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Abstract—The General Video Game AI (GVGAI) competition
and its associated software framework provides a way of bench-
marking AI algorithms on a large number of games written in a
domain-specific description language. While the competition has
seen plenty of interest, it has so far focused on online planning,
providing a forward model that allows the use of algorithms such
as Monte Carlo Tree Search.

In this paper, we describe how we interface GVGAI to the
OpenAI Gym environment, a widely used way of connecting
agents to reinforcement learning problems. Using this interface,
we characterize how widely used implementations of several deep
reinforcement learning algorithms fare on a number of GVGAI
games. We further analyze the results to provide a first indication
of the relative difficulty of these games relative to each other,
and relative to those in the Arcade Learning Environment under
similar conditions.

I. INTRODUCTION

The realization that video games are perfect testbeds for
artificial intelligence methods have in recent years spread to
the whole AI community, in particular since Chess and Go
have been effectively conquered, and there is an almost daily
flurry of new papers applying AI methods to video games.
In particular, the Arcade Learning Environment (ALE), which
builds on an emulator for the Atari 2600 games console and
contains several dozens of games [1], have been used in
numerous published papers since DeepMind’s landmark paper
showing that Q-learning combined with deep convolutional
networks could learn to play many of the ALE games at
superhuman level [2].

As an AI benchmark, ALE is limited in the sense that
there is only a finite set of games. This is a limitation it has
in common with any framework based on existing published
games. However, for being able to test the general video game
playing ability of an agent, it is necessary to test on games on
which the agent was not optimized. For this, we need to be able
to easily create new games, either manually or automatically,
and add new games to the framework. Being able to create
new games easily also allows the creating of games made to
test particular AI capacities.

The General Video Game AI (GVGAI) competitions and
framework were created with the express purpose of pro-
viding a versatile general AI benchmark [3], [4], [5], [6].
The planning tracks of the competition, where agents are
given a forward model allowing them to plan but no training
time between games, have been very popular and seen a
number of strong agents based on tree search or evolutionary
planning submitted. A learning track of the competition has
run once, but not seen many strong agents, possibly because
of infrastructure issues. For the purposes of testing machine
learning agents (as opposed to planning agents), GVGAI has
therefore been inferior to ALE and similar frameworks.

In this paper, we attempt to rectify this by presenting a
new infrastructure for connecting GVGAI to machine learning
agents. We connect the framework via the OpenAI Gym
interface, which allows the interfacing of a large number
of existing reinforcement learning algorithm implementations.
We plan to use this structure for the learning track of the
GVGAI competition in the future. In order to facilitate the
development and testing of new algorithms, we also pro-
vide benchmark results of three important deep reinforcement
learning algorithms over eight dissimilar GVGAI games.

II. BACKGROUND

A. General Video Game AI

The General Video Game AI (GVGAI) framework is a Java-
based benchmark for General Video Game Playing (GVGP)
in 2-dimensional arcade-like games [5]. This framework offers
a common interface for bots (or agents, or controllers) and
humans to play any of the more than 160 single- and two-
player games from the benchmark. These games are defined
in the Video Game Description Language (VGDL), which was
initially proposed by Ebner et al. [3] at the Dagstuhl Seminar
on Artificial and Computational Intelligence in Games.

VGDL [7] is a game description language that defines 2-
dimensional games by means of two files, which describe the
game and the level respectively. The former is structured in
four different sections, detailing game sprites present in the



game (and their behaviors and parameters), the interactions
between them, the termination conditions of the game and the
mapping from sprites to characters used in the level description
file. The latter describes a grid and the sprite locations at the
beginning of the game. These files are typically not provided to
the AI agents, who must learn to play the game via simulations
or repetitions. More about VGDL and sample files can be
found on the GVGAI GitHub project1.

The agents implement two methods to interact with the
game: a constructor where the controller may initialize any
structures needed to play, and an act method, which is called
every game frame and must return an action to execute at
that game cycle. As games are played in real-time, the agents
must reply within a time budget (in the competition settings, 1
second for the constructor and 40ms in the act method) not
to suffer any penalty. Both methods provide the agent with
some information about the current state of the game, such
as its status (if it is finished or still running), the player state
(health points, position, orientation, resources collected) and
anonymized information about other sprites in the game (so
their types and behaviours are not disclosed). Additionally,
controllers also receive a forward model (in the planning
setting) and a screen-shot of the current game state (in the
learning setting).

The GVGAI framework has been used in a yearly competi-
tion, started in 2014, and organized around several tracks. Be-
tween the single- [4] and the two-player [8] GVGAI planning
competitions, more than 200 controllers have been submitted
by different participants, in which agents have to play in
sets of 10 unknown games to decide a winner. These tracks
are complemented with newer ones for single-player agent
learning [9], [6], level [10] and rule generation [11]. Beyond
the competitions, many researchers have used this framework
for different types of work on agent AI, procedural content
generation, automatic game design and deep reinforcement
learning, among others [6].

In terms of learning, several approaches have been made
before the single-player learning track of the GVGAI com-
petition was launched. The first approach was proposed by
Samothrakis et al. [12], who implemented Separable Natural
Evolution Strategies (S-NES) to evolve a state value function
in order to learn how to maximize victory rate and score in
10 games of the framework. Samothrakis et al. [12] compared
a linear function approximator and a neural network, and two
different policies, using features from the game state.

Later, Braylan and Miikkulainen [13] used logistic regres-
sion to learn a forward model on 30 games of the framework.
The objective was to learn the state (or, rather, a simplification
consistent of the most relevant features of the full game state)
that would follow a previous one when an action was supplied,
and then apply this model in different games, assuming that
some core mechanics would be shared among the different
games of the benchmark. Their results showed that these

1https://github.com/EssexUniversityMCTS/gvgai/wiki/VGDL-Language

learned object models improved exploration and performance
in other games.

More recently, Kunanusont et al. [14] interfaced the GVGAI
framework with DL4J2 in order to develop agents that would
learn how to play several games via screen capture. 7 games
were employed in this study, of increasing complexity and
screen size and also including both deterministic and stochastic
games. Kunanusont et al. [14] implemented a Deep Q-Network
for an agent that was able to increase winning rate and score
in several consecutive episodes.

The first (and to date, only) edition of the single-player
learning competition, held in the IEEE’s 2017 Conference
on Computational Intelligence in Games (CIG2017), received
few and simple agents. Most of them are greedy methods or
based on Q-Learning and State-Action-Reward-State-Action
(SARSA), using features extracted from the game state. For
more information about these, including the final results of the
competition, the reader is referred to [6].

B. Deep Reinforcement Learning

A Reinforcement Learning (RL) agent learns through trial-
and-error interactions with a dynamic environment [15] and
balance the reward trade-off between long-term and short-
term planning. RL methods have been widely studied in many
disciplines, such as operational research, simulation-based op-
timization, evolutionary computation and multi-agent system,
including games. The cooperation between the RL methods
and Deep Learning (DL) has led to successful applications in
games. More about the work on Deep Reinforcement Learning
till 2015 can be found in the review by J. Schmidhuber [16].
For instance, Deep Q-Networks has been combined with RL to
play several Atari 2600 games with video as input [17], [2].
Vezhnevets et al.[18] proposed STRategic Attentive Writer-
exploiter(STRAWe) for learning macro-actions and achieved
significant improvements on some Atari 2600 games. Al-
phaGo, combined tree search with deep neural networks to
play the game of Go and self-enhanced by self-playing, is
ranked as 9 dan professional [19] and is the first to beat
human world champion of Go. Its advanced version, AlphaGo
Zero [20] is able to learn only by self-playing (without the
data of matches played by human players) and outperforms
AlphaGo.

During the last few years, several authors have improved
the results and stability obtained with the original Deep Q-
Networks paper. Wang et. al. [21] introduces a new architec-
ture for the networks know as dueling network, this new ar-
chitecture uses two separate estimators: one for the state value
function and one for the state-dependent action advantage
function. The main benefit of this factoring is to generalize
learning across actions without imposing any change to the
underlying reinforcement learning algorithm.

Mnih et. al., in 2016, successfully applied neural networks
to actor-critic RL [22]. The network is trained to predict both
a policy function and a value function for a state, the actor

2Deep Learning for Java: https://deeplearning4j.org/



and the critic. Asynchronous Advantage Actor-Critic, A3C,
is inherently parallelizable and allows for a big speedup in
computation time. The interaction between the policy output
and the value estimates has been shown to be relatively stable
and accurate for neural networks. This new approach increases
the score obtained from the original DQN paper, reducing the
computational time by half even without using CPU.

C. OpenAI Gym

RL is a hot topic for the research community of artifi-
cial intelligence. Recent advances that combine DL with RL
(Deep Reinforcement Learning) have shown that model-free
optimization, or policy gradients, can be used for complex
environments. However, in order to continue testing new ideas
and increasing the quality of results, the research community
needs good benchmark platforms to compare results. This is
the main goal of OpenAI GYM platform [23].

The OpenAI GYM platform provides a high variety of
benchmark, such as Arcade Learning Environment (ALE) [24],
which is a collection of Atari 2600 video games. OpenAI Gym
has more environments for testing RL in different types of
environments. For example, MuJoCo is used to test humanoid
like movement in 2D and 3D.

III. METHODS

While one of the main benefits for GVGAI is the ease to
which new games can be created for a specific problem, we
also feel it is necessary to place the current GVGAI games
in the context of other existing environments. This serves two
purposes: it further demonstrates the strengths and weaknesses
of the current generation of reinforcement learning algorithms,
and it allows results achieved on GVGAI to be compared to
other existing environments.

A. GVGAI-OpenAI embedding

The learning competition is based on the GVGAI frame-
work, but no forward model is provided to the agents, thus
no simulations of a game are accessible. However, an agent
still has access to the observation of current game state, a
StateObservation object, provided as a Json object in String
or as a screen-shot of the current game screen (without the
screen border) in png format. At every game tick, the server
sends a new game state observation to the agent, the agent
returns either an action to play in 40ms or requests to abort
the current game. When a game is finished or aborted, the
agent can select the next level to play, among the existing
levels (usually 5 levels). This setting makes it possible to
embed the GVGAI framework as an OpenAI Gym so that the
reinforcement learning algorithms can be applied to learn to
play the GVGAI games. Thanks to VGDL, it is easy to design
and add new games and levels to the GVGAI framework.

The main framework is described in the manual by Liu
et al. [9], as well as the default rules in the framework.
Only 5 minutes is allowed to each of the agents for learning.
It is notable that only the decision time (no more than
40ms per game tick) used by the agent is included, while

the game advancing time, game state serialization time and
communication time between the client and agent are not
included. The real execution of the learning phase can last
several hours.

B. GVGAI Games

Figure 1: Screenshot of game Superman. In this game, inno-
cent civilians are standing on clouds while malicious actors
spawn around the edge of the screen and attempt to shoot the
clouds out from underneath them. If all the clouds are gone
the civilian will fall and only Superman can save them by
catching them for 1 point. Superman can also jail the villains
for 1 point. If Superman catches all the villains, the player
wins and earns an additional 1000 points.

The GVGAI environment currently has over 160 games and
counting. To showcase the environment and the challenges that
already exist we sample a number of games to benchmark
against popular reinforcement learning algorithms.

Our criteria for sampling games was informal but based on
several considerations. Since many of the games in the GVGAI
framework have been benchmarked with planning agents, we
can roughly rank the games based on how difficult these games
are for planning. We tried to get an even distribution across the
range going from games that are easy for planning agents, like
Aliens, to very difficult, like Superman. The game difficulties
are based on the analysis by Bontrager et al. [25]. Other things
we considered were having a few games that also exist in Atari
for some comparison and including games that we believed
would provide interesting challenges to reinforcement learning
agents. Some games in VGDL contain stochastic components
as well, mostly in the form of NPC movement. GVGAI has
five levels for each game, we used the first level for each game
for all the training.

We settled on Aliens, Seaquest, Missile Command, Boulder
Dash, Frogs, Zelda, Wait For Breakfast, and Superman. The
first five mentioned are modeled after their similarly named
Atari counterpart. Zelda consists of finding a target while
killing or avoiding enemies. Frogs is modeled after Frogger
which is also similar to the Atari Freeway game. Wait For
Breakfast (Figure 2) is a strange game where the player must
go to a breakfast table where food is being served a sit there
for a short amount of time. This is not usually what people
think of as a game but provides an interesting challenge for



bots. Finally, Superman (Figure 1) is a complicated game
that involves saving people in a dangerous environment with
no reward until the person is safe. A full version of our
implementation can be found on GVGAI GYM repository 3.

Figure 2: Screenshot of game Wait For Breakfast. In this
game, all tables are empty when a game starts. At a randomly
selected game tick, a waiter (in black) serves a breakfast to
the table with only one chair. The player (in green) wins the
game only if it sits on the chair on the table after the breakfast
is served and eats it. The player loses the game if it leaves the
chair once breakfast has been served without eating it.

C. Benchmarks

To have standardized results we decided to choose a few
popular reinforcement learning algorithms that are provided
by the OpenAI Gym baselines library. The baselines are open
implementations of these algorithms and are closely based on
the original papers [26]. The hope is that by using publicly
vetted and accessible code that our results will be comparable
to other work and reproducible.

From OpenAI’s baseline library we selected three algo-
rithms: Deep Q-Networks (DQN), Prioritized Dueling DQNs,
and Advantage Actor-Critic (A2C). These were chosen in part
because they have been well documented in similar environ-
ments such as ALE. DQN and A3C, which A2C is based on,
are the baseline for which many new RL developments are
scored against. For this reason, we felt it made sense to use
these to benchmark the GVGAI games.

For all three baselines, we used the same network first
described in Mnih et al. for playing Atari [17]. This consists
of 3 convolutional layers and two fully connected layers as
seen in Table I. GVGAI is providing screen-shots for each
game state that the convolutional network learns to interpret.
Each algorithm is trained on one million frames of a particular
game. From initial testing, it appeared that one million calls
were enough to give an indication of the difficulty of a
game for our agents while also being realistic in terms of
computational resources. It is also a step in the right direction
for the learning track of GVGAI where there are very tight
time constraints. To accommodate the smaller number of
training iterations, we changed a few training parameters.
Buffer size, the size of replay memory, was set to 50,000,

3https://github.com/rubenrtorrado/GVGAI_GYM

Layer Type Layer Parameters
Depth Kernel Stride

Convolution 1 32 8 4
Convolution 2 64 4 2
Convolution 3 64 3 1

Fully Connected 256
Fully Connected Action Space

Table I: This table represents the architecture of the network
used to play each game. For convolutional layers, depth refers
to the convolutional filters and for the fully connected layers
it refers to the output size.

the network starts learning after only 1000 initial decisions,
and the target Q-network gets updated every 500 steps.

We test both the original DQN and a modified DQN.
OpenAI Baselines has a DQN implementation that is based
on the original DQN but it also offers prioritized experience
replay and dueling networks as options that can be turned
on since they work together with the original implementation
[26]. We tested the original for comparisons and also ran DQN
with the two additional modifications to get results from a
more state of the art DQN. We used the baseline defaults for
the network with a couple of exceptions pertaining to training
time. The defaults have been tuned for ALE and should carry
over.

To test A3C, OpenAI provides A2C. This is a synchronous
version that they found to be more efficient and perform just
as well on Atari [26]. This was also tested with the baseline
defaults with the same changes made for DQN. Each baseline
was tested on every game for one million calls, resulting in a
total of 24 million calls.

IV. RESULTS AND DISCUSSION

Here we present the results of training the baselines on
each game. The results show the performance of the provided
baselines for a sample of the games in the GVGAI framework.
This provides insight into how the baselines compare to other
AI techniques and to how the GVGAI environment compares
to other environments.

Finally, this section is structured in three parts. First, the
results of training the learning algorithms on the games are
provided with some additional qualitative remarks. Second, the
GVGAI environment is compared to the Atari environment.
Third, the reinforcement agents are compared to planning
agents that have been used within the framework.

A. Results of learning algorithms

Figure 3 shows the training curves for DQN (red), Dueling
Prioritized DQN (blue) and A2C (green). The graphs show the
total rewards for playing up to that point in time. Rewards are
completely defined by the game description so they can’t be
compared between different games. This is done by reporting
the sum of the incremental rewards for the episode at a given
time step. Since this data is noisy due to episode restarts,
the 20 results are averaged to smooth the graph and better
show a trend. A2C allows running in parallel, we were able to
run 12 networks in parallel at once. To keep the comparisons



fair, A2C is still only allowed one million GVGAI calls and
therefore each of the 12 networks is given one-twelfth of a
million calls each. This results in the training graph seen in
Figure 4. To compare this with the linear algorithms, each
time step of A2C is associated with 12 time-steps of the DQN
algorithms in Figure 3. The value for each time step of A2C
is the average of all 12 rewards.

Due to the fact that we are running experiments on different
machines with different GPU and CPU configurations, we
align the results on iterations instead of time. It is important
to note that since A2C runs its fixed number of GVGAI calls
in parallel, it runs at about 5x the speed of DQN on a machine
with two NVIDIA Tesla k80 GPUs.

Figure 4 shows the training curve in parallel for A2C
on Boulder Dash. The individual agents are chaotic which
helps A2C break out of local minima. This also points to the
importance of the exploration algorithm in learning to play
games. In Boulder Dash, as long as one of the 12 workers
found an improvement they would all gain.

The agents were able to learn on most of the games that
were sampled. A2C performed the best for most of the games
tested. Though it’s important to remember a relatively small
computational budget was allowed for these algorithms and
the others might eventually catch up. 8 games is also a small
sample for comparing which algorithm is the best. A2C seems
to benefit from sampling more initial conditions and starts with
a higher score.

DQN and Prioritized Dueling DQN were both given the
same initial seed so they had the same initial exploration
pattern. For this reason, both algorithms tended to start out
with similar performance and then diverge as time goes on.
Prioritized Dueling DQN seems to slightly outperform vanilla
DQN, but on overall they are very similar. A2C could not be
compared in this way as it intentionally is running different
explorations in parallel and then learn from all of them at the
same time. This can explain why A2C tends to start out better
right from the beginning, especially in Aliens. It is benefiting
from 12 different initial conditions in this case.

Available rewards have a big impact on the success of RL
and that is not different in the GVGAI environment. The games
where the agents performed worst were the games that had the
least feedback. For this work, we left the games in their current
form, but it is very easy for researchers to edit the VGDL file
and modify the reward structure to create various experiments.

The games sampled here vary a lot in terms of the rewards
they offer. Frogs and Wait For Breakfast only provide a single
point for winning. This is evident in their training graphs.
For Frogs, none of the agents appear to have found a winning
solution in the calls allotted. This resulted in a situation where
RL could not play the game. Wait For Breakfast has a simpler
win condition in a very static environment. The agent had to
flounder around a lot until it bumped into the correct location
for a few consecutive iterations. The environment is very static
so once a solution is found it just has to memorize it. A2C
has the exploration advantage and can find the solution sooner
but it keeps exploring and does not converge to the single

conclusion as quickly.
Missile Command shows a similar performance for the three

algorithms. Although Prioritized Dueling DQN finds a higher
value in earlier stages, The three algorithms get trapped in a
local optimum. In the game missile command, four fire-balls
target three bases. To get all 8 points the player has to defend
all three. One of the bases gets attacked by two fire-balls which
make it hard to defend. To have time to save the third base
requires very accurate play, the agents did not seem to be able
to maintain a perfect score because a few missteps led to 5
points. The reward plain is very non-linear for this game.

Superman takes this difficulty to the next level. The game
is very dynamic with many NPCs modifying the environment
in a stochastic manner. This means that any actions that the
agent takes will have a big impact on the environment in the
future. On top of this, the way to get the most points is to
capture the antagonists and take them to jail. No points are
awarded for capture, only for delivery to jail. This introduces a
delayed reward which is a barrier to discovery. Knowing this,
the results from the training on this game make sense. The
agents were occasionally able to stumble on a good pattern
but they could not reproduce the success in the stochastic
environment.

DQN and Prioritized Dueling DQN struggled to play Boul-
der Dash. In Boulder Dash, when the player collects a diamond
for points, a rock falls toward them. This means there is
negative feedback if an agent collects a diamond and doesn’t
move. Not collecting any diamonds and surviving appears to
be an obvious local optimum that the agents have a hard time
escaping. On the other hand, A2C was able to discover how to
collect diamonds and survive, with a clear trend of continuing
to improving.

Seaquest is a good example of a game that is not too hard
but has a lot of random elements. The agent can get a high
score if it can survive the randomly positioned fish, catch
the randomly moving diver, and take it to the surface. This
requires the agent to learn to chase the diver which none of
the agents appear to be doing. The high noise in the results is
most likely from the agents failing to learn the general rules
behind the stochasticity. Additionally, the player needs to go
to the surface every 25 game ticks or it loses the game, which
may be something hard to learn for the agents.

Finally, Zelda is a fairly good game for reinforcement
learning. Though, the game is not too similar to its namesake.
The player must find a key and use it to unlock the exit while
fighting enemies. Each event provides feedback which allows
the agents to learn the game well.

B. Comparison with ALE

Reinforcement learning research has been making a lot
of progress on game playing in the last few years and the
benchmark environments need to keep up. ALE is a popular
2D environment. It consists of a reasonably large set of real
games and all the games have been designed for humans. Yet,
the game set is static and cannot provide new challenges as
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Figure 3: Training reward for DQN (red), Prioritized Dueling DQN (blue), and A2C (green). The reward is reported on the
y-axis and is different for each game. As an example, Frogs only returns a score of 1 for winning and 0 otherwise. Each
algorithm is trained on one million game frames.
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Figure 4: Training reward for all 12 workers of A2C learning
on Boulder Dash

researchers experiment with the strengths and weaknesses of
different algorithms.

GVGAI currently has over twice the number of games as
ALE and with active research more are added every year.
The VGDL language also makes it possible for researchers to
design new games. Truly stochastic games can be designed and
multiple levels can be included to test how well an algorithm
can generalize. The VGDL engine also provides a forward
model that can be incorporated in the future to allow hybrid
algorithms to learn and plan.

While these games allow targeted testing of AIs, they tend
to not be designed with humans in mind and can be hard to
play. Readers are also not as familiar with the games as they
are in Atari and therefore might lack some of the intuition.
Another drawback is speed. The engine is written in Java and

communicating through a local port to Python. While still very
fast, training will run a few times slower than Atari. Currently,
there is ongoing development to optimize the communication
between the two languages.

While both environments share some games, the perfor-
mance on these games cannot be compared directly. GVGAI
has games that are inspired by Atari but they are not perfect
replicas and the author of the VGDL file can decide how close
to match the original and how to handle score. Yet, looking
at similar games in both environments seems to show that
GVGAI can have many of the characteristics of Atari: such as
fairly good performance on Aliens and poor performance on
Seaquest.

The ALE has done a lot for providing a standard benchmark
for new algorithms to be tested against. GVGAI is more fluid
and changing but it allows researchers to constantly challenge
the perceived success of new RL agents. The challenges for
computers can advance with them all the way to general video
game playing. On top of that, we provide the results here to
propose that doing well on GVGAI is at least comparable
doing well on ALE and we show that there are games on
GVGAI that still are not beaten.

C. Comparison with planning algorithms
In order to compare the performance of our learning

algorithms with the state-of-art, we have used the results
obtained in [25]. This paper explores clustering GVGAI games
to better understand the capabilities of each algorithm and
subsequently use several agents to test the performance of each
representative game. The tested agents may be classified in
Genetic Algorithms (GA), Monte Carlo Tree Search (MCTS),
Iterative With and Random Sample (RS). To compare results,
we took the agent with the high score for each category in a
target environment.



In Table II we compare the performance of the
reinforcement-learned neural network agents with high-
performing planning agents. This is very much a case of
comparing apples and oranges: the learning-based agents have
been trained for hours for the individual game it is being tested
on whereas the planning-based agents have had no training
time whatsoever and are supposed to be ready to play any
game at any point, and the planning-based agents have access
to a forward model which the learning agent does not. In other
words, each type of agent has a major advantage over the other,
and it is a priori very hard to say which advantage will prove
to be the most important. This is why this comparison is so
interesting.

Beginning with Aliens, we see that all agents learn to play
this game well. This is not overly surprising, as all Non-
player Characters (NPC) and projectiles in this game behave
deterministically (enemy projectiles are fired stochastically,
but always takes some time to reach the player) and the game
can be played well with very little planning; the main tasks are
avoiding incoming projectiles and firing at the right time to
hit the enemy. The former task can be solved with a reactive
policy, and the latter with a minimum of planning and probably
also reactively.

Wait for Breakfast was solved perfectly by all agents except
the standard MCTS agent, which solved it occasionally. This
game is easily solved if you plan far enough ahead, but it is
also very easy to find a fixed strategy for winning. It punishes
“jittery” agents that explore without planning.

Frogs is only won by the planning agents (GA and IW
always win it, MCTS sometimes wins it) whereas it is never
won by the learning algorithm. The simple explanation for
this is that there are no intermediate rewards in Frogs; the only
reward is for reaching the goal. There is, therefore, no gradient
to ascend for the reinforcement learning algorithms. For the
planning algorithms, on the other hand, it is just a matter
of planning far enough ahead. (Some planning algorithms
do better than others, for example, Iterative Width looks for
intermediate states where facts about the world have changed.)
The reason why learning algorithms perform well on Freeway,
the Atari 2600 clone of Frogger, is that it has plenty of
intermediate rewards - the player gets a score for advancing
each lane.

Two of the planning agents and all three learning agents
perform well on Missile Command; there seems to be no
meaningful performance difference between the best planning
algorithms (IW) and the learning agents. It seems possible
to play this game by simply moving close to the nearest
approaching missiles and attacking it. What is not clear is
why MCTS is performing so badly.

Seaquest is a relatively complex game requiring both shoot-
ing enemies, rescuing divers and managing oxygen supply.
All agents play this game reasonably well, but somewhat
surprisingly, the learning agents perform best overall and A2C
is the clear winner. The presence of intermediate rewards
should work in the learning agents’ favor; apparently, the
learning agents easily learn the non-trivial sequence of tasks

as well.
Boulder Dash is perhaps the most complex game in the

set. The game requires both quick reactions for the twitch-
based gameplay of avoiding falling boulders and long-term
planning of in which order to dig dirt and collect diamonds
so as not to get trapped among boulders. Here we have the
interesting situations the one planning algorithm (MCTS) and
one learning algorithm (A2C) plays the game reasonably well,
whereas the other algorithms (both planning and learning)
perform much worse. For the planning algorithms, the likely
explanation is that GA has too short planning horizon and IW
does not handle the stochastic nature of the enemies.

For Zelda, which combines fighting random-moving en-
emies and finding paths to keys and doors (medium-term
planning), all agents performed comparably. The tree search
algorithms outperformed the GA, and also seem to outperform
the learning agents, but not by a great margin.

V. CONCLUSION

In this paper, we have created a new reinforcement learning
challenge out of the General Video Game AI Framework by
connecting it to OpenAI Gym environment. We have used
this setup to produce the first results of state-of-art deep RL
algorithms on GVGAI games. Specifically, we tested DQN,
Prioritized Dueling DQN and Advance Actor-Critic (A2C) on
eighth representative GVGAI games.

Our results show that the performance of learning algorithm
differs drastically between games. In several games, all the
tested RL algorithms can learn good stable policies, possibly
due to features such as memory replay and parallel actor-
learners for DQN and A2C respectively. A2C reaches a higher
score than DQN and PDDQN for 6 of the 8 environments
tested without memory replay. Also, when trained on the
GVGAI domain using 12 CPU cores, A2C trains five times
faster than DQN trained on a Tesla Nvidia GPU.

But there are also many cases where some or all of
the learning algorithms fail. In particular, DQNs and A2C
perform badly on games with a binary score (win or lose,
no intermediate rewards) such as Frogs. Also, we observed
a high dependency of the initial conditions which suggests
that running multiple times is necessary for accurately bench-
marking DQN algorithms. Finally, some complex games (e.g.
Seaquest) show problems of stabilization when we are training
with default parameters of OpenAI baselines. This reflects
that a modification of replay memory or the schedule of the
learning rate parameters are necessary to improve convergence
in several environments.

We also compared learning agents (which have time for
learning but not a forward model) with planning agents (which
get no learning time, but do get a forward model). The results
indicate that in general, the planning agents have a slight
advantage, though there are large variations between games.
The planning agents seem better equipped to deal with making
decisions with a long time dependency and no intermediate
rewards, but the learning agents performed better on e.g.



Games Random Agent Planning Agents Learning Agents
Genetic Algorithm Monte Carlo Tree Search Iterative Width DQN Prioritized Dueling DQN A2C

Aliens 52 80.4 72.6 80.2 75 74 77
Wait For Breakfast 0 1 0.4 1 1 1 1

Frogs -2 1 -0.4 1 0 0 0
Missile Command -2.2 2.6 -3 6.8 5 8 5

Seaquest 17.2 435 638.2 224.6 600 800 1200
Boulder Dash 1.4 3.4 16.4 8.8 2.5 5 15.5

Zelda -5.2 3.4 6.8 7.6 4.2 4.2 6
Superman 4 157 6699 130.2 500 0 800

Table II: Learning score comparison of learning algorithms (DQN, Prioritized Dueling DQN and A2C) with random and
planning algorithms (Genetic Algorithms, MCTS and Iterative Width). The results of planning and random are taken from [25]
and correspond to the best performing instance of each algorithm.

Seaquest (a complex game) and Missile Command (a simple
game).

As researchers experiment with more the existing games,
design specific games for experiments, and participate in the
competition, we expect to gain new insights into the nature
of various learning algorithms. There is an opportunity for
new games to be created by humans and AIs in an arms race
against improvements from game-playing agents. We believe
this platform can be instrumental to scientifically evaluating
how different algorithms can learn and evolve to understand
many changing environments.
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