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Abstract—This paper presents an approach to the Mario AI
Benchmark problem, using the A* algorithm for navigation, and
an evolutionary process combining routines for the reactiveness
of the resulting bot. The Grammatical Evolution system was
used to evolve Behaviour Trees, combining both types of
routines, while the highly dynamic nature of the environment
required specific approaches to deal with over-fitting issues. The
results obtained highlight the need for specific algorithms for
the different aspects of controlling a bot in a game environment,
while Behaviour Trees provided the perfect representation to
combine all those algorithms.

I. INTRODUCTION

Computer games can be an extremely challenging bench-
mark for Evolutionary Algorithms, and for Artificial Intel-
ligence in general. The challenges presented go from static
or dynamic path planning and single move optimisation, to
adaptation in dynamic environments, learning and coopera-
tive behaviours. Extra challenges include the need for human-
like behaviours, avoidance of repetitiveness, and conformity
to the ability of human-opponents.

Evolutionary algorithms can help to solve some of these
problems, making them particularly suitable for certain game
environments. Their stochastic nature, along with tunable
high- or low-level representations, contribute to the discovery
of non-obvious solutions, while their population-based nature
can contribute to adaptability, especially in dynamic envi-
ronments. There are also drawbacks, however: traditionally,
the games industry tends to adopt traditional, classic AI
algorithms, such as A*, min-max and others, due to their
field-tested reliability, versus the stochastic, variable nature
of evolutionary algorithms.

The main objective of this paper is to investigate the
applicability of Genetic Programming [13] (GP) systems to
evolve Behaviour Trees [9] (BTs), in order to improve the
reactiveness of agents in dynamic game environments.

Behaviour Trees (BTs) were introduced as a way to
encode formal system specifications [9]. Recently, they have
also been used to encode game AI in a modular, scalable
and reusable manner [7]. They have been used in high-
revenue commercial games, such as Halo [11] and Spore
[17], smaller indie games, such as Façade [19], and many
other unpublished uses [7], which illustrate their flexibility
and growing importance in the commercial game AI world.
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The Mario AI Benchmark [31] was used, as it provides this
kind of environment, with a series of obstacles to bypass, all
the while avoiding (or eliminating) enemies and collecting
bonuses as coins or items. The reactive nature of BTs can be
used as a powerful representation for dynamic environments,
and the flexibility provided by Grammatical Evolution [23]
(GE) facilitates the evolution of behaviour tree structures,
and their evaluation in a live play scenario.

One of the major challenges faced in this environment
is the combination of navigation and reactiveness, in order
to achieve the ultimate goal (reach the end of each level).
On one hand, Mario has to deal with enemies and other
dynamic objects that can hurt him or power him up, so there
is the need of instant, reactive behaviour. On the other hand,
Mario has to advance through the level in order to reach its
end, dealing with structural hazards (jumps, traps, etc.), that
require some kind of path planning. The approach described
here uses an A* implementation to dynamically devise a
path through each level, while BTs, driven by evolution, are
responsible for the reactive behaviour of the agent.

This paper starts by giving some literature background.
The Mario AI Benchmark environment is then described,
followed by an overview of the path finding algorithm
used for navigation. An introduction to Behaviour Trees
follows, detailing their specific application to the problem;
this is followed by a section detailing the application of
the Grammatical Evolution system. Finally, the experimental
setup and results obtained are discussed.

II. RELEVANT LITERATURE

The literature provides us with some examples of using
evolutionary computation algorithms to control AI agents in
game environments. In terms of anticipating and reactive
behaviour, examples include the work of Nason and Laird
[22], who proposed an approach to add anticipation to bots
in the Quake game, using reinforcement learning; and that
of Thurau et al. [29], who produced agents that try to learn
desirable behaviour based on imitation of already existing
players, by training a neural network on data gained from
human players. Mora et al. [18] used a Genetic Algorithm to
fine-tune parameters of an existing AI bot code, and Genetic
Programming to change the default set of rules or states
that define a behaviour; and finally, Priesterjahn[26] used
Evolution Strategies to evolve bot players in the Quake III
game, by using an evolutionary process to create and select
input/output rules, with inputs being a grid representation of
the world around the bot, along with an associated action.
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The work of Lim et al. [14] specifically dealt with evolving
behaviour tree structures. It used GP to evolve AI controllers
for the DEFCON game; the final evolved tree was pitted
against the standard DEFCON AI controller, and achieved a
success rate superior to 50%. Some hurdles were encountered
in this work, such as how to deal with the exchange of typed
tree structures between individuals; these, amongst others,
are easily dealt with by using grammar-based GP systems.
An earlier version of the work described in the current paper
highlighted that [24]: the Grammatical Evolution system was
applied to the Mario AI Benchmark, evolving Behaviour Tree
controllers.

The literature is also broad in terms of using path planning
for navigation, both in robotics [16] and in games, such as
Unreal Tournament, Quake III or Half Life [4]. The most
common algorithm used for path finding is A*, because of
its great performance, accuracy and efficiency [3].

In the Computational Intelligence and Games (CIG) 2009
conference, the three top entries for the Mario AI Cham-
pionship, by Robin Baumgarten, Peter Lawford and Andy
Sloane [30], used an A* algorithm to manage local navi-
gation. Additionally, the CIG 2010 Mario AI Championship
was won by Slawomir Bojarski [5], who also implemented
an A* to determine keystrokes for high level actions.

Furthermore, path planning algorithms are usually com-
bined with other reactive behaviours or systems, such as
general planning, obstacle avoidance, speech or 3D anima-
tion [6].

III. THE MARIO AI BENCHMARK

The Mario AI Benchmark was used for the experiments
described in this paper. This benchmark is an open source
software, developed by Togelius et al. [31], and it was used
in the 2010 Mario AI competitions. It allows the creation of
agents that play the game, by providing two methods: one to
retrieve and process environment information, and the other
to specify the actions of the bot.

A. Environment information

All the information that can be used to analyse the world
around Mario is given in two matrices (21x21). Each of
these provides data about the geometry of the level, and the
enemies that populate it. These arrays are centred around
Mario, so 10 grid cells in each direction from the position
of Mario can be processed every cycle (see Fig. 1).

Fig. 1. Matrix centred in Mario.

Additionally, three different levels of detail can be spec-
ified to retrieve data in both arrays, depending on the
information we are looking for. Zoom 0 represents the world
with a different integer for each entity in the game, whereas
Zoom 2 gives the simplest possible representation, 1 meaning
enemy (or obstacle) presence and 0 absence of it. As a mid
term, Zoom 1 categorizes the information in useful groups,
such as enemies that can be killed by stomping, those that
can be killed by shooting, different types of blocks, etc.

Apart from this information, more useful input represents
the current state of the game. The Mario position is a pair of
values that indicates the coordinates in pixels of Mario in the
level. The Mario status details the state of the game: running,
win or dead. During the game, Mario can be small or big,
with or without being able to fire, which is represented by
Mario’s mode. There are also some Mario state indicators,
that provide data such as the ability of Mario to shoot and
jump, the time left for the level and whether Mario is on the
ground or not. Finally, some Mario kill statistics are also
available, such as the number of enemies killed and how
they died (by stomp, by fire or by shell bashing).

B. Mario effectors

The actions that can be performed by Mario are all the
different inputs that a human player could use with a control
pad. They are represented as a boolean array, where each
control has a concrete index assigned.

The controls that may be used are the directions (Left,
Right, Up and Down), a button for jumping and a command
to both fire and speed up. Going faster only works if Mario is
moving to the right or left. Jumps while pressing this button
also make Mario reach farther platforms.

IV. DELIBERATIVE VS. REACTIVE: A* FOR NAVIGATION

The implementation proposed in this paper controls how
Mario moves through the level in two different points of
view: reactive and deliberative (or path planning).

A. Reactive behaviours

Reactive behaviours are concerned with all the elements in
the game that can change their position. In this case, entities
that move are enemies, such as evil mushrooms, bullets or
flying turtles, which can follow different types of trajectories.
Also included in this category are items that can appear in
the level after pushing brick blocks, like bonus mushrooms
(which make Mario big) and fire flowers (which give Mario
the ability to shoot).

In this agent, the Grammatical Evolution algorithm is in
charge of managing the reaction to these entities, through
the evolution of Behaviour Trees; these systems and their
combination are detailed in Sections V and VI.

B. Path planning with A*

In order to use A* for navigation, a graphical representa-
tion of the level is required. The Mario Benchmark does not
provide any graph, or even a map, of the level that is being
played. Furthermore, the level geometry can change during
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the game: Mario can break blocks and new paths are created.
For this reason, the creation process of the map (and, hence,
the graph) is executed frequently. In this section, this map
and graph creation process is explained in detail.

a) Building the map of the level: The first problem that
must be faced when dealing with path planning is the world
representation. In the case of the Mario Benchmark, the agent
has no access to the map of the level, so it has to build one
as Mario is moving through it. The only way to examine the
environment is to read the information available in the level
matrices.

However, this information is relative to Mario’s position
(from now on, local coordinates), while the map of the level
should be built in absolute values (or world coordinates).
Furthermore, Mario’s position is provided in pixels with the
origin at the upper left corner of the beginning of the level,
whereas the local information matrix gives the information
in grid cells units. For instance, Mario could be at (225, 53)
while a brick block has been detected in (+1, -2).

Knowing that every cell block is equivalent to a 16x16
pixels square, we can easily translate the coordinates from
local to world system. In the previous example, Mario would
be in the coordinates (225/16, 53/16) = (14, 3), and the
brick block in (14 + 1, 3− 2) = (15, 1).

Using this conversion system, we can determine the posi-
tion of every unit in the level in a discrete grid. Fig. 2 shows
a portion of a level, and Fig. 3 shows the translation of this
portion to a discrete coordinate system.

Fig. 2. Segment of a level in the Mario Benchmark’s view.

Fig. 3. Representation of the level map.

It is important to note that this map is being created for
navigation, so blocks that do not affect movement (items,
enemies or coins) are not taken into account.

b) Identifying nodes for the graph: Once a representa-
tion of the geometry of the level is available, a graph for the

A* algorithm can be built. Given the format of the data, the
best solution is to build a tile-based graph approximation.

The first decision to make is where to place the nodes (or
vertices) of the graph within the map; those will be those
points in the map where Mario can stand. In Fig. 4, the
nodes of the graph are depicted as dots.

Fig. 4. Representation of the level map and graph nodes.

Two important observations can be made. First, some
nodes are created for the graph that are not accessible; that
is the case of the nodes inside the ceiling of the dead end.
While Mario cannot actually reach those locations, the data
representation given by the benchmark allows him to stand
there. However, this does not represent a problem, because
the creation process of the edges will ignore the nodes that
cannot be reached by the bot.

Secondly, useful information about what is over each
node is stored in these vertices as meta-data: some of them
can be seen in the map (depicted as different dots), such
as question mark blocks, brick blocks or rough obstacles.
But more information is stored, such as enemies, items and
coins, as that information will be used to execute other (non-
navigational) actions.

c) Creating edges for the graph: Once the nodes have
been created, it is time to add the edges that link them to
the graph. Most of the grid graph solutions in games are
used considering the map as seen from a zenithal perspective,
whereas in this case the map is built considering the view
of the player. This fact introduces an important change:
horizontal and vertical edges of the graph cannot be used in
the same way. The edge creation process analyses the nodes
(and their meta-data) in order to finish the graph construction,
generating different kinds of links:

• Walk links: These edges join two nodes that are hori-
zontally adjacent. For instance, a node in (X,Y ) could
be linked with the nodes (X − 1, Y ) and (X + 1, Y )
using this type of edge. These are the simplest ones, they
can be used just by using the right (or left) actions, and
they are bidirectional.

• Jump links: These are unidirectional edges that can be
used to jump to a node that is over the starting node
(with a maximum jump height, H) and at one unit to
the left or right. An edge like this, starting at (X,Y ),
could link nodes from (X−1, Y+M) to (X+1, Y+M),
where M goes from 1 to H .

• Special jump link: There are some level formations that
can be jumped from the bottom up, keeping the same
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vertical. For those edges, a special case of jump link is
created where Xorigin is the same as Xdestination.

• Fall link: These edges are used to join those nodes that
are next to each other in X , but at a lower Y . A subset
of these links are the opposite ones to each jump link.
In other words, those links that can be used to jump
in one direction, can also be used to fall in the other
way. It is important to make this distinction, because
while the former have to be managed by jumping, the
latter must be gone through moving in one direction and
managing the fall in order to land in the proper place. In
coordinates, we can say that these edges start at (X,Ya)
and link nodes from (X − 1, Yb) to (X +1, Yb), where
Yb < Ya. If M = Yb − Ya, and M is lower than the
maximum height jump, there will be an equivalent jump
link edge in the opposite direction.

• Faith jump link: These edges are used to link nodes
that are separated horizontally by more than one unit,
and with a maximum vertical distance. Again in coordi-
nates, a node from (X,Y ) can be linked using this edge
type with any other in the range from (X−N,Y −M) to
(X+N,Y +M), where N goes from 2 to a maximum
horizontal distance D and M from 1 to a maximum
vertical distance H .

• Break jump link: These edges are very similar to the
normal jump links, but in this case there is a brick
block in the trajectory of the jump, concretely in the
vertical of the node where the edge starts. If Mario
jumps to hit this block, and it breaks, the path to the
destination will be freed so he can jump again to arrive
at the destination. However, there is a possibility that
the block does not break (it can become a solid non-
breakable block instead of disappearing) and the link
cannot be used. Nevertheless, as stated before, as the
map and graph are constantly generated, this link will
not be created again.

Most of these link nodes are represented in Fig. 5, where
the whole graph of this section of the map can be seen.

Fig. 5. Navigation graph representation. Different types of edges: A: Walk
link. B: Jump link. C: Fall link. D: Faith jump link. E: Break jump link.

Apart from all these edge types, another modifier needs
to be taken into account. As Mario can be small or big, that
affects navigation. There are some edges that are only usable
if Mario is small, as in this case he needs only one cell for his
body to pass through. Making these distinctions for all the
types of edges is crucial for the navigation, and not only for

accessibility or otherwise of graph nodes: this information
is also used to calculate the cost of each edge of the graph
used by the A*.

The basic cost of an edge is calculated using the Man-
hattan distance between its nodes. However, the associated
cost must be different depending on the link type: the cost
of travelling an edge walking must be lower than jumping,
because navigation takes more time to calculate the jump,
it needs landing management and a higher risk (it is more
likely to miss a jump than a simple walk movement). For
this reason, the basic cost of each link that involves a jump
is multiplied by 1.5, with the exception of the break jump
link, that is multiplied by 3 because of its complexity.

C. Reactive and Path Planning together

An important question stills needs to be answered: how
to combine both behaviours, reactive and deliberative, to
enable Mario to follow paths and react to enemies at the
same time. This is handled by the behaviour tree, by having
a default behaviour that follows the last path established and
a set of sub-trees with higher priority actions that manage
the reactiveness of the bot. This organisation will be seen in
detail in the section VI-B, where the default behaviour tree
structure is described.

V. BEHAVIOUR TREES

A. Introduction

Behaviour Trees are an excellent data structure to organise
behaviours in a hierarchical way, in order to establish a
descending order of complexity; broad behavioural tasks are
at the top of the tree, and are broken down into several sub-
tasks. For example, a soldier in a first-person shooter game
might have a behaviour AI that breaks down into patrol,
investigate and attack tasks. Each of these can then be further
broken down: attacking for example will require movement
tactics, weapon management, and aiming algorithms. These
can be further detailed, up to the level of playing sounds or
animation sprites.

BT nodes can be divided into two major categories:
Control Nodes and Leaf Nodes. Control nodes drive the
execution flow through the tree, deciding which node is the
next to be executed, and can be classified into Sequence
nodes, Selector nodes, and Filter nodes (see Section V-B).
Leaf nodes can be Actions or Conditions; the first make
decisions and carry out specific tasks, while the second
usually make queries about the game state.

B. Behaviour Trees for Mario

It is important to understand the engine mechanics when
designing BTs for a specific game, as well as its data flow.
In this case, at every step, a set of pressed buttons is required
to move Mario. This affects how to run a given BT: control
nodes and conditions will be executed until an action node is
reached. For instance, an action to walk right safely will run
a certain number of checks, until reaching a Right action;
when the BT reaches this action, it finishes its execution
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for this cycle, resuming from that point in the tree in the
following step.

Another important decision regarded which nodes to pro-
vide for the BT. Regarding control nodes, the following
were programmed: sequence nodes (which execute all their
children from left to right until one fails, behaving like a
logic AND): selector nodes (which execute their children
until one succeeds, the equivalent of an OR); and filters,
including Loops, which execute a node a specified amount
of times, Non, which negates the result of a node, and
UntilFailsLimited, which executes a node until fail-
ure, or an execution limit is reached.

The leaf nodes encoded can be grouped in three categories:
• Conditions. Using the environment information avail-

able (see III-A), these check the level for enemies and
obstacles. For enemies, they consider if there are any
close by, their location, and their type; for obstacles,
they query the position of blocks near Mario. Examples
include EnemyAhead, and UnderQuestion.

• Actions. These are the possible movements of Mario
(see III-B). The actions programmed for the BT are
the most interesting button combinations: actions like
Down, Fire, RunRight (where Right and Run are both
pressed), NOP (no buttons pressed) or WalkLeft. There
is also a family of actions devoted to the task of
getting a path to a concrete location: the actions Get-
PathToRightMostPosition, GetPathToClosestQuestion or
GetPathToClosestItem are examples of members of this
family. Some actions, however, require a button to be
pressed more than once: for instance, to make long
jumps, the longer the Jump button is pressed, the farther
the jump will be. This problem can be solved with the
elements of the next category.

• Sub-trees. These are manually designed BTs, to solve
specific problems. For example, to make jumps, the
jump button is required to start unset, followed by
several cycles with the button pressed. This can be
achieved by using different types of nodes, such as
Loop filters, that in this case are used to repeat the press
of the jump button for several cycles. Different sub-
trees were programmed for jumps, like JumpRightLong,
VerticalJumpLong or JumpRightRunLong.

VI. GRAMMATICAL EVOLUTION

As seen before, the control of Mario’s behaviour through-
out the game is controlled by a BT, which alternates between
enemy management sections (reactive) and navigation sec-
tions (path planning). The actual structure of the BT was
evolved with Grammatical Evolution [23] (GE), presented
next.

GE is a grammar-based form of GP [15] that specifies the
syntax of possible solutions through a context-free grammar,
which is then used to map integer strings to syntactically
correct solutions. Those integer strings can therefore be
created by any search algorithm.

One of the key characteristics of GE is that the syntax of
the resulting solutions is specified through a grammar. This

<BT> ::= <BT> <Node> | <Node>
<Node> ::= <Condition> | <Action>
<Condition> ::= if(obstacleAhead) <Action>;

| if(enemyAhead) <Action>;
<Action> ::= moveLeft; | moveRight;

| jump; | shoot; | crouch;

Fig. 6. Illustrative grammar for an approach to a generic shooting game.

facilitates its application to a variety of problems with relative
ease, and explains its usage for the current application.

GE employs a genotype-to-phenotype mapping process:
variable-length integer strings are evolved, typically with
a Genetic Algorithm [10], and are then used to choose
production rules from a grammar, which create a phenotypic
program, syntactically correct for the problem domain. Fi-
nally, this program is evaluated, and its fitness returned to
the evolutionary algorithm.

A. Example Mapping Process

To illustrate the mapping process, consider the grammar
in Fig. 6. Using the integer string (4, 5, 3, 6, 8, 5,
8, 1), the first value is used to choose one of the two
productions of the start symbol <BT>, through the formula
4%2 = 0, i.e. the first production is chosen, so the mapping
string becomes <BT><Node>.

The following integer is then used with the first unmapped
symbol in the mapping string, so through the formula 5%2 =
1 the symbol <BT> is replaced by <Node>, and thus the
mapping string becomes <Node><Node>.

Proceeding in this fashion, the mapping string then be-
comes <Action><Node> through the formula 3%2 =
1, and through 6%5 = 1 it becomes moveRight;
<Node>. After all symbols are mapped, the final pro-
gram becomes moveRight; if(enemyAhead) then
shoot;, which could be executed in an endless loop.

Sometimes the integer string may not have enough values
to fully map a syntactic valid program; several options are
available, such as reusing the same integers (in a process
called wrapping[23]), assigning the individual the worst
possible fitness, or replacing it with a legal individual. In this
study, an unmapped (hence invalid) offspring is replaced by
his (valid) originating parent.

B. Using GE to evolve BTs

The BT (XML) syntax was specified in the grammar, and
all conditions (18), actions (15), sub-trees (14) and filters (4)
were available. In the first version of this work [24], it was
shown that restricting the structure of BTs was necessary,
in order to avoid the evolution of syntactically correct but
semantically non-sensical BTs; this was achieved with a
carefully designed grammar. The trees that can be evolved,
although still of variable size, are contrived to follow an and-
or tree structure [21], much like a binary decision diagram
[1], which is a recommended [8] way of building behaviour
trees for game AI. The following structure was decided upon:
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• The root node consists of a selector
(rootSelector), with a variable number of
sub-trees (BehaviourBlocks);

• Each BehaviourBlock consists of a sequence of one
or more conditions, followed by a sequence of actions
(filtered or not);

• A last (unconditioned) BehaviourBlock, called
DefaultPathPlanner, carries out the A* path plan-
ning behaviour.

Fig. 7 illustrates the syntax described; it works as fol-
lows. When the BT is executed, the rootSelector
will choose one BehaviourBlock to execute, based
on the conditions associated with each one, on a left-
to-right priority order; if none of those conditions fires,
then the DefaultPathPlanner is executed. As the
high-level conditions available are quite complex, it made
sense to limit the number of these associated with each
BehaviourBlock; this is easily done through the gram-
mar, and in our experiments, there were only one or two
conditions associated with each block. The number of actions
and sub-trees in the associated sequence was unlimited.

Fig. 7. Structure of evolved behaviour trees.

The DefaultPathPlanner is the last block in this
sequence, and hence it has the lowest execution priority: it
will only be executed if none of the previous blocks were.
It is composed of two sub-trees, with a selector node as a
parent of both. The first sub-tree is depicted in Fig. 8; it is
in charge of calculating the default path to be followed.

defaultPathPlanner

recalculate pathPlanner

isFollowingPath

noPathActionpathToRightMost jumpRightRunLong

isCloseToEnd

non

non

jumpRight

loop

Fig. 8. First sub-tree for path planning. It calculates, if needed, the path
to the rightmost position available.

Its root is a sequence node with two children. The first one
(Recalculate) decides if the default path has to be calculated.
That can happen when no item is being targeted, or when
a path has been set but is about to be finished. Note that

the former reason allows potential paths requested by the
reactive part not to be overwritten by the default planner.

The second child (Path Planner), executed if the one
before is successful, calculates the path to the right most
position in the map (which is the direction to follow to the
level end). In the unusual case of not finding a path, Mario
enters an emergency situation: in order to keep moving, a
default forward jump is executed.

Finally, the second sub-tree checks if a path has been set
and, if that is the case, executes the action in charge of
following the path.

C. Extensions to GE

With the syntax described above, each
BehaviourBlock becomes a self-contained structure,
and it makes sense to allow individuals to exchange
these between them. To this end, specific crossover points
were encoded in the grammar, bounding these blocks for
exchange. This is a recent technique [20] in which a special
grammar symbol is used to label crossover points; the search
algorithm then only slices an individual according to these
points. We extended this by using a two-point crossover,
effectively creating an operator much like sub-tree crossover
in GP [13], but allowing the exchange of different numbers
of blocks between individuals. Without these markers, the
standard 1-point crossover as used in standard GE would
provide more exploration but less exploitation, and given
the expensiveness of the fitness function, a trade-off seemed
to make sense.

Finally, an individual is allowed to crossover with him-
self, thus creating a sub-tree swap operation; this makes
sense, as a mean to increase (or decrease) the priority of
a BehaviourBlock: the further to the left (right) within
the rootSelector, the bigger (smaller) the likelihood of
execution of a block.

D. Generalisation Issues

A difficulty with such a dynamic problem is that of
generalisation performance. In the Mario AI competition
[31], the off-line generated controllers are tested in a series
of randomly-generated maps; the difficulty of these maps
can be drastically different, ranging from surprisingly easy
to virtually impossible (for the same difficulty level). Taking
this into account, three approaches were tested to evolve BTs
with GE:

• Run5: test each controller in five random sets of maps,
which are never changed throughout the evolutionary
cycle (and indeed are the same for all runs);

• Change1: only test one level, but change the random
seed of that level at every generation (same set of seeds
for each run), reevaluating the parent population with
the new map only, thus allowing for more evolution
cycle generations for the same amount of evaluations;

• Run1: always test in one “typical” level (same seed
for all runs), assuming that the agent is presented with
enough enemy and obstacle diversity to evolve good
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reactiveness routines, allowing for the biggest number
of evolution cycle generations.

VII. EXPERIMENTS

A. Setup

The experimental parameters used are shown in Table I.
All individuals in the initial generation were valid [27], and
a variation of tournament selection was used, which ensures
that each individual participates at least in one tournament
event. Also, the mutation rate was set such that, on average,
one mutation event occurs per individual (regardless of their
size).

TABLE I
EXPERIMENTAL SETUP

Population Size 500
Evaluations 125000
Derivation-tree Depth Range (for initialisation) 20. . . 30
Tail Ratio (for initialisation) 50%

GE Selection Tournament Size 1%
Elitism (for generational replacement) 10%
Marked 2-point Crossover Ratio 50%
Marked Swap Crossover Ratio 50%
Average Mutation Events per Individual 1

Mario Level Difficulties 0. . . 4
Level Types 0 1
Level Lengths 320

Each evaluation is comprised of 10 levels (5 difficulty
settings, with two types of map each). All three approaches
(Run5, Change1 and Run1) were tested on 30 different runs,
for statistical purposes. The individual fitness value, to be
maximized, is a weighted sum of distance travelled and some
other factors, like enemy kills and collected items.

B. Results

Fig. 9 shows the mean best individual fitness, for all three
approaches, averaged across all runs. The graph shows that
the Run1 approach was quite successful at optimising the
controller behaviour, for the map that it was tested on. The
Run5 approach also shows improvement over time, albeit at a
lower rate. Finally, the Change1 approach seems quite noisy,
which is a clear indication of the extreme range of difficulty
of maps generated with different random seeds, even with
the same difficulty setting.

A generalisation test was also devised, which consisted of
360 unseen levels (20 different random seeds, each gener-
ating 9 difficulty levels, with two types of map each). The
best individual at every 5000 evaluations was tested, and the
averaged results across all runs are shown in Fig. 10.

The results show interesting differences between the three
approaches. The Run1 approach starts by improving its score,
but very rapidly worsens it. This is a clear sign of over-fitting:
the evolved controllers were tested in a single map, and a
comparison with Fig. 9 shows that, despite an improving
training score, the generalisation score keeps worsening.

The Run5 approach shows the most stable results. The
generalisation score improves over time, albeit slowly; with
a limited number of maps to train on, the evolved controllers
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Fig. 9. Mean best individual score for all three approaches, averaged across
30 independent runs.

 50500

 51000

 51500

 52000

 52500

 53000

 53500

 0  20000  40000  60000  80000  100000  120000

Fit
ne

ss

Evaluations

Mean Best Generalisation Score
Run1Run5Change1

Fig. 10. Generalisation score of the best individual every 50000 evalua-
tions, for all three approaches, averaged across 30 independent runs.

quickly converge to an overall average behaviour, as seen
in Fig. 9, and with evolution stagnated (roughly after 80000
evaluations), there is little or no generalisation improvement.

Finally, the results of the Change1 approach are the most
interesting. These highlight once again the variety of scores
that can be achieved with differently seeded maps. Although
the generalisation score is very irregular, there is an overall
trend to improve it across time, and the scores achieved are
the best of all three approaches.

VIII. CONCLUSIONS

This paper presented an extension of previous work [24],
evolving Behaviour Trees for the Mario AI Benchmark. The
A* algorithm was applied in a dynamic manner, constantly
providing path planning routines that were combined with
reactive routines in BTs; these trees were then evolved using
Grammatical Evolution.

The combination of a Genetic Programming type algo-
rithm with BTs provided a flexible approach. The resulting
solutions are human readable, and thus easy to analyse and
fine-tune, which aims at one of the main concerns of the
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game industry regarding evolutionary approaches, as stated
early in section I. Also, the use of a grammar allows full
syntactic control of the resulting BTs, providing full control
of their breadth, depth, and overall complexity. Finally, the
combination of a carefully designed syntax with specific
crossover locations allows the definition and exchange of
meaningful behaviour blocks, accelerating the evolutionary
process.

One of the potential drawbacks of using a stochastic
algorithm is the need for an evolutionary process, making
online learning difficult (and sometimes impossible). By
applying the A* algorithm in a dynamic manner, however,
the evolved behaviours remain adaptive, particularly in what
concerns navigation.

The experiments and results presented are relevant in many
aspects. They highlight the dynamic nature of game environ-
ments; with such a multitude of possible environments and
situations to face (and the disparity of possible fitness scores),
there is a real risk of over-fitting to specific game situations,
and experimental design is of the utmost importance. Of
all the approaches presented, the one with the best results
reevaluated all individuals at each generation in a new set of
unseen maps; this resulted in a very noisy fitness landscape,
but in the end provided the best generalisation results.

Future work will aim to improve these results. There exists
a wide body of research work dealing with the problem
of over-fitting, and techniques such as using training and
generalisation sets for early stopping of the evolutionary
process [25], or sliding windows of training cases [32],
should provide better generalisation scores. It will also be
interesting to compare the performance of the GE algorithm
with similar ones, as for instance a strongly typed tree-based
Genetic Programming approach.

Finally, a controller combining all the techniques described
in this paper will be submitted to the Mario AI Benchmark
competition [12], allowing its comparison with other existing
approaches.
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