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Abstract—What is believability? And how do we assess it?
These questions remain a challenge in human-computer inter-
action and games research. When assessing the believability
of agents, researchers opt for an overall view of believability
reminiscent of the Turing test. Current evaluation approaches
have proven to be diverse and, thus, have yet to establish a
framework. In this paper, we propose treating believability as
a time-continuous phenomenon. We have conducted a study
in which participants play a one-versus-one shooter game and
annotate the character’s believability. They face two different
opponents which present different behaviours. In this novel
process, these annotations are done moment-to-moment using
two different annotation schemes: BTrace and RankTrace. This
is followed by the user’s believability preference between the
two playthroughs, effectively allowing us to compare the two
annotation tools and time-continuous assessment with discrete
assessment. Results suggest that a binary annotation tool could
be more intuitive to use than its continuous counterpart and
provides more information on context. We conclude that this
method may offer a necessary addition to current assessment
techniques.

Index Terms—Believability, Turing Test, Human-Like Agents,
Time-Continuous Annotation, Digital Games, Assessment

I. INTRODUCTION

Human-like behaviour is a crucial property of artificially
intelligent agents in the field of Human-Computer Interaction,
as these agents can aid automated testing [1], provide a
challenging competitive partner [2], collaborate with users [3]
or even support a therapy process [4]. However, developing
these agents remains a central challenge in the field of arti-
ficial intelligence (AI). A major roadblock is the lack of a
universally accepted definition of believability. Most studies
use behavioural cues to analyse the agent’s perceived decision-
making capacity and expression of believability [5].

Game research is a major frontier in the study of believabil-
ity as games provide a rich testing ground for emergent inter-
actions. In the field of game research, studies have attempted to
establish core concepts and methods for assessing believability
[5]–[7]. The most common method has been the adaptation of
the Turing Test [8], and the separation of agent believability
into two concepts: player (or user) believability and character
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(or non-player) believability [5]. The former concept refers to
the perception that an artificial agent is human-controlled, even
when it is autonomous, whereas the latter refers to recognising
human-like behaviour in autonomous agents. Even though
they follow a similar methodology, these studies present a wide
range of approaches to assessing believability—e.g. binary
decision, rating, ranking, forced preference choice, both when
participants are observing and playing the games [5], [9].
While most of these studies focus on the agent and game
genre, the environment is often overlooked [10]. Another
major limitation of these studies is their reliance on a discrete
representation of believability that rarely takes context into
account [5], [11].

To address the aforementioned limitations, we propose a
method of time-continuous annotation of believability assess-
ment relying on affective computing techniques. In this study,
we focus on the less explored character believability [9]. We
test our method on an asymmetric top-down shooter game
called MAZING [12]. Even though the visuals of the game
are abstract, the agent was designed to exhibit human-like
behaviour. This setup provides a testbed with a good amount of
complexity—as suggested by the literature [5]—while simpli-
fying the problem by focusing on the game context and agent
behaviour. A user study was designed where participants are
asked to play this game and assess their opponent’s moment-
to-moment believability, followed by a questionnaire with a
discrete evaluation method. For the labelling task, participants
are randomly assigned to two different tools, using the Plat-
form for Audiovisual General-purpose ANnotation (PAGAN)
annotation framework [13]: BTrace, a binary tool based on
AffectRank [14], and RankTrace, a continuous unbounded
tool designed to collect time-continuous ordinal data [15].
The questionnaire features a subjective method of preference
between videos [5]. This permitted a comparison between
classical methodologies and time-continuous tools included in
PAGAN. Our analysis shows a correlation between continuous
and discrete believability assessment, with BTrace leading the
results, reinforcing conclusions drawn by our complementary
study [16]. The novelty of this work is the introduction of
time-continuous assessment for human-like agents. Our results
suggest that the methods presented here are a worthy addition
to the existing assessment techniques and a step towards a
normative protocol of time-continuous believability evaluation,
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with binary time-continuous annotation seeming a more suit-
able choice for the context of believability assessment.

II. BACKGROUND

This section discusses relevant research on believability,
emotional behaviour simulations and assessment protocols.

A. Defining Believability

While there were several attempts to create a unified defi-
nition, the term believability still lacks a precise description.
Some provide more high-level definitions, defining believabil-
ity as an illusion of life and a suspension of disbelief that is
dependent on viewers’ expectations [17], [18]. Others opt for
more specific interpretations, where intentionality and ratio-
nality [19] or a balance between predictability, randomness,
and behaviour exaggeration [20] are seen as core components
for believability. Additionally to definitions focusing on be-
haviour, some studies have also highlighted the effect of the
environmental context on the agent’s believability [20], [21].

In digital games, research of believability is often focused
on the study of Non-Player Characters (NPCs) and their
interactions with players [22]. Commonly observed charac-
teristics of believable agents are explicit intention, consis-
tent behaviour, and emotional expression [19]–[22]. Lankoski
and Björk extend this list further with “natural language”
[22]. However, this criterion is debatable, given that not all
NPCs require speech capacity to elicit an emotional response.
Moreover, it has been suggested by previous literature that
research into believability would benefit from decoupling
narrative and aesthetics from gameplay [5], [23]. This way,
the behavioural component of believability could be studied
separately from aesthetic components, such as a human-like
appearance, eliminating some of the fuzziness of the concept.

B. Simulating Emotional Behaviour

To create more adaptable and socially aware AI, we need
agents that implement robust models for human-like emotion
regulation and manifestation [21]. Research in the field has
been focusing primarily on adapting Appraisal Theory [24],
[25] to this end. Appraisal Theory focuses on emotions as
functions of an evaluation process of antecedent events. One
of the most popular frameworks of emotional appraisal is the
Ortony–Clore–Collins (OCC) model [26], which describes the
strength of emotions as a function of actions, consequences,
and the environmental and social context. Several computa-
tional frameworks adapted OCC to create models for artificial
emotion regulation. Examples of these include EMotion and
Adaptation (EMA) and Fearnot AffecTIve Mind Architecture
(FAtiMA). The former uses both the manifestation of emotion
and its influence on future actions to model appraisal as a
uniform, but temporally causal process [27]. The latter, by
contrast, uses a two-tier system: one based on instant events
and another on the chance of future success [24].

Less focus has been given to simulating behavioural man-
ifestations of emotion. To address this research gap, Melhart
et al. investigated the recognition of emotional behaviour of

artificial agents [12]. In their experiment, an agent was de-
signed to exhibit frustration based on the theory of Computer
Frustration [28]. Their game featured exaggerated behaviour
and many visual cues to help recognise emotion without the
use of a human-like appearance [20]. Participants were asked
to annotate the perceived frustration level of the agent. The
results of their experiments highlight the importance of context
in the appraisal of NPC behaviour.

C. Assessing Believability

Perhaps the earliest and most popular test developed for
human-like evaluation in a machine is the Turing Test [8]:
a test where a participant communicates with another person
and a computer through text and deems the bot intelligent
if the participant is incapable of distinguishing which one is
which. Subsequently, researchers disagreed that this was the
correct way of spotting intelligence [29], [30] and it remained
criticised years later, especially within digital games, as it was
far too simple for such complex environments [31].

Several attempts have been made to establish an assessment
protocol for believability. Some have been based on formal
criteria [7], [32], such as how the agent navigates the world,
and how it reacts to environmental or social changes. Other
attempts, and perhaps the most common, are based on sub-
jective assessment [23], [31] which involves the observation
of an agent and filling a questionnaire. In general, these
studies were using the Turing Test adapted to gameplay instead
of text-based communication. Perhaps character believability
receives less attention due to the required level of realism
[21], since participants know the agents are artificial and are
usually inquired about their behaviour [9], [33], [34]. While
it is a common assumption to attribute believability primarily
to agent behaviour [35], more recent studies have indicated
that the context of the interaction has just as much effect
on the perception of believability [10], [11]. For example,
Camilleri et al. showed that the agent’s believability is highly
dependent on the design of the level—e.g. the number of
enemies, gaps, entity placement, etc. [11]. In addition, Pacheco
et al. showed that changing how the test itself is presented
(camera perspective, player experience, length of videos, etc.)
changes the outcome of the assessment [10].

While assessment is discrete in believability research, in
affective computing time-continuous annotation has become
more and more popular over the years [36]. Time-continuous
annotation protocols capture moment-to-moment changes in
participants’ affective state using a wide array of labelling
methods. While discrete techniques are still used to reduce
noise and to achieve a higher score consensus [14], time-
continuous methods tell a more nuanced story about the data as
they capture the moment-to-moment variations of participants’
experience [36]. Even though popular techniques are based on
the classical Likert-scale [37], a usability study of Melhart et
al. showed that unbounded ordinal annotation [15] is more
intuitive, and a binary labelling strategy leads to higher inter-
rater agreement [13]. In this study, we rely on these type
of annotation methods that are implemented in the PAGAN



framework as RankTrace (unbounded) and BTrace (binary).
Although believability assessment is not a traditional affective
computing task, Hamdy et al. suggests a connection between
believability, emotion, and behaviour towards an overarching
architecture [21]. In this paper, we rely on this connection to
investigate believability under the lens of affective computing.
We combine the time-continuous annotation techniques seen
in affective computing [13] with the discrete techniques seen
in believability assessment [5].

III. STUDY PROTOCOL

The approaches mentioned in section II-C present adapta-
tions of the Turing Test for agent evaluation. Despite the nec-
essary contributions to the field, it presents its own challenges.
The first problem lies in the terms ‘believable’ and ‘human-
like’—as these remain vague—and a participant’s own per-
ceptions of believability which allow bias in their evaluation
[5], [10]. In addition, a lack of an accepted framework remains
given the range of options provided and the lack of comparable
results [9], [10]. Lastly, these studies provide only an overall
view of believability based on entire sessions [5], [9], [10],
thus lacking a lower-level understanding of the agent in the
context given.

Our suggestion is to address these problems by providing
an additional technique: moment-to-moment believability an-
notation. This allows us to tackle the ambiguity of the original
process, build towards established protocols and compare with
future results. Given the novelty of this process we will follow
the suggestions of previous literature [5], [23] and use a
single-player game without narrative or natural language. This
section presents the game, the experimental protocol as well
as the methods for collecting believability annotations and for
cleaning the data.

A. Environment: MAZING

MAZING is an asymmetrical top-down shooter where the
player is chased through a maze by an AI controlled opponent.
The player scores points when damaging and killing the AI
opponent, which can be done with bullets or bombs. Bombs,
as seen in Figure 1, are slower projectiles that explode and
leave a fire in the area for a short period of time. Both player
and opponent can take damage when walking over it. The
opponent’s goal is to chase the player. The opponent kills the
player if the two collide; if this happens, the game resets. The
agent does not possess the same skills as the player: it moves
faster, it has no weapons and it has two sensory systems (a
narrow field-of-vision and an auditory system). Its behaviour
depends on the situation: if the player is out of sight, it moves
randomly through the level seeking the player; if the player is
in sight it chases them using the closest path. However, if the
closest path is through a fire, it follows it if its health is high or
if the alternative is a much longer path. In addition, an abstract
model of Computer Frustration [28] influences its sensors and
decisions. A more frustrated agent will have a slimmer field
of view but more precise audition; it will take more risks and
move more erratically. In the user study described in this paper,

Fig. 1. MAZING Screenshot. The blue dot is the player, the red is the
computer agent. The light grey area is the player’s field-of-vision. Both
player’s attack modes are visible (yellow projectiles and a fire) in the middle
and an extinguishing fire in the top right corner.

two different AI opponents were used, with different levels
of frustration; the order of opponents was randomized across
participants.

B. Data Collection and Preprocessing

The user study is conducted over two rounds of gameplay
and subsequent annotation. Before the user study begins,
participants are allowed to learn and test the controls of
MAZING for as long as they wished. For the study, participants
play a 1-minute round of the game against an opponent.
Once their game session is completed, then a video replay
of it is shown to them for moment-to-moment annotations
of the opponent’s believability. Participants are instructed that
“believability means your opponent is playing like a human
would in the given situation”. This process is repeated a
second time with an opponent exhibiting a different gameplay
behaviour—randomly assigning one of two frustration levels
(see Section III-A). Once the experiment is finished, the
participants are presented with an exit survey asking for their
preference over the two videos in terms of believability—the
choices being First game, Second game, Both were equally
believable and Neither were believable and some demographic
questions.

This process was carried out through PAGAN [13], a tool
for online affect annotation. This framework has been modified
to allow the whole experiment to take place in PAGAN via a
single link. This study tested two time-continuous annotation
methods: a binary discrete annotation tool called BTrace, or
an unbounded continuous annotation tool named RankTrace
[13] (see Fig. 2). Participants were assigned randomly between
the two, and completed the whole experiment using only one
annotation method. The data collected consists of telemetry
(i.e. game data such as the player’s score, the opponent’s health
or the buttons pressed), the believability values for BTrace
(binary) or RankTrace (continuous), the overall believability



(a) RankTrace annotation

(b) BTrace annotation

Fig. 2. PAGAN data collection interfaces used for the experiments.

preference between the two videos and demographics. The
telemetry data could shed light on which player or agent
properties affect believability; as this study focuses on the
quality of the annotation traces themselves, we do not use
the telemetry data in this paper.

Because PAGAN only records changes in the annotation
trace due to the limitations of the online format, the annotation
traces are first resampled at a rate of 250ms. During the
resampling empty values of RankTrace are forward filled and
empty values of BTrace are filled with zeros to respectively
preserve the continuous and discrete nature of the annota-
tion traces. Because 250ms time-windows are too short to
meaningfully capture changes in the perceived beliveability,
we further aggregate the annotation traces into 3-second time-
windows. We chose the window size based on convention set
by previous papers using RankTrace [15], [38], [39] and the
MAZING testbed game [12]. The time-windows are calculated
consecutively, based on the mean value of those windows. The
annotation values of RankTrace—which are unbounded—are
also normalised to [0,1] via min-max normalization on a per-
video basis.

In order to clean the dataset of outliers, we use the Dynamic
Time Warping (DTW) distance based on Makantasis et al. [40].
DTW is an algorithm that measures the similarity between
temporal sequences. We use DTW to detect outliers in two
steps. Initially we measure the distance to an artificial inactive
baseline—all annotations at zero. We discard sessions that
fall more than two standard deviations towards zero from
the mean distance of the dataset to the inactive baseline.
The cumulative DTW distance is then calculated for each
session by summing up the DTW distance between the session
compared to all other sessions. We discard those sessions
that fall more than two standard deviations away from the
average cumulative DTW distance of all sessions. This process
removes unusual believability annotations with insufficient
data that deviates from the annotators’ consensus. Finally,
participants that do not have two valid sessions and responses
to the final questionnaire are also removed as both components
are needed for comparison.

C. Matching Believability Traces with Believability Preference

To compare between the time-continuous data and the
believability preference between sessions, we discretise the

Fig. 3. Normalized traces of believability produced by RankTrace (left) and
BTrace (right). Area of uncertainty is in orange.

former. The data is discretised into two types: High believ-
ability and Low believability. To calculate the number of
high and low instances per session, we first calculate the
mean (µ) of a session’s (normalized) annotations. We then
apply an uncertainty threshold (ε). Annotations that fall within
[µ − ε, µ + ε] are treated as ambiguous (neither high nor
low) and discarded. In Figure 3, we can see an example of
both RankTrace and BTrace session annotations in blue. The
orange section shows the mean with 2ε value range applied.
The number of 3-second time windows above the shaded
orange section are counted as High (H) and those below it
as Low (L). A third metric, Difference (D), is calculated as
D = H−L and can be positive (when there are more instances
of high believability), negative (when there are more instances
of low believability) and zero (when high and low instances
are equal).

IV. RESULTS

A web link of this study was sent through the author’s con-
tacts following a purposive sampling approach. While 89 users
interacted with MAZING, only 45 participants completed both
game sessions and the final questionnaire. After the cleanup
process described in Section III-B was complete, the remaining
participants were 27; 11 for the RankTrace version and 16
for the BTrace version. Among the final 27 participants, most
identified as male (78%) and 22% identified as female. The
average age of participants was 29 years old and most were
20-29 years old (59%); participants’ age ranged from 18 to
49. All participants had experience playing video games, with
48% playing games everyday, 33% playing games a few times
a week and 19% playing games a few times a month.

A. Correlation Analysis

We treat the binary choice of believability preference be-
tween the first or the second session as the ground truth. We
assign 1 if the first session is preferred, -1 if the second session
is preferred, and 0 if no clear preference is given (“both”
or “neither” options). We then calculate the correlation of
binary preference with the differences between the metrics
of believability traces described in Section III-C, taking the
metric of the first session and subtracting the metric of the
second session. We presume that a higher correlation with the
ground truth points to a more accurate and meaningful time-



TABLE I
PEARSON’S CORRELATIONS BETWEEN DISCRETE BELIEVABILITY

ASSESSMENT AND DISCRETISED CONTINUOUS ANNOTATIONS FOR BOTH
TOOLS WITH DIFFERENT THRESHOLDS (ε). BOLD VALUES ARE

SIGNIFICANT CORRELATIONS AT α = 0.05.

ε Tool H1 −H2 L1 − L2 D1 −D2

RankTrace -0.112 -0.323 0.0730.00 BTrace 0.739 -0.568 0.694
RankTrace -0.112 -0.323 0.0730.05 BTrace 0.739 -0.568 0.694
RankTrace -0.112 -0.323 0.0730.10 BTrace 0.282 -0.568 0.444
RankTrace -0.112 -0.323 0.0730.15 BTrace -0.187 -0.568 0.085
RankTrace -0.112 -0.323 0.0730.20 BTrace -0.092 -0.442 0.164
RankTrace -0.112 -0.098 -0.0330.25 BTrace -0.247 -0.17 -0.157

continuous annotation tool. The significance is reported via
Pearson’s product-moment correlation coefficient at α = 0.05.

The uncertainty threshold (ε) presented in Section III-C can
provide a cleaner dataset in case of ambiguous data points
which are very close to the mean, but can also reduce the
dataset significantly. We thus explore a broad variety of ε val-
ues and how they impact the correlation values of the two time-
continuous annotation tools. Table I shows the results of the
analysis, highlighting significant correlations. It is evident that
BTrace has stronger correlations with the ground truth than
RankTrace. In fact, RankTrace’s highest absolute correlation
remains near the lowest absolute correlations from BTrace.
The impact of the uncertainty threshold is also obvious,
especially for BTrace, as an over-aggressive threshold is likely
to remove a large part of the dataset (omitting, essentially,
all high values if the mean value is also high) and causing
large fluctuations to correlation. The fact that high ε values
cause many high values to be removed from the dataset is
evidenced by the fact that difference in low values (L1 −L2)
is unaffected at ε = 0.1 and ε = 0.15. For BTrace, the high
positive correlations of the believability preference with high
values and high negative correlation with low values is not
surprising. The fact that this does not hold for RankTrace is
more surprising, with H1−H2 having a negative correlation to
believability preference. The aggregated D values (measuring
the difference between high and low instances within the trace)
seems also to be robust for BTrace, attaining a higher absolute
correlation value than low values and comparable correlation
to high values; this means that we can use the summary metric
D instead of having to observe both H and L.

B. Additional Analysis

The analysis of Table I showed that BTrace metrics as
instances of high or low believability were highly correlated
with the binary believability preference for low ε thresholds
but deteriorated at higher thresholds. This indicates that there
is substantial data loss at high uncertainty thresholds, likely
due to higher mean values of the trace. As observed in Fig. 3,

users’ binary annotations tended to be more positive than
negative which led to a higher mean value for the entire trace
and thus high thresholds might extend past the upper limit (1)
and remove most data points. To assess the impact of µ on the
metrics of high, low and difference for the two tools, we ran
another correlation analysis where the absolute midpoint of the
value range (0.5) was used as the interim value from where the
uncertainty bound was formed as [0.5−ε, 0.5+ε]. Correlations
of believability preference with the metrics as calculated with
the “neutral” uncertainty bound are identical for RankTrace
as those at respective ε thresholds in Table I; therefore the
µ for RankTrace does not impact the quality of results. For
BTrace, correlations at all inspected ε thresholds investigated
(from 0 to 0.25 at increments of 0.05) are the same as the
respective correlations of Table I only at ε = 0. This validates
our assumption that the high µ values of BTrace led to the
drop in correlations shown in Table I.

As a final experiment, we investigated the correlation be-
tween the binary believability preference and the difference in
mean values of each gameplay trace (i.e. µ1−µ2) for BTrace
and RankTrace. The correlations showed similar trends as with
all other metrics explored, with BTrace difference between
means aligning better with the participants’ preference with
a significant positive correlation (ρ = 0.667) while for
RankTrace there was a negative correlation (ρ = −0.321)
below the significance threshold. Intuitively, more believable
agents would have a higher mean trace value, although the
fact that RankTrace users annotate in an unbounded fashion
means that this metric is less reliable. Specifically, the mean
value depends on the range of values explored by the user.
This lack of reliability is demonstrated in the unexpectedly
negative correlation of the difference of mean values; while
H1 − H2 also had unexpected negative correlations in Table
I, its absolute value was lower than with µ1 − µ2.

V. DISCUSSION

This paper presents a novel method for assessing believ-
ability. We chose a top-down single-player shooter with an
agent able to exhibit a different selection of behaviours,
which allows us to test believability annotation in a complex
environment without relying on human-like appearance or
gestures from the artificial agent. Participants annotated their
perceived moment-to-moment believability for two sessions
and chose between the two agents, in terms of human-likeness
in the given context. This allowed us to compare between
continuous and discrete assessment techniques and between
two different annotation tools.

In our results we see significant correlations between the
participants’ final choices and their annotations. We have
explored different uncertainty thresholds with both tools and
found BTrace to be closer to the ground truth. BTrace is show-
ing higher correlations and more significant results than Rank-
Trace in almost all thresholds. Interestingly, these findings
match our previous study which sees both feature correlations
and subsequent modelling to be more successful with BTrace
as well [16]. In conclusion, this study encourages the use of



a discrete binary labelling protocol for character believability
assessment. We believe BTrace is superior given how intuitive
it is when asked whether the current context has ‘human-
like’ behaviour or not. Its binary nature might be helping
participants reduce the noise and uncertainty behind the term
‘believable’. It is worth mentioning that the binary annotation
of BTrace is closer to what we consider “ground truth” in this
study as the binary believability preference between the two
sessions. Combined with the different and more complex data
processing steps taken to convert RankTrace annotations into
high/low values, this may have impacted the results in favor
of BTrace. Earlier work has shown that RankTrace is more
suitable for measures such as arousal [13] where gradients and
an increasing or decreasing affective state are more intuitive
for a user. Since RankTrace operates on an unbounded value
range, identifying high versus low values is more difficult
for both the user and for the analysis method described in
Section III-C. Perhaps a more relevant measure for RankTrace
is not the number of high versus low instances but rather the
instances where believability increases from one time window
to the next versus the instances where it drops. Future work
should explore the gradient of the trace [38] as an alternative
measure of believability, testing it against the ground truth of
binary preference.

With this paper we aim to put a stronger emphasis on
character believability, given the higher need for realism
in games [21]. This paper explored an additional method
for its assessment, by introducing the use of an existing
time continuous annotation tool previously used for reporting
changes in arousal [13], [39], [41], [42]. Our results showcase
the versatility of PAGAN as an annotation tool and indicate
that the temporal dimension and context of believable AI
agents assessment should not be ignored. This tool could be
used in addition to the existing discrete methods, providing
extra information and aiding in understanding context such as
investigating time windows of high believability. The annota-
tion protocols examined provide more techniques for human-
computer interaction assessment.

However, this study comes with limitations. It is merely an
introduction into moment-to-moment assessment of believabil-
ity, with much to be explored before becoming an accepted
framework. Data cleaning reduced significantly the number
of participants, especially for RankTrace, and further data
loss was observed with higher thresholds. In future work,
more participants should be collected to further strengthen
the results. Among the final participants, we also noticed a
trend towards picking the second video in the boolean choice.
By allowing players to test, play and annotate twice, several
minutes pass between annotating the first video and the final
questionnaire where this choice is made. Recency effects and
limited memory capabilities may introduce noise to the data.
Integrating the choice after both sessions first and annotating
after should be investigated in future studies, in order to lower
the time between the first video and the binary choice. Finally,
this work explores one single-player game and future research
will investigate the generality of this method by testing it

with other games. These would require different levels of
complexity, such as different genres, narrative or multi-player.

The methods of discrete and time-continuous believability
assessment are not limited to games. Given the methods’
versatility, this work can be adapted to virtual reality ap-
plications, verbal interactions, and many other aspects of
agent assessment in human-computer interaction. A different
interface, such as a button system in a controller, could also
adapt this method for physical interactions (within robotics,
for example). Moreover, other measures can be explored to
further complement discrete methods, such as collecting bio-
signals and digital imagery of the session.

Furthermore, despite being out of scope in this work, the
telemetry collected can be used for agent modelling. It pro-
vides moment-to-moment context with matching believability
annotations—effectively showing which agent’s features are
and are not believable to participants. The connection between
this work and modelling opens possibilities into agent design
and even agent AI. For instance, a human designer could adapt
its agent’s behaviour based on the perceived features that make
it more believable. On the other hand, an AI process may aim
to increase believability by using predictions as rewards in
a reinforcement learning agent. Previous work on the use of
pixels for arousal prediction [41] also show that the suggested
collection of a session’s screen image could allow for other
techniques such as pixel-to-believability predictions.

VI. CONCLUSION

This paper introduces the idea of using two different time-
continuous affect annotation tools for character believability
assessment. In this novel methodology, we investigate how
a discrete method—the commonly used subjective choice
preference—can benefit from the addition of moment-to-
moment agent assessment. Our data was provided by 89
participants in total, which includes two sessions of continuous
annotations and a survey with a choice between both videos
and demographic information. The results show a higher cor-
relation between BTrace and the discrete method than Rank-
Trace and are encouraging for the use of this new methodology
in addition to the existing methods. We conclude that this
study can establish an additional path for agent believability
assessment. It also presents many options for future work,
including experiments with more games, larger datasets, other
types of human-computer interaction and modelling.
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