in 2006 [26], where stabilisation and trajectory tracking
were optimised for an unicycle mobile robot, or by Baltes
and Otte in 1999 [27], where a simple heuristic helps the
design of the fuzzy system (rules, input and output sets) in
car-like mobile robots. In this last research the evaluation
was performed both in simulated and real world, stating that
the results are significantly better that the ones obtained with
traditional controls.

Additionally, some research can be found about using
evolutionary computation within fuzzy logic, as Takagi et

al. did in 1993 [28] and Y. Lee et al. in 1994 [29], where
a genetic algorithm determines the shape and position of
the membership functions. Also in the work of Andrea, in
1996 [30], a population of fuzzy rules is evolved through
competition and cooperation, in order to obtain a sub-optimal
fuzzy logic controller for the classical cart-pole problem.

Several works have used both fuzzy logic and evolutionary
computation for the problem of autonomous navigation. For
instance, Tunstel in 1996 [31] used genetic programming for
generating rules for a fuzzy logic controller, that manages the
steering of a mobile robot, or Freeman et al., in 1997 [32],
where a genetic algorithm learns and optimises the defini-
tions of linguistic variables used in the rule system that con-
trols the spacecraft rendezvous process. Furthermore, some
research can be found about using evolutionary computation
and fuzzy logic on autonomous driving, such Hoffmann in
1994 [33], that describes an implementation for a hierarchical
fuzzy controller evolved with a genetic algorithm, and Huang
in 1999 [34], where a neural fuzzy network is used, which
weights are obtained through a genetic algorithm.

II. OBJECTIVES

A. Competition Objectives

This competition is a new edition of the contests taken
place in 2007 [35] and 2008 [36]. The first one, was
organized as part of the IEEE Congress on Evolutionary
Computation (CEC) and Computational Intelligence and
Games Symposium (CIG). The second, was hold during

264 2009 IEEE Symposium on Computational Intelligence and Games

the celebration of the WCCI (World Congress of Compu-
tational Intelligence), where we participated with another
controller [37]. This time, it was held the same year in
the IEEE Symposium on Computational Intelligence and
Games (CIG 2008). The new competition was very similar
to the previous one, where the objective was to design
and develop a controller able to race in a simulator. Some
considerations have to be taken into account, as the fact that
the circuits where the cars will run are, a priori, unknown by
the competitors, and that the races will be performed both
with and without other racers on the track.

B. TORCS Simulator

As we said before, the races will be run in a simulated
environment. As the organizers did in the previous contest,
the software used to hold the competition is TORCS (The
Open Racing Car Simulator). This simulator, formerly known
as RARS, is one of the most used simulators by different
developers and gamers. The following characteristics make
it a good choice for those interested in simulated car racing
or autonomous driving:

• This simulator is written in C++ and can be downloaded
under GPL license from its web page.

• It is available for several platforms: Source code and ex-
ecutables are ready for Microsoft Windows and Linux,
while binaries can be obtained for MacOS.

• There is a big community of users and competitors that
help to maintain the software updated and bug free.

• It provides a high level of realism, and a very reliable
physics system.

• A large quantity of vehicles, tracks and controllers, so
many different race configurations can be prepared.

Nevertheless, some problems have been found when using
this simulators. One of them, maybe the most important
one, is a memory leak that happens every time the race
is restarted. Although it is not a huge quantity of memory
lost each time, the usage of some learning or evolutionary
algorithms that require a significant number of evaluations
(and consequently, race restarts) make this memory leak
become higher and higher until the simulator process crashes.

C. TORCS in Simulated Car Racing Competition

The organizers of the contests (Daniele Loiacono, Julian
Togelius and Pier Luca Lanzi) provide the competitors with
some modules to develop their controllers. The server mod-
ule is a component for TORCS that provides the communica-
tion to the remote controller, implementing and supplying an
API for the sensors and actuators models. In other words, the
server module provides the drivers with a representation of
the current game state and a protocol to interact with it. On
the other hand, two client modules are provided, one written
in C++, the other in Java. These components implement a
basic communication module with the server, and allow the
competitors to choose the programming language they are
more comfortable with.

The communication between client and server modules
is performed through UDP packages. When the information

comes from the server module, reading of several car sensors
is provided. If the information goes from the client to the
server, it must contain the actuators of the controller, such
acceleration and steering.

The competitors receive information from 16 different
sensors. Among them, car status (angle of the car on track,
damage suffered, fuel, current gear, speed, etc.), car informa-
tion related to the track (distance raced from start line, last
lap time, distance to track edges, etc.) and car information
related to other cars (distance to opponents, race position)
can be obtained. The effectors that can be used by the side
of the clients are the steering wheel value, both pedals usage
(throttle and brake) and gearing change.

A full description of all the sensors provided can be seen in
the bases of the competition (documentation, sources and ex-
amples are available at http://cig.dei.polimi.it/?page id=67).

D. Competition Rules

Every submitted controller is tested alone in three different
tracks, and the score of the evaluation is the distance raced
by the car during 10, 000 game tics (about 3 minutes and
20 seconds). When this first stage is over, the best few
controllers compete among them on a different set of tracks,
in order to determine how they behave in presence of other
drivers.

Competition rules, objectives and sensors are described
in the competition manual (http://cig.dei.polimi.it/wp-
content/uploads/2008/10/manual cig2008 v1.pdf).

III. CONTROLLER DESIGN

The controller we prepared for this competition is based on
two main pillars: as we said before, the usage of fuzzy logic
has been proposed in several works in the field autonomous
driving, so the first one is a fuzzy representation of the world.
The second pillar is the evolution of this fuzzy representation
through evolutionary computation.

A. Fuzzy representation

1) Membership functions: The environment of the car has
been discretised to a set of fuzzy entries, each one of them
referred to a sensor or an effector that the server provides to
the controller. These propositions are composed by a group
of fuzzy sets that represent the state of each one of these
sensors.

All the fuzzy sets are defined by smooth trapezoidal
membership functions. Its general expression is defined by
the equation 1 and the shape depicted in the figure 1.

(1)
This function provides truth values for a given proposition,

which crisp value is taken from one of the available sensors.
Its shape is defined by four values (a,b,c,d). Furthermore,

2009 IEEE Symposium on Computational Intelligence and Games 265

Fig. 1. General membership function shape

two more membership functions are used to represent all the
fuzzy propositions needed for the whole set of sensors and
actuators used (see equations 2, 3,and figures 2, 3)

(2)

Fig. 2. Left membership function shape

(3)
The sensor track position determines the distance between

the car and the track axis. This value is normalised with
respect to the track width, where -1 means the right edge, 0
the center of the track and 1 the left side. Values far from
-1 and 1 represent the car outside the track on each side. If
we take, for instance, this sensor for a fuzzy entry, we could
define the sets left side, centered and right side to represent
the track position of the car in a fuzzy way.

This entry is defined then by three different sets, each one
of them described with the three different membership func-
tions depicted above. The left side set is used to determine

Fig. 3. Right membership function shape

when the car is in the left part of the track, and it only
needs two variables (“a” and “b”) to define its membership
function, because of the semantic of the sets and the possible
values of the sensor. The car will be on the left part of the
track if this sensor value is between -1 and another value
greater than -1. In this case, the best way to determine the
membership of this proposition is defining the values for
which the car is not on the left part, that is, we need to define
the limits of ”being on the left part” of the track. Therefore,
the membership function that fits better in this set is the left

trapezoidal membership function.
The same happens with the set right side, where 1 is the

maximum value. However, to determine the value of the
centered set, we can not make the assumption of where to
put the limits for the car to be centered on the track. This is
because we use the general trapezoidal membership function
to define this set. The figure 4 represents an example for this
fuzzy entry, with its three sets depicted together.

Fig. 4. Right membership function shape

To define this entry, we need eight different values for the
functions: Two for the left side set (-0.6 and -0.2), four for
centered set (-0.6, -0.2, 0.2, 0.6) and two more for right side

shape (0.2 and 0.6).
2) Fuzzy sets: The tables I and II summarise all the

sensors and actuators used for this controller, their fuzzy
entries associated and all the fuzzy sets defined for each
entry.

266 2009 IEEE Symposium on Computational Intelligence and Games

TABLE I
FUZZY SETS TABLE (INPUT)

TABLE II
FUZZY SETS TABLE (OUTPUT)

As we can see, both sensors and actuators are related to
fuzzy sets. An important aspect to be taken into account is
that we need a crisp value for the effector sets. For instance,
if we want to apply full acceleration for the acceleration
actuator, we need to obtain a concrete value to use. For all
the actuator fuzzy sets, a Center Of Gravity (COG) function
is used to retrieve the crisp value. The next formula is used as
an approximation for a fuzzy set f(x), as shown in equation 4.

(4)
3) Fuzzy rules and fuzzy state: Once all the fuzzy sets for

the controller have been defined, the next step is to determine
fuzzy rules that use these sets. In this controller, the definition
of all the fuzzy rules has been done by hand. Each one
of them is composed by a certain number of fuzzy sets as
an entry (that correspond to sensors) and two fuzzy sets as
output (acceleration and steering actuators). In a general way,
these rules can be represented as shown in equation 5, where

A to Z represent a subset of sensor fuzzy sets, and α and β
stand for actuator ones. An example of these rules could be
as the one in the figure 5.

(5)

Fig. 5. Fuzzy rule example

In this rule, our car is centered on the track on high speed,
its angle is parallel with the track axis and it has another
vehicle ahead. The actions recommended in this case is to
maintain acceleration and steering to the left to overhead the
opponent.

We define fuzzy state as the collection of the condition
part of all the rules. Internally, this rules are stored in an
array, where each position corresponds to an index rule and
its value is performed by multiplying the truth values of each
fuzzy set in the condition. What we obtain then is an fuzzy
state of the car, where each rule has its own truth value.

Each simulation cycle, this array is updated calculating the
truth value of each fuzzy set and applying the multiplications
needed. The next step is to find the highest truth value for
a rule and apply its right part (this is, the actuators), using
center of gravity function for the crisp values. This algorithm
is depicted in the figure 6.

Fig. 6. Fuzzy rule example

B. Evolutionary algorithm

1) Base individual: one of the biggest issues that must
be faced on applying evolutionary algorithms in autonomous
driving is that a good starting point is needed. Automatic
driving is so complex that it is really hard to obtain a driver
configuration by chance, as is usually done in initial popu-
lations of evolutionary algorithms, where they are initialised
randomly. For this reason we need to define a base individual
to start evolving from, that must be able to drive on different
tracks at least in a very simple way, as a novice would do
when he is learning how to drive. The objective then is to
evolve the configuration of this driver to obtain a competitive
racer. In this case, we need to initialise two distinct parts of
the controller: fuzzy rules and fuzzy set parameters.

2009 IEEE Symposium on Computational Intelligence and Games 267

Firstly, the set of fuzzy rules must be defined, establishing
the relations between the available fuzzy sets as shown in
previous sections. The algorithm designed does not evolve
this set of rules, so the final individual will keep the same
set as the base individual. Because of the amount of com-
binations among the available fuzzy entries and sets, nearly
a hundred of rules were defined in this stage. They can be
divided into different groups for a better understanding:

• General driving rules: a set of rules that is focused on
keeping the car on the track while there is no predicted
turn ahead. Its aim is to maintain the car as centered
and as fast as possible.

• Turning prediction rules: these rules are focused on the
track sensors in order to identify when a new bend is
coming and, depending on its sense, proceed to drive
through it in the best possible way.

• Emergency rules: the rules of this set are designed to
drive the car in emergency cases, such as facing the
track in the wrong direction or being outside it.

• Overhead rules: the last set of rules are intended to
manage the situations where other cars are involved,
so overhead actions can be taken.

Secondly, the parameters for every fuzzy set must be set
up. These values are the ones that will be optimised by the
evolutionary computation. As we stated before, no random
initialisation will take place, therefore an initialisation is
needed to generate the base individual.

Notice that there is an alternative design for the algorithm
used keeping a very similar approach to this one: instead of
maintaining the rules fixed and evolve the fuzzy set param-
eters, it could be done in other way, where the evolutionary
algorithm would pick some rules up from the whole set of
rules that can be composed, keeping the original parameters
for the fuzzy sets unvariable. Nevertheless, that approach
makes the initialisation of the fuzzy sets parameters very
relevant. In other words, it is more difficult to determine the
exact parameters for each fuzzy set rather than good rules.

2) Evolution: The evolutionary algorithm implemented to
evolve the fuzzy sets is a genetic algorithm, using a steady
state for each evolution step. The main characteristics of the
implemented algorithm are:

• The individual: as said before, the individual is com-
posed by the parameters of the fuzzy sets that form the
controller.

• Initial population: the initial population is obtained by
taking a base individual and creating mutated copies of
it to fill the whole population. It is important to keep on
mind that one non-mutated copy of the base individual
is kept in the initial population, in order to assure at
least one stable configuration.

• Selection: the selection process for choosing individuals
to create new ones is a tournament of size 3.

• Crossover: the crossover between two individuals is im-
plemented as an uniform crossover, the units exchanged
between the parents are not the parameters, but the
whole fuzzy set. For instance, when the new individual

is being created, it will inherit the set ”speed fast” from
one of its parents, but not each parameter separately.

• Mutation: each parameter of every fuzzy set is mutated,
obeying a mutation probability, adding an small amount
for its value. Furthermore, the limits of the fuzzy entry
must be checked in order to avoid overflow of the
values.

• Fitness and evaluation: to evolve an individual, different
races are performed in four distinct tracks. In each race,
the car drives alone during a fixed amount of game
tics and the fitness of the individual is retrieved as
the number of meters raced during this time, minus a
measure of game tics when the car was stucked against
a wall, facing backwards or being outside the track.
Finally, the mean of this calculation in the four circuits
is assigned as the individual fitness.

The graph depicted in figure 7 represents the fitness
evolution of the controller submitted to the competition on
the training circuits.

Fig. 7. Evolution of fitness on training circuits

Although this is only one of the experiments performed
(indeed, the best one), the fact that the distance raced by
the vehicle is increased in few generations suggests that this
could be a good technique for evolving autonomous driving
from a base individual. However, a lot of experiments and a
statistical analysis must be done in order to demonstrate this
empirically.

As it has been said before, the evolution steps of the
algorithm modify the shape of the controller’s fuzzy sets.
As an example, figure 8 shows the evolution of one of these
fuzzy sets: the position of the car when it is centered on the
track. It can be seen that, through evolution, the shape of the
function becomes narrower, what means that less values of
the sensor will make the vehicle to be considered as centered
on the track.

IV. RESULTS

In this competition, the controllers were scored in three
different tracks: C-Speedway, E-Track 6 and Wheel-2. On
the first stage, controllers raced alone in these tracks, and
the distance raced within 10, 000 game tics were used as
score. There were five participants in the competition: in the
figures, labelled as Redjava (Chung Cheng Chiu, Academia

268 2009 IEEE Symposium on Computational Intelligence and Games

Fig. 8. Evolution of Track Position set

Sinica), Luigi (Luigi Cardamone, Politecnico de Milano),
Diego (Diego Perez and Yago Saez, Universidad Carlos III),
Matt (Matt Simmerson, New Zealand) and Aravind (Aravind
Gowrisankar, UT Austin). Furthermore, three more non-
participant controllers were used to compare with the com-
petitors: Daniele (Daniele Loiacono, Politecnico de Milano),
Julian (Julian Togelius, IDSIA) and the winner of the last
contest (WCCI’08 champ).

Figures 9, 10 and 11 show the results obtained in the stage
explained above:

Fig. 9. Results on C-Speedway

Fig. 10. Results on E-Track 6

As we can see, the participant controllers are divided
clearly into two groups: Redjava and Luigi are much more
faster than Diego, Matt and Aravind controllers. Organizers
use Formula One scoring system to give points to the
participants (10 points for the first, 8 for the second, 6 for
the third, 5 for the fifth...), and results are shown in table III.

Fig. 11. Results on Wheel-2

TABLE III
CLASSIFICATION OF FIRST STAGE

Our controller has ended this first stage in third position,
on top of the second group of controllers. These three
controllers, as well as the first two ones between them, are
very close to each other, but there is a big difference between
these two groups.

The classified controllers for the second stage were the
ones of the first group (Redjava and Luigi) and the winner
of the previous competition. The winner of CEC 2009
Simulated Car Racing Competition was Luigi, and the results
are shown in table IV.

V. CONCLUSIONS

One of the problems found on this controller is that it is not
able to accelerate and brake completely. Although there are
respective fuzzy sets for that actions (full acceleration, full
brake), the values used by the car are the results of applying
the center of gravity function. As the shape of the fuzzy
set membership function is defined by some parameters that
can not take values outside of the sensor limits, the result
of the deffuzzifier function can not be the maximum (1:
full acceleration value) and minimum (0: full brake) values.
This restriction makes the car unable to get very high speeds
or perform sudden brakings, so the usage of fuzzy sets on
actuators must be improved to allow that.

However, the use of fuzzy sets on sensors has been quite
useful, as can be seen on the fitness curve on training circuits.

TABLE IV
FINAL STAGE RESULTS

2009 IEEE Symposium on Computational Intelligence and Games 269

Additionally, the results obtained on this competition are
quite better than the ones obtained by the authors controller
prepared for the last competition, WCCI 2008.

These facts can guide us to design controllers for the next
competition that will take place on CEC 2009. Furthermore,
it reinforces the idea that the usage of fuzzy sets is a good
choice to produce evolution on autonomous driving, even if
it is not focused on races but centered on autonomous driving
on traffic environments.

ACKNOWLEDGMENTS

This work was supported in part by the Spanish MCyT
project MSTAR, Ref: TIN2008-06491-C04-03.

REFERENCES

[1] J. Bernard, J. Gruening, and K. Hoffmeister. Evaluation of vehicle/driver
performance using genetic algorithms. SAE International Congress and

Exposition, (980227), 1998.
[2] A. Niehaus and R. F. Stengel. Probability-based decision making

for automated highway driving. Vehicle Navigation and Information

Systems Conference, 1991, 2:1125–1136, Oct. 1991.
[3] G. Siegle, J. Geisler, F. Laubenstein, H. Nagel, and G. Struck. Au-

tonomous driving on a road network. Intelligent Vehicles ’92 Sympo-

sium., Proceedings of the, pages 403–408, Jun-1 Jul 1992.
[4] R. Sukthankar, D. Pomerleau, and C. Thorpe. Shiva: Simulated

highways for intelligent vehicle algorithms. In In Proceedings of IEEE

Intelligent Vehicles, pages 332–337, 1995.
[5] D. Pomerleau and T. Jochem. Rapidly adapting machine vision for

automated vehicle steering. In IEEE Expert, 11(2):19–27, Apr 1996.
[6] R. Sukthankar, J. Hancock, S. Baluja, D. Pomerleau, and C. Thorpe.

Abstract adaptive intelligent vehicle modules for tactical driving. In In

Proceedings of AAAI-1996 Workshop on Intelligent Adaptive Agents.

[7] C. Thorpe, T. Jochem, and D. Pomerleau. Automated highway and the
free agent demonstration. In In Proceedings of 1997 IEEE Conf. on

Intelligent Transportation Systems, pages 496–501, 1997.
[8] M. Bertozzi, A. Broggi, G. Conte, and R. Fascioli. The experience of

the argo autonomous vehicle. In in Procs. SPIE‘98 - Aerosense Conf,
volume 3364, pages 218–229, 1998.

[9] J. M. Collado, C. Hilario, A. de la Escalera, and J. M. Armingol. Self-
calibration of an on-board stereo-vision system for driver assistance
systems. In Intelligent Vehicles Symposium, 2006 IEEE, pages 156–
162, June 2006.

[10] Wu, B.-F. Chen, C.-J. Chiang, H.-H. Peng, H.-Y. Perng, J.-W. Ma,
L.-S. Lee, T.-T. The Design of an Intelligent Real-Time Autonomous
Vehicle, Taiwan iTS-1 In Journal - Chinesse institute of engineers,
volume 30; 5, pages 829–842, 2007.

[11] P. Lamon, S. Kolski, R. siegwart The Smarter vehicle for fully
autonomous navigation In Proceedings of CLAWAR 2006, Brussels,
Belgium, 2006.

[12] Q. Chen, U. Ozguner, and K. Redmill. Ohio state university at the 2004
darpa grand challenge: developing a completely autonomous vehicle. In
Intelligent Systems, IEEE, 19(5):8–11, Sept.-Oct. 2004.

[13] S. B. and R. Caruana. Removing the genetics from the standard genetic
algorithm. In The Int. Conf. on Machine Learning 1995, pages 38–46,
San Mateo, CA, 1995. Morgan Kaufmann Publishers.

[14] S. Baluja, R. Sukthankar, and J. Hancock. Prototyping intelligent
vehicle modules using evolutionary algorithms. pages 241 – 257, 1998.

[15] L. D. Pyeatt, A. E. Howe, and C. W. Anderson. Learning coordinated
behaviors for control of a simulated robot. In Technical report Computer
Science Dept, Colorado State Univ., Ft. Collins, CO 80523, 1996.

[16] D. Floreano, T. Kato, D. Marocco, and E. Sauser. Coevolution of
active vision and feature selection. In Biological Cybernetics, 2004.

[17] Z. Sun, G. Bebis, and R. Miller. On-road vehicle detection using evo-
lutionary gabor filter optimization. In IEEE Transactions on Intelligent

Transportation Systems, (6):125–137, 2005.
[18] I. Tanev, M. Joachimczak, H. Hemmi, and K. Shimohara. Evolution

of the driving styles of anticipatory agent remotely operating a scaled
model of racing car. In Evolutionary Computation, 2005. The 2005

IEEE Congress on, 2:1891–1898 Vol. 2, Sept. 2005.

[19] I. Tanev, M. Joachimczak, and K. Shimohara. Evolution of driving
agent, remotely operating a scale model of a car with obstacle avoidance
capabilities. In Mike Cattolico, editor, GECCO ’06: Proceedings of the

8th annual conference on Genetic and evolutionary computation, pages
1785–1792, New York, NY, USA, 2006. ACM.

[20] J. Togelius and S. M. Lucas. Evolving controllers for simulated car
racing. In The 2005 IEEE Congress on Evolutionary Computation,

2005, 2:1906–1913 Vol. 2, Sept. 2005.
[21] J. Togelius and S.M. Lucas. Evolving robust and specialized car racing

skills. In Evolutionary Computation, 2006. CEC 2006. IEEE Congress

on, pages 1187–1194, 2006.
[22] J. Togelius and S. M. Lucas. Arms races and car races. In Parallel

Problem Solving from Nature - PPSN IX, 9th International Conference,

Reykjavik, Iceland, September 9-13, 2006, Procedings, volume 4193 of
Lecture Notes in Computer Science, pages 613–622, 2006.

[23] A. Agapitos, J. Togelius, and S. M. Lucas. Evolving controllers for
simulated car racing using object oriented genetic programming. In
GECCO ’07: Proceedings of the 9th annual conference on Genetic and

evolutionary computation, volume 2, pages 1543–1550. ACM Press,
2007.

[24] Alessandro Saffiotti; Sr. Ruspini Enrique H.; Sr. Konolige Kurt G.
A fuzzy controller for flakey, an autonomous mobile robot. In Tech-

nical Note 529, Artificial Intelligence Center, SRI International, 333
Ravenswood Ave. Menlo Park, CA 94025, USA. 1993.

[25] Alessandro Saffiotti. The uses of fuzzy logic for autonomous robot
navigation. In Journal of Intelligent and Robotic Systems, Volume 40,
Issue 1, Pages: 45–88. May 2004.

[26] Astudillo, L., Castillo, O., Melin, P., Alanis, A., Soria, J., Aguilar,
L. Intelligent Control of Autonomous Mobile Robot Using type2 fuzzy
logic. In Journal of Engineering Letters, 13(2):93–97, September 2006.

[27] Baltes, J.; Otte, R. A Fuzzy Logic Controller for Car-like mobile
robots. In Computational Intelligence in Robotics and Automation,

1999. Proceedings. 1999 IEEE International Symposium, pages: 89–
94. 1999.

[28] Lee, Michael A. and Takagi, Hideyuki. Integrating design stages of
fuzzy systems using genetic algorithms In Proc. 2nd IEEE Inter. Conf.

on Fuzzy Systems, San Francisco, CA, pp. 612–617. 1993.
[29] K.C. Ng, Y. Lee. Design of sophisticated fuzzy logic controllers using

genetic algorithms. In Proceedings of the Third IEEE International

Conference on Fuzzy systems (FUZZ-IEEE’94), Orlando, USA, pp.
1708–1712, 1994.

[30] Andrea Bonarini. Evolutionary Learning of Fuzzy Rules - competition
and cooperation In W. Pedrycz(Ed.), Fuzzy Modelling: Paradigms and

Practice, Kluwer Academic Press, Norwell, MA, 1996.
[31] Tunstel and Jamshidi. On genetic programming of fuzzy rule-based

systems for intelligent control. In International Journal of Intelligent

Automation and Soft Computing, 2(3), pages 273-284, 1996.
[32] Karr, C. L., Freeman, L. M. Genetic algorithm based fuzzy control

of spacecraft autonomous rendezvous. In Engineering Applications of

Artificial Intelligence, 10(3), pages 293-300. 1997.
[33] Frank Hoffmann, Gerd Pfister. Automatic Design of Hierarchical

Fuzzy Controllers Using Genetic Algorithms. In Proceedings of

the Second Conference on Intelligent Techniques and Soft Computing

(EUFIT’94), Aachen, Germany, pp. 1516–1522, 1994.
[34] S. Huang and W. Ren. Use of Neural Fuzzy Networks with Mixed

Genetic/Gradient Algorithm in Automated Vehicle Control. In IEEE

Transactions on Industrial Electronics 46, No. 6, pages 1090-1102,
December 1999.

[35] Julian Togelius, Simon Lucas, Ho Duc Thang, Jonathan M. Garibaldi,
Tomoharu Nakashima, Chin Hiong Tan, Itamar Elhanany, Shay Berant,
Philip Hingston, Robert M. MacCallum, Thomas Haferlach, Aravind
Gowrisankar, Pete Burrow. The 2007 IEEE CEC simulated car racing
competition In Genetic Programming and Evolvable Machines, Volume
9, Issue 4, Pages: 295–329 , December 2008.

[36] Daniele Loiacono, Julian Togelius, Pier Luca Lanzi, Leonard Kinnaird-
Heether, Simon M. Lucas, Matt Simmerson, Diego Perez, Robert G.
Reynolds, Yago Saez The 2008 IEEE WCCI simulated car racing
competition In Proceedings of IEEE Computational Intelligence and

Games 2008. Pages to appear.
[37] Y. Sáez, D. Perez, Gustavo Recio, and P. Isasi. Evolving a rule system

controller for automatic driving in a car racing competition. In IEEE

Symposium on Computational Intelligence and Games (CIG’08) Pages
336–342, 2008.

270 2009 IEEE Symposium on Computational Intelligence and Games

